RECENTLY PATENTED INVENTIONS.

ning to A pparel.

ABDOMINAL REDDCING-CORSET. URNSTAIN, New York, N. Y. The more partype of corset having portions, the genera diameter of which can be contracted by degrees, and also having an auxiliary flap adapted to occupy diferent positions representing different diameters for the corset and provided to the position of this auxiliary flap.

Electrical Devicen.

insUlator.--c. Rosenberg and V. T Bailegy, New York, N. Y. In the present pat sulators such as used in connection with incandescent electric lamps, and has for its purhe strain incid nt to the stringing and the tretching of the wires
TERMINAL FOR ELECTRIC WIRES.-B. Morgan, Newport, R. I. The object of the invention is to provide a form of tip, whereby
the liability of the tip becoming detached from the liability of the tip becoming detached from
the conductor is reduced to a minimum, in the conductor is reduced to a minimum, in
which extensive contact is made between the conductor and the tip, and in which the latter may be readily secured to or detached from binding post or the like, with
ny wrench, clamp, or other tool.
REGULATION OF THE PERIOD OR IN DUCTANCE OF HIGH-FREQUENCY CIR-CUITS.-G. Ferrie, 51 bis Boulevard de La consists in providing in proximity to the inably surrounding said windings and in short ircuiting a portion of such other conductors, the inductance being regulated by varying the relative position of the inductance windings of the short circuit.
or Interest to warmer
VENTILATOR FOR HEN-HOUSES OR
BROODERS.-G. H. LED, Omaha, Neb. While BROODERS.-G. H. Lbm, Omaha, Neb. While
the ventilator is intended to be used particuarly in connection with brooders and hen houses, it is capable of general use as a ven-
tilating device, that is, where an inner compartment or chamber is to have its air refreshed through communication with the outer air. WAGON-BODY AND HAY-RACK LIFTER.W. C. Wilson, Livermore, Iowa. The inven-
tion consists in an improved construction of wagon body lifter, in which special provision is made for bringing down the body in proper relation to the running gear when it is to be
reconnected, thus avoiding all heavy lif ing reconnected, thus avoiding all heavy lif ing body to the running gear automatic as well BEEHIVE-CARRIER.-A. C BROVAID R Beehive-Carrier.-A. C. Brovald, Fin equipped with novel grasping and holding devices for the hive. The cen ers are so ar-
ranged hat when the barrow is brought to an ranged hat when the barrow is brought to an
approximately upright position adjacent to the approximately upright position adjacent to the
hive, certain members on which the hive rests hive, certain members on which the hive rests
are centered beneath the same; whereupon the arms for grasping the hive and which ar manipulated from a point near the handles are gage the hive and properly supported in the barrow when transported.

of General Interent

SAFETY-RAZOR.-T. F. Corlay, New York, N. Y. The object of this inventor is to provide razor arranged to permit of conveniently
placing the blade into accurate position on the rame or holder relative to the guard theredesired rigidity to the blade and which back plate can be readily opened or closed and securel
sition.
HOSE-NOZZLE.-F. J. Radler, Jersey City, N. J. The connections of this nozzle are
particularly adapted for use with hose on fire water-towers, stand-pipes and the like, the obtions whereby it may be readily turned in arious directions, the connections being so joint.
PROCESS FOR THE MANUFACTURE OF RESINOUS PRODUCTS CAPABLE OF RE placing natural resins.-L, Grognot 18 Rue Labat, Paris, France. Phenols have the property of combining with the aldehydes under he influence of catalytic agents (such as mineral or organic acks, alkalne or othe bases) for forming the various resins analo Nevertheless the action of these catalytic gents is difficult to control and beyond what is requ.
MOLDING-FASTENING.-A. C. Goddard New York, N. Y. Metal doors, windows, and other similar structures are comprised in this
invention, and the object is to provide a fasinvention, and the object is to provide a fas-
tening for securely fastening molding and like parts in place without the use of screws. rivets or similar fastening devices, and without showing the fastening means on he outside of the SHAVING-SOAP CAKE.-L. C. Benitz, Philadelphia, Pa. A conical cavity is wom
down by the brusb in the center of the top
of a soap cake, and the shaving brush finally comes in contact with the bottom of the cup
in which the cake is held, and at last ther remains nothing of the cake save a thin ring which soon breaks up into pieces or sections
that are thrown away and thus wasted. The that are thrown away and thus wasted. The
invention provides a cake of improved shape invention provides a cake of improved shape
that will wear so as to avoid the loss incithat will wear so as to avoid
dent to the use of the old form.
WATER-STORAGE SYSTEM FOR USE IN New York, N. Y. The object here is to New York, N. Y. The object here is to pro
vide a system whereby water may be stored in such manner as to be available in the event the usual water supply should fail, as for in-
stance, by the breakage of the water main stance, by the breakage of the water main da earthquake shock, or such a temporary re-
daction of the normal pressure occurs in the mains at a given point as to cause an inade woven FABRIC
WOVEN FABRIC.-H. SABAFIAN, Yonkers, N. Y. The aim of the invention is to provide provided with an exceedingly strong yet flexble back, thus rendering the fabric very sericeable for use as a carpet, rug or the like. It relates to fabrics such as shown and described in Lette
to Mr. Sarafian.

Hardware.

COMBINATION-TOOL.-W. Wbightsman Evansville, Ind. This tool embodies a center punch, a try-square and a linear scale. an
object of the invention is to produce. a device having a center punch, and arranged so section in a suitable manner, the center punct an be positioned at the cross-sectional cent of the body.

Heating and Lighting.

BOILER-FURNACE.-J. O'Nbill, New York,
The intention in this instance is to N. Y. The intention in this instance is to for water-heating systems, and arranged to atilize the heat from the burning fuel to the ceedingly strong, and durable by constructing the same mainly of sheet metal and brickwork and to allow convenient cleaning of the furnace of soot whenever desired.

Household Utilities.

STRAW-BURNING STOVE.-H. C. Rugaldes, Moro, Ore. The invention relates to stoves for use in burning a highly combustible substanc tove which is simple in construction and pro draft and for controlling the draft.
washboard.-Louise H. Parcy, Philade phia, Pa. The invention has in view the proof means for supporting the tub in a substantially horizontal and
sightly depressed position. Its use prevent backache from bending, prevents injury to the hands, such as callous knuckles and injuries esulting from pins, broken buttons, etc. The ne-half the time and in may be cleaned in oiling and the use of chemicals.
PORTABLE REEL GAS-OVEN.-G. B. Mmek, New York, N. Y. The object here is to prevent heating of the exterior wall by the This is accomplished by forming each of the walls or wall sections with an inner packing of asbestos or other suitable non-heat-conduct ing material, and outside of the asbestos lining, there is provided a plurality of air passages
so arranged that an automatic circulation of r is maintained.

Machines and Mechanical Devices.
WATER-MOTOR.-H. Brown, Brandt Ohio The purpose in this invention is to simplify the piston construction by making the cylinder from the wall of the chambers between the piston faces, to mount the inlet and exhaust ports in the cylinder wall and to provide
mechanism intermediate the piston faces for mechanism intermedia
operating the valves.

SAWMILL.-F. O. Willey, Newport, Ind. The object of the inventor primarily is to pro-
Vide in connection with a saw mill or other like cutting machine a variable feed, which is under the absolute control of the operator, and which will give every possible rate of travel
to the feed carriage within certain limits in either direction.
AUTOMATIC STOP FOR TALKING-MA-Chines.-R. B. Smith, New York, N. Y. The more particular purpose in this case is to ennd having a member carried by the machine and having a travel related to the progress made by the record to play, to act upon and stopping the machine promptly when the play ng of the recard is completed.
DRIVEN WREEL.-J. T. MOORA and W. J. Figming, Evansville, Ind. The object of the mprovement is to provide a driven wheel wherein the momentum of the driving wheel at times, when in action, predominates over dre driven wheel, and the wheel is especially aw or for use as the driven wheel of a band in any loose pulley where a minimum mo mentum is desired.
CAMERA ATTACHMENT.-E. L. HALL, invention a construction of a camera finder
furnished with an adjustable hood that is ap plicable to any type of camera and which can to, and which is also capable of being readil

PANTOGRAPHIC SHIFTER.-H. L. FALCO, New York, N. The invention relates printing and arts allied thereto, the more par-
ticular object being to provide means for readticular object being to provide means for read purpose of multiplying the design carried by for use in moving the printing fllm frame and mechanism for guiding the operator as he actuates the system of levers by hand.

Rallways and Their Accessories.

Railway-signal.-M. M. Kane, Mont gomery, Ala. This signal is for use in pre-
venting collisions or accidents caused by open venting collisions or accidents caused by open switches. The object of the inventor is to
construct a signal or semaphore in such a way that it may be readily operated so as to disrack is
TRACK-SANDER.-J. SCHMITz, San Francisco, Cal. The aim of the invention is to provide a simple and efficient track sander, which can be applied to railway rolling stock of varous kinds, which is inexpensive to manufac ture, and by means of which sand can be disributed in a plurality of directions and TICKET OR RECEIPT CUTTER.-G. MCN. Ross, Jr., Nashville, Tenn. The invention is improved device for use in cut ing and ares is embodied chiefly in he form, arrangement and adaptation for adjustment of the several coacting cutters. The device may be quickly
and easily adjusted.

Designs.

DESIGN FOR A GLOVE.-I. OLIVER, New nd a gauntlet portion. The latter is hand rom the junction of the hand portion therewith to its free end, on the side adjacent to the little finger and the sides of the split are snap fastened. The wrist portion is spitit from he beginning of the palm upwardly and the
sides of the split are provided with buttons and button holes.

Nota.-Copies of any of these patents will be fumished by Munn \& Co. for ten cents eac Please state the name of the patentee, title o
the invention, and date of this paper.

Notes and Queries.

Full hints to correspondents were printed at the head of this column in the issue of Nove
ber 14 or will be sent by mail on request.

Attention has been called by several corre-
spondents to the answer to Query 11007, regarding the properties of aluminium. The editor must say that the latter part of the the case The compounds of aluminium a not to be regarded as poisons and are simp'r dulterants of food. For this reason some have condemned the use of aluminium dishes, but they are no worse in this respect than tin, if as bad, and excepting he caustic alkalis, the. amount of action of these chemicals of
foods upon the aluminium is so small that foods upon the aluminium is so small that
the salts formed cannot be sufficient to do harm
(11033). B. T. asks how to make buff wheels. A. Turn up the wooden disk to form Cover the the mandrel on which it is to run. Cover the periphery of the wheel with good
glue, prepared as for gluing wood, stretch the leather around and confine it with shoe pegs driven in about 2 inches apart. Whery dry
turn off true with a.sharp chisel. Give the turn off true with a sharp chisel. Give the
leather a coat of glue and roll it in emery, so as to make it retain it by being imbedded in the glue. Let the wheel dry until the glue (11034) C. L. F.
(11034) C. L. F. asks how to preserve bird-skins. A. Make an incision from the breastbone to the vent; with a small piece of leg is reached, cut through the bee foint the leg is reached, cut through the hnee joint and
clear the shank as far as possible, then wind bit of cotton wool on which some arsenical soap has been put round the bone; do the
same with the other leg. Now divide spine from root of tail, taking care not to cut too near the tail feathers, or they will come out. Next skin the wings as far as possible and cut body. The skin must now be tumed inside out and the neck and skin gently pulled in opposite directions till the eyeballs are fully exposed. The whole of the back of the head may be cut off and the eyes and braki taken out and their places flled with cottrizi wool.
The whole skin should be rubbed well with arsenical soap or piain arsenic, and the neck filling the body with a little dry, whass or after filling the body with a little dry grass or wool,
the job is done. It is very easy, and the skin of a bird is much tougher than one would suippose, though, of course, they vary, the night-
jar being very thin, while humming birds are sharp knife and a pair of scissors, or for large birds, a strong pair of nippers to divide (11035) C. L. asks how to lace belts . The ends of a belt should always be cut off square, not guessed at by the eye, but laid off with a tool. The holes ought to be made the end; the punch at a proper distance from tances of them depending on the width of the belt. The use of an awl is reprehensible, for the holes are apt to be made irregular by it,
and much larger than there is need of. The end of the lace should be tied with a square knot in the middle of the outside, for the corners of the belt where it is cut are most exposed and apt to whip out. Tying a belt lace does not look so neat as where the ends are put through an incision, but tying saves the laces ought to be of the same thickness The laces ought to be of the same thickness from
end to end, or as nearly so as possible. It often happens that laces have very thin spots in them; such should be kept for short belts, and never used for long ones. Moreover, the holes must be made at equal distances apart
and not too many of them. Every hole weakens the belt, and none that are not absolutely essential should be cut. All new laces, as well as new belts, should be stretched by hanging
weights on them before they are used; petroleum, sawdust, resin, and similar substances should never be used. When a belt gets harsh or dry, neat's-foot oil is the best thing to apply
(11036) C. M. S. asks: 1. Why does not an arc lamp short-circuit a current or cause a live wire, the same as when the two
wires leading from the generator are touched together and pulled apart, thus making an arc? A. The carbons of an arc lamp do not short-
circuit the current because he resistance of circuit the current because he resistance of
the coils in the lamp cut the current down to the coils in the lamp cut the current down to
the number of amperes needed to light the lamp. 2. Is there any form of a rheostat used in the ordinary arc lamp? A. There is a neostat in all arc lamps. 3. Please send me
one of the Scimntific Ambaican SUpplemmets showing the construction of an electric furnace.
A. Our SUPPLEMENT 1182 contains a good article upon the construction of an electric fur-
(11037) K. G. C. asks: Owing to the precession of the equinoxes, is the apparent
diumal motion of Polaris around the pole of the northern celestial sphere describing now a larger or a smaller circle than formerly, or in ing frords, is the star appaching or ing from the actual pole? A. At present the
distance of Polaris from the North Pole is about one and a quarter degrees. At the time of the Star Catalogue of Hipparchus, it was
12 degrees distant from the pole. It will ap12 degrees distant from the pole for the next hundred years, ane it what time it will from the pole, or rather the pole will recede from the star.
(11038) L. C. S. writes: 1. As I understand it the resistance is what makes the ield coil get hot. In order to avoid the heat-
ing more wire is added; now, if resistance is what heats the coil, how do you account for the coolness of the fields after adding more wire, consequently more resistance? A. Your
statement that resistance causes the heating of an electric circuit is less than half right. The exact statement is that the heat developed in a circuit is directly proportional (1) to its resistance in ohms, (2) to the square of the
current in amperes, (3) to the time that the current flows in seconds. Now one ampere flowing through one ohm develops 0.24 calorie in one second. Putting these facts in a formula we have: Heat in calories $=0.24 C^{2} R t$. It can
now be seen why the heating of a coil can be remedied by adding more wire. The increase of resistance cuts down the amperes in the e herease. But the reduction the ratio of the squares of the amperes. Thus, if the resistance were doubled the amperes would be halved, but the heat produced would
be reduced to one-fourth of what it was, since the square of $1 / 2$ is $1 / 4.2$. What is the cause of the humming in the field coils and pole pleces of an induction motor when the arma-
ture does not revolve, but the current is passing through the fields? A. The alternations of an electric cuarent produce vibrations which are heard as sound. These can be heard near an arc light run by an alternating current, or
near an alternating electro-magnet. 3. What changes are necessary to revese the What of an induction motor? Crossing the positive and negative wires at the binding posts will not do it. of course, merely reversing the rection of rotation of a motor. If the induction will be reversed by changing then of rotaof either phase. If it is three phase, it will be reversed by changing any two the will be The different phases are a fraction of a period behind each other, and the direction of rotation depends upon the direction in which the phases lag behind around the rotating part of
the motor, whether clock-wise or contra-clockwise. To reverse the motor the direction of it be possible to illustrate and explain the induction motor in the Sand explain the in some time in the future? A. The induction
motor has been fully treated in several books
recently published. Oudin's "Polyphase AD. recently published : Oudin's "Polyphase Ap-
paratus,"
price $\$ 3$ by mail; Thompson's "Polyparatus," price $\$ 3$ by mail ; Thompson's "Poly-
phase Currents," price $\$ 5$ by mail. These, with Thase Currents," price will put you in possession of quite
library of the subject at present.
(11039) R. W. asks for a rough method of estimating the horse-power of a steam en-
gine. A. Multiply the square of the diameter of the cylinder in inches by 0.7854 , and this product by the mean engine pressure, and the last product by the piston travel in feet per
minute. Divide the last product by $\mathbf{3 3 , 0 0 0}$ for the indicated horse-power. In the absence logarithmic formule or exp multiply the boiler pressure for $5 / 8$ cut-off by
0.91 , for $1 / 2$ cut-off by $0.85, \% / 8$ cut-off by 0.75 , 3-10 cut-off by 0.68 . This will give the mean
engine pressure per square inch near enough for ordinary practice, for steam pressures between 60 and 100 pounds, always remembering
that the piston travel is twice the stroke multiplied by the number of revolutions per min-
(11040) H. B. asks for a formula for nsulating material. A. Linseed oil, 2 parts; parts; light coal tar, 2 parts; Venice turpenine, $1 / 2$ part; spirits of turpentine, 1 part; gutta percha, $1-6$ part ; sulphur, 2 parts;
heat the oils separately to about 300 deg. F.; heat the oils separatelv to about 300 deg. F.;
cool to 240 deg., and mix in the other macool to 240 deg., and mix in the other ma-
terials, the sulphur last. Heat to 300 deg. F. for about an hour or untll the mixture be-
(11041) F. W. B. says: My boat is 20 eet long by 4 feet 5 inches wide, with easy lines, and my engine is supposed to be a highinches, stroke 4 inches, weight less than 200 pounds. It is said to give 4 horse-power at
500 R. P. M., and I would like to know what size propeller you would advise me to use, and what should be the proper pitch, and whether it should be two fuke or three. A.
The size of a screw depends upon so many The size of a screw depends upon so many
things, that it is very dificult to lay down any rules for guidance. However, the following where the size and power of the boat does not exceed a speed of 20 knots per hour. First: The "pitch" of a propeller is the distance which any point in a blade, describing a helix, will travel in the direction of the axis during ne revolution, the aris. The pitch a move around the axis. The pitch of a pro-
peller with a uniform pitch is equal to the distance a propeller will advance during one distance a propeller will advance during one case of this kind, the term "pitch" is analogous
to the term "pitch of the thread" of an ordinary threaded screw. Let $P=$ pitch of pro peller in feet. Then
(100-x)
In which $S=$ speed of boat in knots, $R=$
revolutions per minute of propeller, $x=$ perentage of slip. Assuming a speed of 10 knots per hour for your boat, with engine running at 500 R. P. M., and assuming a 10 per cent slip, we get a pitch of
10133×10
$=\overline{500(100-10)}$
This is probably high, due to the fact that we Diameter of propeller =

$K=$ constant $=17.5 . \quad$ I. \quad H. \quad P. $=4 . \quad R=$
000 R. P. M. $\quad P=2.25$. Therefore, diamer 500 R. P. M. $. \underset{P}{P}=\mathbf{2 . 2 5}$. Therefore, diameter
of propeller under four blades to the screw, made of cast iron, would be approximately one foot diameter. To
allow for any increased slip which may occur, allow for any increased slip which may occur,
and other contingencies which may arise, we would not advise a screw less than 2 feet in
diameter, calculated on a pitch of 2 feet. This will easily allow for any increased speed desired over 10 knots up to 15 knots per hour. (11042) C. J. N. asks how to draw on glass. A. To write or draw on glass, it is
necessary to impart to the surface a certain necessary to impart to the surface a certain
degree of roughness. This may be done by
grinding or etching, but much more easily by applying some appropriate varnish. A good matt varnish is made by dissolving in 2 ounces
of ether, 90 grammes of sandarac and 20 grammes mastic, and adding benzol $1 / 2$ ounce to $11 / 2$ ounces, according to the fineness of the matt required. The varnish is appled to the
cold plate after it has set. The glass may be heated to insure a firm and even grain. To render the glass again transparent, after writing upon it, apply with a brush a solution of face for writing or drawing is a varnish of sugar. Dissolve equal parts of white and brown sugar in water to a thin syrup, add
alcohol, and apply to hot glass plates. The alm dries very rapidly, and furnishes a surnim dries very rapidiy, and furmishes a sur-
face on which it is perfectly easy to write with pen or pencil. The best ink to use is
India ink, with sugar added. The drawing India ink, with sugar added. The drawing
can be made permanent by varnishing with a lac or mastic varnish.
(11043) W. F. J. asks how to make waxed paper on a small scale. A. Place cart
in turpentine. On a large scale it is prepared and rapidly ironing it with a heavy hot iron, melting, runs down ueld a piece of waper and is ab sorbed by it. Any excess on the topmost layer readily penetrates to the lower ones. Such paper is useful for making waterproof and air-
proof tubes, and for general wrapping pur-
(11044) S. C. H. asks: 1. What is the meaning of "ampere hour"? A. An ampere meaning of "ampere hour" A. An ampere one hour. This phrase is exactly the same power used for one hour. 2. How is the amperage of any light or coll measured? A. The amperes used by a light or coll are meas-
ured by an ammeter put into the circuit so ured by an ammeter put into the circuit so
that the current flows through it. 3. What re the necessary steps for a young man to liner? A. To become an electricion in an liner? A. To become an electrician in any
position, learn the business thoroughly and then apply for the place you want. Make it appear that you are the man for the place, and you will be likely to get it.
(11045) C. W. N. asks: 1. Approximately how large a spark coll is needed in wireless telegraphy to transmit through a dis tance of one mile, and how large for a distance of five miles? A. A coil giving a spark one inch long will transmit one mile over water Over land the spark length varies with the ten-inch spark will answer distances and circumstances
a large spark coll in which the greatest amount of wire is placed on the middle part of the coil, I have learned that it is customary to leave a
space between the core and the wire at the space between the core and the wire at the
ends. Is there any disadvantage in winding so that the wire lies directly on the main inof the greater tendency space is left because from the secondary into the primary as the ends of the coil are approached. See Hare's
"Construction of Large Induction Coils," price "Construction of Large Induction Coils," price
$\$ 2.50$ by mail. 3. Is there any better insulator than parafine for use in the construction of coils? A. Paraffine or a heavy oil is em-
ployed. 4. What is the best material to use ployed. 4. What is the best material to use
in separating the sections of the secondary? A. Hard rubber disks. 5. Are there any means by which the voltage of the secondary wire of
a coil may be determined? A. Widely differe estimates are to be found of the voltage neces sary to force a spark through various length of dry air. There is no rule giving a certain
result for lengths beyond a few centimeters.
(11046) J. G. M. asks if cast iron balls and cones can be cast so as to wear, and if
they cannot, kindly state what other material can be used besides steel. A. Cast-iron balls and cones are not suitable for bearings for
vehicles or machines. Nothing is better than truly finished steel balls and bearings, hard-
(11047) C. G. W. says: Will you kindy inform me through your Notes and Queries schaum pipe? A. Ordinarily the pipe is boile for coloring in a preparation of wax which is absorbed, and a thin coating of wax is held
on the surface of the pipe, and made to take on the surface of the pipe, and made to take
a high polish. Tnder the wax is retained the oil of tobacco, which is absorbed by the pipe,
and its hue grows darker in proportion to the tobacco use. A meers smoked very slowly and at firs second bowlful is lighted the pipe should cool off. This is to keep the wax as far up on the bowl as possible, and rapid smoking will
overheat, driving the wax off and leaving the pipe dry and raw. A new pipe should never be smoked outdoors in extremely cold weather.
Fill the pipe and smoke down about one-third or to the height to which you wish to color Leave the remainder of the tobacco in the pipe and do not empty or disturb it for several weeks, or until the desired color is ob-
tained. When smoking, put fresh tobacco on the top and smoke to the same level. When once burnt the pipe cannot be satisfactorily colored, unless the burnt portion is removed
and the surface again treated by the process oy which meerschaum is prepared. The colorthe oils and wax which are superficially on the exterior of the pipe, and are applied in the process of manufacture.
(11048) F. B. C. asks for rules for calculating speed of pulleys. A. The diamete of the driver being given, to find the R. P. M.
of the driven; Rule.-Multiply the diameter of the driver by its number of revolutions, and dtvide the product by the diameter of th driven; the quotient will be the number of
revolutions of the driven. Ex.- 24 inches diameter of driver $\times 150$, number of $100 \div 12$ inches diameter of driven $=300$. The diameter and revolutions of the driver being shall make any given number of revolutions in the same time. Rule.-Multiply the diameter of the driver by its number of revolutions, and divide the product by the number of required
revolutions of the driven; the quotient will be its diameter. Ex.-Diameter of driver (as be its die) 24 inches. \times revolutions $150=3,600$. 300 . Then $3,600 \div 300=12$ inches. The rule 300 . Then $3,600 \div 300=12$ inches. The rules
following are but changes of the same, and
will be readily understood from the foregoing
examples. To ascertain the size of the driver Rule.-Multiply the diameter of the driven by the number of revolutions you wish to mak
and divide the product by the required revolutions of the driver;' the quotient will be the size of the driver. To ascertain the size of pulleys for given speed: Rule.-Multiply al the diameters of the drivers together and al the diameters of the driven together; divide by the known revolutions of main shaft. (11049) L. P. says: Will you give me a rule for finding the power a stream of
water is capable of developing, when the size and drop of stream are known? A. The gross power of a fall of water is the product of the weight of water discharged in a unit of time
into the total head, i. e., the difference of into the total head, i. e., the difference o
vertical elevation of the upper surface of the water at the points where the fall in question begins and ends. The term "head" used in in height from the surface of the water in the wheelpit to the surface in the penstock when the wheel is running. If $Q=$ cubic feet water discharged per second, $D=$ weight of cubic foot of water $=62.36$ pounds, $A=$ tota head in feet, then $D \times Q \times H=$ gross power in
foot pounds per second, and $D \times Q \times H \div 550=$ oot pounds per second, and $D \times Q \times H \div 50$ any kind cannot utilize the total head H du to losses at the entrance and discharge from
the wheel. There are also losses due to friction, etc., which place the average efficiency of waterwheels at about 75 per cent. Thus ne $\boldsymbol{\theta} \times \boldsymbol{H} \times \boldsymbol{D}$
water can be made use of in one or more of the following ways, namely: 1. By its weight, as 2. By its pressure, as in turbines and in th hydraulic engines. 3. By its impulse, as in the Pelton waterwheel. 4. By a combination
the above. Referring to your question, might say that it would be impossible to com pute the horse-power of a stream of wate would be necessary to measure the quantity water which flows in a certain time. From this value Q could be determined in the form-
ula, B could be measured, and the horse-power ula, H could be measured, and the horse-power
calculated. 2. A dynamo of what lighting capacity will a 3 -horse-power gasoline engine rum ? A. A 3-horse-power gasoline engine would lighting system carrying safely thirty 110 -volt 16 -candle power Edison incandescent lamps on a parallel circuit.
(11050) W. S. asks: Is it possible to consume all the oxygen in a confined quantity of air, viz., in a sealed iron pipe? A. Yes
by placing copper scraps in the pipe and heat ing the air in the pipe. The oxygen combines with the copper, forming a solid
and leaving the nitrogen uncombined.
(11051) C. M. writes: 1. I want to use a call bell in kitchen, battery to be in
second story, from which run two wires. I want one push button in one room, one in sec ond room, one in parior, one in room down
stairs, also one in dining room-five push buttons; how could I connect all buttons to wort properly with only one bell? A. Carry one wire from one post of the battery to the bell, and from the other side of the bell a wire which shall branch through each push button
to the other side of the battery. There will to the other side of the battery. There will
then be a complete and separate circuit through battery, bell and a push button. 2. I have one lamp, 8 candle power, 26 volts; could I ligh
it with 14 cells improved standard Fuller battery? If so, how about the amperes it will use with 26 volts? A. You can light the lamp with 26 volts and 1 ampere of cur-
rent. 3. How old is Mr. Edison? Also, who was the first that invented the electric light I mean both the arc and incandescent lamps. A. Mr. Edison was born February 11, 1847. artificially excited electricity is said to have been Otto von Guericke in 1660 . This was the first electric light. Sir Humphry Davy is credited with first producing an electric arc plates, each four inches square, and used char coal points made of wood, which he immersed in a mercury bath to increase the conductivity.
With this he melted many refractory sub. stances such as lime, platinum, sapphire, and
diamond. The incandescent vented and perfected by Edison.
(11052) G. S. M. asks: Will you kindly let me know through the columns of your paper whether it is necessary for the
temperature of the air to become 32 deg. F. or lower in order to produce a "white frost"? If not, please give reasons. A. It is necessary
for the air to be at 32 deg . at the point where the white frost forms. It is not necessary for it to be at 32 deg. any distance above that
point, even one foot above. The air is a nonconductor of heat, and may be several degrees where frost is forming. Vegetation and stones are better conductors of heat than is air, and hence become cooler than the air. Hence the
dew is deposited on these, and the dew freezes to ice crystals, which is frost.
(11053) G. B. asks: We have tried different ways in cutting round glass rods of
$1 / 2$ inch to $7 / 8$ inch without good results. Will
A. A glass rod is usually broken by making a cut on one side with a flle or diamond and
giving a quick bend at the point opposite to the cut. An improvement upon this method, although requiring more work, would be to make a cut entirely around the rod, and apply heat at the place where the cut is made. A redhot piece of iron $3 /$ inch in diameter will be
the best for applying the heat to the rod. the best for applying the heat to the rod
This may be fitted into a handle and used as This may be fitted into a handle and
a soldering tool is used in the hand.
(11054) J. P. A. asks: Comparing the chemical equivalents (atomic weights) given in Century Dictionary with those stated in text
books on this subject, I find considerable difference in the figures. In some cases, the ference in the figures. In some cases, the
amounts are one-half for those of text books as against the amounts of Century Dictionary, while in other cases the differences of amounts are without definite proportion. If the determination of equivalents of elementary bodies has passed beyond the presumptive state, will you kindly advise me where the truth of this matter may be found? A. We should no more
think of going to the Century Dictionary for the chemical equivalents, or atomic weights of elements, than we should think of going to an almanac seventeen years old. The Century Dictionary is most valuable in its field; but surely its field is not to give data which have been made far more correct since its publication seventeen years ago. The American Chemical Society has a committee upon atomic
weights, and its figures reported from time to time are received as authority. Probably the most weighty name in connection with this work is that of Prof. F. W. Clarke, the chief chemist for many years of the United States Geological Surver. The determination of
atomic weights has passed beyond the "preatomic weights has passed beyond the "pre sumptive stage," and the results may be found
in any recent chemistry, such as Remsen's in any recent chem
"College Chemistry."
(11055) A. M. asks: Please let me know what I would need to cause the sound 150 a cock to be transmited a distance of, say, 150 feet by electricity. A. A simple device front of the clock and a receiver at the point at which you would hear the ticking.
(11056) J. W. D. asks: 1. How long does it take to decompose one pound acidified
water with a current of 100 volts? A. The time required to decompose a pound of water depends upon the amount of electricity used. If $131 / 2$ amperes are used at 100 volts it will require one hour. From this the time for any other current can be found, or the current for any other time. Water is decomposed with
any voltage greater than 1.47 volts. You will any voltage greater than 1.47 volts. You will
see then that 100 volts is very much higher than is necessary. 2. How much does it cost to run a dynamo of 1,000 volts annually, in cluding all expenses? A. That depends upon how many amperes the dynamo is to furnish.
A dynamo giving 1,000 volts might be lighting A dynamo giving 1,000 volts might be lighting
a small village, or it might be lighting a large a small village, or it might be lighting a large
section of your city. The cost would not be section of your city. Th
the same in both cases.
(11057) G. G. S. asks: Please inform me as to the amount of current used by (1) 1/2-inch solid carbons, (2) $1 / 2$-inch soft core car bons, (3) $5 / 8$-inch solid carbons, (4) $5 /$-inch
soft core carbons, when used in a stereopticon on 110 -volt alternating current circuit. A. Stereopticons are usually run with $1 / 2$-inch carbons. We have never used one with a larger carbon. The $1 / 2$-inch carbon will carry as high as 25 amperes, but 10 to 15 amperes is
the usual current for such a lamp. A $5 / 8$-inch the usual current for such a lamp. A $5 / 8$-inch
carbon would carry $25-16$ ths as much current carbon would carry $25-16$ ths as much current
as a $1 / 2$-inch carbon. The current would be as a $1 / 2$-inch carbon. The current would be
proportional to the area of cross section of the proportio
carbon.
(11058) M. C. A. asks: Will you please inform me what size and how many feet of wire
it will take to make an electric heater, 104 volts, say 5 to 7 amperes capacity? heater, 10 amperes at 104 volts require 15 ohms of resis tance. For a rise of 190 degrees F. the resis tance rises 40 per cent. Hence about $5-7$ as much wire will be needed if you wish to raise
the temperature about to that of boiling water. the temperature about to that of boiling water.
No. 14 iron wire may be used. This has about No. 14 iron wire may be used. This has about
65 feet to an ohm. These are approximate 6 feet to an ohm. These are approximate
numbers, and you can adjust the quantity to wish to maintain.
(11059) J. O. D. says: Do you publish an Encyclopedia of Receipts and a book on patent laws fith the "Scientific. American Cyclopedia of Receipts, Notes and Queries," last edition containing 15,000 receipts, 736 pages, cloth bound, price $\$ 5$. Our "Scientific American Reference Book," price $\$ 1.50$, gives
the patent laws. Always give full name and the patent laws. Always give full name and ddress when corresponding
(11060) W. A. L. asks: Is there any other metal that can be used in a gravity bat-
tery besides zinc that will not dissolve? tery besides zinc that will not dissolve? A.
There is no way of obtaining electricity withThere is no way of obtaining electricity with-
out using up some material. In the dynamo steam or water power is employed. In the bat
tery we usually burn up zinc. It is just as impossible to produce electricity without a disappearance of some other form of energy as it is to heat a house and still have the coal, or cool a refrigerator and still have the ice. (11061) C. S. J. asks: I wish to learn the cause of trichinæ in pork. A. The
Trichina spiralis is a worm, a parasite of the learn the cause of trichinæ in pork. A. The
Trichina spiralis is a worm, a parasite of the
hog. It is often found in great numbers in
the flesh of these animals，in the encysted con－
dition but still alive．If such meat is eaten dition but still alive．If such meat is eaten taken into the body and is rapidly propagated The worm came originally from the rat．As hogs eat rats，they pass into the hog and thence into man．The only preventive is thor－
ough cooking．This kills the triching．No ough cooking．This kills the triching．No
rare or underdone pork should ever be eaten． The risk is too great．The cost of immunity is so little，that anyone may be safe．Cook all
pork thoroughly．2．The cause of ptomaine poisoning by eating pork．What causes the poisoning by eating pork．What causes the presence of the poison，her or not there is any
prevented，and whether or
way of detecting the presence of poison before way of detecting the presence of poison before
using the meat？A．Ptomaines are formed by using the meat？A．Ptomaines are formed by
decomposition．If only fresh food is used，one decomposition．If only fresh food is used，one
will be safe from these poisons．
（11062）H．S．N．asks： 1 have been a reader of your paper for several years，and
always enjoy reading it．I should like to sub－ mit a problem for solution．The problem is a fast train while running，a Michigan Central flier，at a point about two miles east of De－
catur．On development the plate showed a hlur of $1-32$ inch，i．e．，the pilot did．I used a Vive extra rapid plate；the focus of the lens
was 6 inches；the distance of the engine，the pilot，from the camera， 50 feet；the length of exposure，1－100 of one second；camera was
placed at an angle of 15 deg，with the track． What was the speed of the train？The camera solution of $41 / 4 \times 4 / 4$ ，meniscus lens．A．The train is not difficult，at least so far as a
sufficiently close approximation is concerned． Start with the fact that the image of the pilot moved $1-32$ inch during exposure．Since the lens is 6 －inch focus and the pilot is 50 drawn through the center of the lens， 100 times $1-32$ inch，or 3.125 inches，since 50 feet is 100 times 6 inches．And since the camera made an angle of 15 deg ．with the track，we must divide the 3.125 Inches by the sine of 15 deg．to find the distance the pilot moved during the exposure．This gives 12.07 inches as the distance the train moved in the time
of exposure，or $1-100$ second．In one second it解 As we sald above，this is an approximate solu－ tion，but still not far from the result which an exact solution would give．
（11063）J．S．N．asks：Will you kindly answer in your column of Notes and man computation？I suppose the matter is simple enough，but I have hever come across
any work explaining it，nor any person whom any work explaining it，nor any person whom
I have asked who could throw any light on the subject．A．Very little is known concerning very inconvenient notation for performing the ordinary calculations．They are supposed to have used the abacus for all except the most simple problems．This instrument is in com－ mon use now by all Chinamen，and it is not
difificult for any one to see it used wherever difficult for any one to see it used wherever
these men may be found．A description of the abacus mas be had from any encyclopedia numbers to millions，seven rods each carring five balls．Another set of short rods corres－ ponded to these，and had one ball sliding on each．They could thus count by fives and
carry by tens．Other rods supplied their need carry by tens．Other rods supplied their need
for calculating ounces．Further than this for calculating ounces．Further than this hey never needed to divide the distance of in sun by the velocity of light．They died data of the universe．As we said at the method by which the Romans made their cal－ culations．Their mode of writing numbers was not like ours by placing like denomina－ tions in the same column，but each letter had its significance，and each number could be meant a denomination．
（11064）W．D．W．says：Will you be kind enough to answer the following questions or one who is anxious to know and who has tjfic matters？1．Will electric wires，furnish－ ing current for arc lights coming in contact with street trees，injure them，that is，when the insulating covering has worn off from rubbing against the branches of the tree？One of the tree and park commission of this city（Colum－ bia，s．C．），a college professor and a very in that is，all tha weather，will do no harm，while I hold to the
what opinion that it will ultimately kill it，and I wish to know which one of us is wrong． We have found by experience that leakage from electric arc light wires does injure the limbs of trees，particularly when the difference of potential is very great，although we do not
believe it would kill the tree unless it was very young．2．When a tree has been killed by escaping electricity，how long a time should elapse，in case the leak be located and stopped， before it will be safe to put another tree in its place？A．We see no reason why another tree cannot be put in at once if the ground has been removed．3．Some very large oaks that are exposed to the smoke from the ratl－
road workshops have died very recently，and I am anzious to know if the smoke is responsible for their dying．The shops have been there
for a long time，and it seems that if the smoke has become probable that liquid air will find long before this time．It may be possible，how－ ever，that loss of vitality on account of age If the partly responsible for their dying． have lost some vitality on account of it，as the products of combustlon are very destructive to vegetable life，but the trees would have
under the direct influence of the smoke．
（11065）C．D．asks：1．What point elow the freezing point do air，hydrogen，．．ni－ trogen，oxygen，become liquid？A．These tem Fahr．degrees，below zero：Air，312；hydro－ gen， 422 ；nitrogen， 317 ；oxygen，297．2．Please give me the address of a reliable company that sells chemicals and chemical apparatus．A．
You had better deal with a firm in the city You had better deal with a firm in the city

near your home than buy at a distance and pay transportation charges．Our advertising | of these dealers．We do not advertise dealers |
| :--- | in the Notes and Queries column．3．Where can I get some books on argon，helium，neon， krypton，and senon，and give me the prices of them？A．We can send you many valuable papers on the rare gases of the atmosphere

which have appeared in the Suppr Among them are argon，Nos．1000，1001，1002， 1056，1057，price ten cents each．4．What kind of chemical books，as organic chemistry etc．，so I can find liquid formene？What is formene？A．Formene is a tetrachloride of carbon CCl_{4} ．Its preparation can be found
in the Dispensatory．Its properties are those of an anssthetic，similar to those of chloro form，soothing the pain of neuralgia and even
causing insensibility．As it has been the cause of death also，it is not used by physicians．It is not a substance for an amateur to meddle with．5．What are the uses of liquid air？A
At present liqud air is not put to any commer At present
cial use．

NEW BOORS，ETC．
 Animal Romances．By Graham Ren－ shaw，M．B．，F．Z．S． ratt \＆Hughes Co．，1908．8vo．； 204

 ratt \＆HughesThe book is illustrated by a number of most interesting half－tones showing some interesting beasts of Africa．One view of giraffes is most
entertaining．The author has written a num－ ber of books on natural history and the pres－ nt volume is a worthy successor to＂Natural
History Essays，＂＂More Natural History Essays，＂＂Final Natural History Essays．＂
Documentary Source Book of American History．1606－1898．Edited With
York：The Macmillan Company，
1908．12mo．； 116 pp ．Price，$\$ 1.75$ ． The present volume has been prepared in response to a request frequently made by
teachers who have used the author＇s＂Select Charters，＂＂Select Documents，＂and＂Select Statutes，＂particularly designed for the course hensive character，all of which covers the colonial and the constitutional periods of American history in a single year．The book is filled with vitally important documents deal－ ing with American history，such as the Navi－ gation Act，the charters of various states，the
Treaty of Paris，the Sugar Act，the Declara－ tion of Independence，the Missouri Compromise， cision，the Civil Service Act．In all，there are 187 documents．
The Gardens of England in the Middand
and Eastern Counties．Edited by
York：John Lane Company， 1908. 4to．； 136 plates， 8 in color．Price， $\$ 3.50$ ，postage 35 cents．
The publications of＂The Studio＂are noted for their sumptuousness，and the present vol－
ume is no disappointment．The illustrations are beautfully chosen and finely executed，the color plates being very remarkable productions．They are reproductions of water colors．The stately the artist photographer The text which occu－ pies some thirty－seven pages，is excellent
Air Liquide，Oxfgene，Azote．Par Georges Claude，lauréat de l＇Institut． de l＇Institut．Paris：H．Dunod et E． Pinat，1908．8vo．； 400 pages， 149 figures．Price，$\$ 3.00$ ．
This work comprises within its scope all the phases of its subject．It is divided into four parts．The first is devoted to the principles of
the liquefaction of gases，with the history of the liquefaction of gases，with the history of
the early experiments．The second part is upon he industrial liquefaction of the air，with the and the demonstration of the results which can be expected．The completeness of the work American machine fact that itace，which was introduced to the public in the spring of 1908. The third part contains the many curlous ex－ periments which illustrate the wonderful phe－ ast part is late the part is devoted to that most important
topic，the separation from each other of the gases of the air．It is in this part that the
has become probable that liquid air will find
its chief commercial value as a source of pure
oxygen and nitrogen for manufacturing pur－
the trees are very close to the top of the of its subject the book is a valuable contribu－

Boston：Small，Maynard \＆Co．， 1908.
16mos
In presenting this work to the public the
author must not be understood as indorsing or author must not be understood as indorsing or that are advanced from time to time through out the book．He offers these tentatively and merely as possible explanations for facts that， on the strength of existing testimony，he has assumed to be established．There are eighteen chapters，among which are＂The Problems of
Hypnotism＂；＂The Problems of Telepathy＂； Hypnotism＂；＂The Problems of Telepathy＂；
＂The Problem of Sleep and Dreams＂；＂Modern
． Spiritualism＂；＂The Case of Mrs．Piper＂；＂The
Nature of Apparitions＂；＂Experiments in Weighing the Soul＂；＂Premonitions．＂
book is arousing considerable attention．

INDEX OF INVENTIONS

 For which Letters Patent of the United States were Issued or the Week Ending
AND EACHBEARINGTHAT DATE ［See noteat end of listabout copies of these patente］

 \begin{tabular}{l} Acid，

Adde

Adve

AIr

Air

Air

Ar

Ar

Ala

All

Alu

Alu

Am

\hline
\end{tabular}

Automobile antiskidding shoe，G．W．Con
stable
Automobile curtain button fastener A．．．Bes

732	D
.971	D
76	

．．．．．．．．

907,094
906,999

Conveying apparatus，R．Beer Blam Cooking utensil，Mazza Cooler．See Waly

 $=\frac{x^{2}}{2}$
 ต้ํํํํํ 907，039
$\mathbf{9 0 6 , 9 4 9}$

in． in iniois

