Weights.	
Hull, with fixtures.	00
Boiler rooms	960
Engine rooms	480
Water for the boiler	50 tons
Reserve inventory	150
Four propellers	14 tons
Shafts, etc.	180
Coal, one-half	1,500
Equipment	
Passengers, with effe	
Cargo	

For the operation Richard Schulz turbines and Yarrow boilers with very slight forced draft are intended. In the normal displacement for both projects one-half the fuel has been put down because in this construction it will not be necessary upon consumption of the fuel to gradually take in more and more water ballast to maintain the stability, as has always been necessary heretofore.
Mr. Stuyvesant, of St. Louis, as well as Admiral Fournier of the French navy, also hold that the tetrahedral form for ships offers the least resistance and that it is the most perfect construction in order to obtain great, and the greatest, speed. The latter has presented to the Académie des Sciences, through M. Bertier, chief constructor of the French navy, a paper on "Carène à grandes vitesses" in which he likewise furnishes the theoretical proof for the above views.

\triangle NEW AND INTERESTING MOTOR CYCLE.

The "Max" motor cycle (Claude Johnson's patent) is a light and comfortable machine of the "runabout" type, intended for short-distance work at moderate speed, absolute safety for the rider being assured. In the ordinary pattern no seat is provided, the rider adopting a standing position on footplates which are within a few inches of the ground. In this position the rider has perfect control over the machine. Ther is none of that feeling of fatigue and ennui generally experienced after a run on the ordinary type of motor cycle. This cycle will easily maintain a speed of fifteen miles an hour (maximum). It will climb a hill of 1 in 6 grade at a velocity of ten miles per hour. It is inexpensive both in the consumption of fue and in maintenance. It occupies very little space, and the footplates fold up to form a stand for the machine when at rest. As the total weight is small, and the center of gravity low, it can be handled with mini mum effort, and all tendency to side-slip is avoided.

The latest model of the machine is fitted with a special $13 / 4$-horse-power engine with a back gear, so that a large belt pulley may be used, and Sims mag neto ignition. The frame is arranged with a con tinuous curved tube to carry the engine, these being intended to replace the holding lugs used in the forme models. The wheels are 18 inches in diameter, and are fitted with 18×2-inch tires of the type mentioned above. The fuel tank has a capacity of about $11 / 8$ gal lons, or approximately enough for a $100-\mathrm{mile}$ run. The control is effected almost entirely by means of a throttle and thumb switch, exhaust valve, lifter, front rim brake and drum brake on the engine-all controlled from the handle-bar. The weight of the machine complete is only 85 pounds. The wheel base is 39 inches, the length over all 58 inches, the total height 38 inches, while the handle bars are 18 inches wide.

\triangle NOVEL SYSTEM OF CONCRETE CONSTRUCTION.

(Concluded from page 472.)
to give the material time to solidify, when prepara tions for lifting the wall to its permanent position were made. This was a comparatively simple task, most of the power being furnished by a 5 -horse-power engine. It was connected by belting with the shaft under the platform operating the jack screws, and slowly the wall was tilted into position. The plat form supports were so placed that the foot of the wall swung to its position on the foundation at precisely the right line and when the wall had assumed a ver tical position, every line was plumb. Five or six wood props braced to the window frames held the wall in position and the platform was taken away from the back and swung about for the construction of the next wall, at right angles to the first. This opera tion was repeated until all the walls were up. The reinforcing rods were set to protrude at the edges o the walls, and when all the -walls were in position, the rods interlocked at the corners of the structure They were twisted together, and an 8-inch board, the only false work used in the construction, was placed inside the corner. Here concrete was poured in, a joint made on the outside corner and the two walls thus bound together.
As the photographs show, the mess hall is two stories in height and presents the appearance of massive construction, yet each wall was molded and set in place in less than three days' actual working time, although they have a height of 26 feet. The interio construction was also of the same material, and here
again a plan original with the engineer in charge, Mr. R. H. Aiken, was followed. Columns 8 inches square and 10 feet 8 inches long were used in connection with girders 15 feet in length and 8 by 12 inches in thickness. Their reinforcement consisted of $161 / 4-$ inch steel rods to each member. Upon these girders were placed the floor slabs 3 feet wide and $21 / 2$ inches thick. Those of the first floor are reinforced with $1 / 4$-inch twisted bars, both ways, 6 inches apart; the second floor slabs have similar reinforcement, 4 inches apart. The slabs were molded in the following manner: On a bed of sand four cylinders were set, having holes to receive the steel rods that protruded about 6 inches on all sides of the finished slab. The concrete was poured in very wet, and tamped but little. Ten minutes after the first slab was molded, a sheet of heavy paper was spread on it, a new form placed on top and a second slab rested over the first. When the slabs were completed they were left to solidify and did not have to be handled again until placed in the floor.
In the floor, the reinforcing bars of the slabs interweave at all sides. A board was placed under each joint and concrete poured in, forming a perfecting bond. In this, as in all similar cases on this work, the hard concrete was thoroughly wet before the cement mortar for the joint was applied. With the joint, each slab is 42 inches wide. After the slabs were laid, they were moistened and a top coat of concrete spread over the entire floor, bringing the thickness up to 6 inches. This has been termed the unit system of construction, but another method adopted was to mold the supports on the ground, then set them in place according to the plan sometimes fol-

THE "MAX" MOTOR CYCLE.
lowed in setting steel columns. By the method described no delay ensued in construction and no party of workmen was obliged to wait upon others engaged on the building.
How far this system can be employed in building construction is an interesting question. Apparently it could be utilized in wall formations of much larger dimensions than those described, provided the adjust able framework for supporting the wall is of sufficient strength to give equal resistance to all portions of the load while being raised. As the lifting capacity of the jack can be increased to meet any weight which may be placed upon it and the mechanical power can be suited to all the requirements it would seem as if concrete buildings of much larger dimensions could be literally molded upon the ground even to the ornaments of the exterior and much of the interior framework, for if a wall is too large to be cast, so to speak in one section it can be formed in parts and then raised upon its permanent site.

Where this plan of erection can be successfully accomplished without affecting the strength of wall or putting undue stress on the work it-possesses many advantages that are apparent-not merely in time saving but in labor saving, also in curtailing the space usually required in building operations so valu able in large cities. In the erection of a frame, brick or stone structure much of the time required is to "lay up" the walls piece by piece. All of the material must be elevated and transferred to the workmen This represents far more time than that employed in the actual labor on the undertaking, while expense of conveying material is a large item of the contract. It is also evident that a wall or other portion of a struc ture can be completed more thoroughly when on the
ground than from the aerial scaffold, since it is more accessible and far more men can work upon it to advantage, while each can accomplish more than he can by the ordinary process.
The practicability of "molding" a building on the ground, then raising and assembling the completed structure, is admitted by United States engineers who have examined the work at Camp Perry with the view of employing the method in military service and have given it their official approval. Col. O. B. Parsons, State engineer of Ohio, gives his opinion as follows:
"As regards the construction, I would say that I am convinced that it is both practical and economical inasmuch as it does away with an untold waste of lumber and admits of a much stronger wall being built with less material. Practically all the lumber that is used is the planks on which the walls are molded, and they are used over and over without being cut or nailed. In constructing a wall in this way the mixture does not separate as while being poured from the top of a building and there is also a great advantage in finishing, as one man will finish more than a half dozen will on a scaffold, do better work, and there is no trouble in bonding, as the surface is put on before the other material is dry."
At Camp Perry this plan of erection is being employed in another interesting way. A wall for supporting rifle targets was included in the plans. It is also formed of concrete but all of it is composed on the ground in sections, no less than 130 feet in length. These are, of course, molded upon framework located at the site of the wall, which is ten feet high and six inches thick. Consequently when a part of the barrier is set in place it is necessary to lift all this mass of concrete at one time, but the system of jacks supporting the adjustable framework has been efficient for the purpose, showing that the Aiken method is adapted to construction on a large scale.

A $\mathbf{\$ 5 0 0}$ Prize for a Simple Explanation of the Fourth

 Dimension.A friend of the Scientific American, who desires to remain unknown, has paid into the hands of the publishers the sum of $\$ 500$, which is to be awarded as a prize for the best popular explanation of the Fourth Dimension, the object being to set forth in an essay the meaning of the term so that the ordinary lay reader can understand it
Competitors for the prize must comply with the following conditions:

1. No essay must be longer than 2,500 words
2. The essays must be written as simply, lucidly, and non-technically as possible.
3. Each essay must be typewritten and identified with a pseudonym. The essay must be inclosed in a plain sealed envelope, bearing only the pseudonym. With the essay should be sent a second plain sealed envelope, ałso labeled with the pseudonym, and containing the name and address of the competitor. Both these envelopes should be sent to "Fourth Dimension Editor, Scientific American, 361 Broadway, New York, N. Y."
4. All essays must be in the office of the Scientific American by April 1, 1909.
5. The Editor of the Scientific American will retain the small sealed envelope containing the address of the competitor and forward the essays to a Board of Judges, who will select the prize-winning essay.
6. As soon as the Board of Judges have agreed upon the winning essay, they will notify the Editor, who will open the envelope bearing the proper pseudonym and containing the competitor's true name. The competitor will be notifled by the Editor that he has won the prize, and his essay will be published in the Scientific American.
7. The Editor reserves the right to publish in the columns of the Scientific American or the Scientific American Supplement three or four of the more meritorious essays, which in the opinion of the judges are worthy of honorable mention.
The judges who will award the prize will be three in number, and all will be eminent American mathematicians. The names of the judges will be announced in a later issue of this journal.

To Our Subscribers.

We are at the close of another year-the sixty-third of the Scientific American's life. Since the subscription of many a subscriber expires, it will not be amiss to call attention to the fact that the sending of the paper will be discontinued if the subscription be not renewed. In order to avoid any interruption in the receipt of the paper, subscriptions should be renewed before the publication of the first issue of the new year. To those who are not familiar with the Supplement, a word may not be out of place. The Supplement contains articles too long for insertion in the Scientific American, as well as translations from foreign periodicals, the information contained in which would otherwise be inaccessible. By taking the Scientific American and Supplement the subscriber receives the benefit of a reduction in the subscription price.

