plied with different quantities of
cordance with their requirements.
cordance with their requirements.
barrel-packing machine.-J. h. Vogt and L. Storck, Stamford, Conn. The invention is an improvement in packing machines
for. barrels and such like shipping cases which for. barrels and such like shipping cases which
are filled with granulated or pulverized material and has for its purpose to provide for sure to the material as the latter is placed in sure case.

Prime Movers and Their Accessories.

 MEANS FOR CONNECTING AND DISCON NECTING RECIPROCATING ENGINES.S. S. Smith, Osage, Iowa. The object of theimprovement is to easily and quickly disconnect any reciprocating engine, and especially those of a locomotive, and leave the same balanced after it has been disconnected as it was
while working or under normal working conwhile working or under normal working con-
ditions. In such engine construction counterbalances are used to equalize the weight of the pitman or connecting rod.
INTERNAL-COMBUSTION ROTARY EN-GINE.-H. Iee, Bowral Street, Kensington. near Sydney, New South Wales, Australia. The purpose of the inventor is to provide an en-
gine working on the rotary principle, which will utilize the power of the gases generated in the explosion more fully than heretofore. Its essential features consist of a rotary compressor, an intermediate rotary valve, and a
nave or rotor carrying a sliding piston within a chamber of peculiar construction and varying contour.

Railways and Their Accessories.

CAR-FENDER.-C. Kieymeier, Covington, Ky. The purpose of this invention is to profender, which render the device compact and convenient for placing upon or removing from a car; the fender, when in position for service, being adapted to positively guard against accitively and when in operation gently but posison or object, that is picked up by the feider, and without injury to the person or object. railway cross-tie.-F. N. Drane and H. A. Drane, Corsicana, Tex. The object of
the invention is to provide a tie, provided with spaced concrete tie blocks, connected with each other by a metallic cross rod, extending cen-
trally through the blocks and having means for adjusting the blocks toward or from each other, to bring rails* held on the blocks to block and maintaining both blocks and their rails in the same plane.

Pertaining to Recreation
bowling-alley. - C. B. Brenneman, Boston, Mass. The invention is an improve-
ment in bowling alleys and the alley-way is ment in bowling alleys and the alley-way is
of ordinary form and construction, comprising the floor, the side walls, and the return grooves, adjacent to the side walls, and upon each side of the floor. Instead of pins, balls are used, and that portion of the floor upon
which the balls are placed is provided with depressions arranged in proper position with spect to each other.

Pertaining to Vehicles.

WHEEL FOR MOTOR VEHICLES.-J.

 Pugh, Guiting House, Allesley, Warwick, Eng-land. This invention relates to the wheels of road vehicles, and the object is to provide
reliable and readily detachable wheel. consists in a wheel composed of a permanent Wheel hub, a removable hub enveloping the
permanent hub and carrying the spokes and elly clutched members between and formed integral with the hubs.
VEHICLE-WHEEL.-G. H. Groth, Cincinimprovements in invention relates to certain particularly to the steering wheels of motor vehicles. The object is to so construct the wheel that the ordinary steering knuckle may of employed, but at the same time, the pivot plane of the wheel.
SELF-PROPELLED VEHICLE.--C. RIChter, Tampa, Fla. The invention relates to selfpropelled vehicles, and more particularly to
that class usually characterized as automothat class usually characterized as automo-
biles. An object of the invention is to provide a self-propelled vehicle which is adapted to travel on land and water. Also to provide and having means for propelling the vehicle on land and water.
Land-roller.-H. P. A. Andersen, Cushwherein plain disks with a central peripheral grip alternating with toothed disks mounted upon a common axle, so that they revolve
with the axle and revolve thereon, whereby opposing plain disks form ridges and pack the soil, preventing the finer particles from rolling
away, while the interposed tooth disks peneaway, while the interposed tooth disks pene-
traie the crowns of the ridges, cultivating the ground and leaving it in the best condition to absorb moisture, thus tending
the earth from being washed a way.
Nore.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each. the invention, and date of this paper.

Notes
and Queries.
Full hints to correspondents were printed a
the head of this column in the issue of Novem the head of this column in the issue of Novem-
ber 14 or will be sent by mail on request.
(11012) H. J. P. says: 1. When town is being changed by an electric company ing, it is not possible to run a motor alternat kind of direct-current type with the of any ing system, is it? A. Some forms of alternat ing current may be used upon a direct-current motor by bringing the motor to speed before the current is thrown on. The motor will then keep step with the current. It is far better motor. 2. Which is considered the most up-todate sys, the direct or the alternating cur the direct current in a great many places. 3 . Rewiring of the houses I presume would not be
necessary? A. The house wiring is the same necessary? A. The house w
for both kinds of current.
(11013) J. M. K. says: 1. How should make the connections for a miniature over
ead trolley line, direct current? A. The posi tive pole of the current is usually connected to the trolley wire and the negative pole to
the rails. 2. Are magnetism and electricity the same? A. Magnetism and electricity are
not the same. Magnetic whirls are the result not the same. Magnetic whirls are the result
of an electric current, and surround the wire through which an electric current is flowing. 3. In your issue of October 17, 1908, page
257 , is an article on ice making at home. Is Prof. Audiffren's machine on the market? And if so, where can it be gotten? A. The ma-
chine will probably be placed on the market in this country in a short time. Address will be supplied by mail. We do not give addresses
in this column. 4. Cannot the current from a 6 volt, 4 -a mpere direct current be raised to 110 volts direct current through transformers or something? A. An electric current can be trans-
formed from 6 volts to 110 volts, by means of formed from 6 volts to 110 volts, by means of
a transformer, but the amperes will be cut down in the same ratio as the volts are raised. Starting with 4 amperes you will have about
0.2 ampere at the finish and not much work can be done. 5. Acetylene gas made from calcium carbide is not adapted for use in bal(11014) R. S. says: Would you kindly inform me whether a dynamo is capable of creating more power than that required to
run it? In other words, when a dynamo is creating a certain amount of power, is the
power back of the dynamo greater or less than that created? A. The power used to drive a dynamo is always greater than the electrical
power which the dynamo can furnish. There are no perpetual-motion machines in opera-
tion as such a one would be if it could furnish more power than is put into it to make it
go. The dynamo is simply a transformer of energy and not a creator of energy. There is no machine which can create energy. All machines merely transform energy to some
special use, always with a loss, the object being to get some other form of service, the loss in the engine cannot be used for light; electricity can be so used. Steam cannot be conveyed many miles to drive cars at a distance
from the engine house. Electricity can be from the engine house. Electricity can be
conveged hundreds of miles, and there be used conveyed hundreds
(11015) L. W. H. says: If you will allow me I will state the question: In a
dynamo, electricity is generated by the armadynamo, electricity is generated by the arma-
ture shaft cutting the lines of force of a magture shaft cutting the lines of force of a mag-
net. Is it a fact that clouds passing east or net. Is it a fact that clouds passing east or
west generate more electricity than those passing north or south, considering the earth as a storms come from the west? A. We do not
know whether clouds moving from west to know whether clouds moving from west to
east generate more electricity than do those moving north or south. Storms all move from
a westerly toward an easterly quarter. The wind in a storm is moving with a rotary mo. tion, drawing from the outside toward the
center of the storm. The rotation in the center of the storm. The rotation in the
northem hemisphere is opposite to the motion of the hands of a clock, or over from east
to west. This is caused by the rotation of the earth upon its axis. In the southern hemisphere the rotation and the winds in storms
are in the opposite direction from what they are in the northern hemisphere. This is to be ound fully discussed in Davis
(11016) W. P. B. asks: 1. What can mix with coal tar to dissolve it? A. Any the hydrocarbon oils will dissolve asphaltum, sene, as also turpentine. 2. The house fy can use its legs and wings with great rapidity, the two fore legs as a man uses his hands. Are they moved by muscles? If not, by what?
A. Flies and other insects move their legs A. Flies and other insects move their legs
and wings, and other parts also, by muscles as and wings, and other parts also, by muscles as
do the higher vertebrate animals. There is this difference, however, that the muscles of insects
are not gathered into bundles terminated by are not gathered into bundles terminated by are in straight fibers, not joined to each other
in most cases. The fibers form layers which may be regarded as separate muscles. The fibers
are composed of minute fibrille which have been seen to be striated as are the muscula
fibers of vertebrates. It is hardly necessary to add that these fibers are very numerous, numsegments of the body are also well provided with muscles. Some of these go from the front
of one segment to the front of the next, and of one segment to the front of the next, and
others go to the rear of the next segment. Thus others go to the rear of the next segment. Thus
the segments can be tilted to and fro. The the segments can be tilted to and fro. The
muscular strength of many insects is enormuscular strength of many insects is eno mals, relative to their weight. It is said that a flea can leap 200 times its own length. An equivalent leap for a man 6 feet would be 1,200 feet. A beetle has been known to sus-
tain 500 times its own weight and creep out tain 500 times its own weight and creep out
from under it. What would an equivalent from under it. What would an equivalent
load for an elephant be? For a man of 200 pounds in weight it would be 50 tons. Beetles often gnaw holes in lead pipes, and an instance is recorded of a European beetle gnawing a in whinch in diameter in an iron canlst in which it was confined, proving not only
its
muscular strength, but also the hardnes of its mandibles. 3. Jupiter and Venus ar now and have been in view near together. Approximately how far apart are they?
When Venus and Jupiter are to be seen n each other in the sky Jupiter is nearly 500 mimons of miles farther from us than is Venus, or about his own distance from the
sun. 4. What can I put around trees from 1 to 4 inches in diameter to kil them? A. An ax at the root of a tree is the easiest mode of killing it. The simplest mode adopted in clearing new land by the early and they were dead the next season. There is nothing which can'be put into the ground to kill a tree that would not kill whatever else was growing there
(11017) W. B. B. says: 1. In E. S. Lincoln's article in the SUPplement for
September 26 , should not the formula $R(D-1)$
read $D-d$ instead of $D-1$
Letting the currents corresponding to deflec spectively,

$$
I=\frac{E}{R}, i=\frac{E}{R X}
$$

Whence, $\frac{I}{i}=\frac{D}{\substack{d \\ R(D-d)}}=\frac{R+X}{R}=1+\frac{X}{R}$.

This gives $X=$...-

A. Your correction of the printer's error in the article seems to be justified, and to be all
right. 2. If the efficiency of a motor is E°, where E and c are the impressed and
counter E.M.F. respectively, so that eI is
lnss, then to have efficiency 100 per cent, must equal $E_{\text {s }}$ in which case no power at all
would be used. At least that is the only way can see it, though I have been studying the matter for years. In other words, if the motor uses any power at all, all the power it uses is
loss and is therefore not used after all. Can you explain that so that I can understand? If it is not all loss, what part is not? A. of 100 per cent efficiency would be a per-
petual-motion machine. It is a queer inference petual-motion machine. It is a queer inference
that you make, "in which case no power would that you make, "I which case no power would for 100 per cent efficiency e becomes equal
Pow Power must be spent every instant in forcing force, and the current it generates, else there
would be no motion of the motor and no counwould be no motion of the motor and no coun-
ter electromotive force to be overcome by the impressed electromotive force. We suggest versity Physics," vol. 2, upon "Electromagnet Induction and the Efficiency of Motors." will send the book for $\$ 1.75$ postpaid.
(11018) O. B. F. asks: We want formula for painting concrete walls of a bathwould also like an enamel effect if it could be had. A. Cement may be painted with any waterproof washable paint, such as is used for
bathrooms, if the caustic properties have become sufficiently neutralized by exposure for the paint to adhere. As this requires some time, it is often effected artificially as fol with a solution of 12 fluid ounces of oil of vitriol $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ to a gallon of water. This neutralizes any caustic lime present in the cement surface and turns it into the inert sul-
phate of lime (gypsum). It also roughens the surface so as to give the paint a frm hold. To remove final traces of alkali, wash with
strong vinegar and allow it to dry thoroughly strong vinegar and allow it to dry thoroughly
before applying the paint. Prime the surface treated as above with a coat of good old raw if apeed oil, and let it dry and get quite hard the pores, and next put a coat of flat paint, composed of the necessary pigments, linseed oil, turpentine, and Japan dryer, which may be
repeated if the first coat shows up unevenly, repeated if the first coat shows up unevenly,
and finally, a finishing coat of weatherproof and finally, a finishing coat of weatherproof
gloss paint or enamel. By the above method, you can use any colors you prefer, but if you
wish to preserve the natural color of the ment, a wash of 1 part of water-glass (silicatr
olied; this docomposes any lime may be applied; this decomposes any lime present on surface becoming hard and glassy and entirel resisting the action of moisture.
(11019) W. K. asks: I am in a plumbing shop where they do some lead-
burning occasionally, and in order to become thoroughly familiar with the theory I got a book from you on the subject, by Fay, in which it says that pure hydrogen can be pro duced from pure zinc or iron steeped in sulphuric acid; it further says that hydrogen for lead-burning is generally obtained by using ordinary spelter (and acid), and by this latter process we obtained very good results. We both cast as well as malleable, and the iron, tainly obtained some kind of gas, but it would not burn with a blue flame; the flame was yellowish green; the addition of air from the mixing fork would not change its color; it was oxidizing and the lead would not unite Now, I would like to know what kind of iron or if there is a practical way to purify this gas so as to make it fit for burning acid to spelter, without making the lead-buming ap paratus unhandy and complicated? A. We should not advise using iron for making hydrogen, nor sulphuric acid either. We use zinc or spelter, and hydrochloric acid, or as you may know it better by the older name, muriatic acid. You cannot get hydrogen rapidly by the
use of pure zinc. Commercial zinc will vield hydrogen rapidly. If pure zinc is used a few drops of platinic chloride should be added to start the action. To prepare the spelter for
the action of the acid it should be melted and the action of the acid it should be melted and
poured from the ladle into a pail of water, slowly, so as to allow it to granulate. The large surface presented to the acid by granu(11020) J. C. B. asks: 1. Can the experiments made by means of the rectilinea cor be taken for granted as demonstrating the concavity of the earth? It was found that the earth curved concavely toward a straight line
8 inches the first mile, 32 the second, 72 the 8 inches the first mile, 32 the second, 72 the third, and the fourth mile the rectilineator
touched the water. A. No experiments have ever been performed which proved the earth to
be concave. It is not concave, but convex, be concave. It is not concave, but convex,
and curves away from a straight line by 8 inches in the first mile, etc., as you give the figures for concavity. They are the figures for convexity. Within a few years the experi-
ment to show the convexity of the earth by ment to show the convexity of the earth by
setting stakes in still water has been several times performed, and always with the result that the middle of a set of stakes is seen to be
higher above a straight line than the end stakes. All astronomy, navigation, engineer ing, surveying and geography proceed upon the basis of a convex earth, and the results come out right. This conformity of fact to
theory proves the theory to be true. 2. If the sun is such a great distance as 93 million miles from the earth, why is it in the morning or evening shining through clouds the rays of light seem so slanting? A. The slanting up of the sun's rays at rising or setting is due to the rays passing over our heads. As
they come from the horizon and pass over us they come from the horizon and pass over us
they must seem to pass from the horizon toward the place overhead. Thus they must would seem to descend and not to ascend.
(11021) J. W. E. L. asks: Your reply No. 10898 has brought to my mind a condi-
tion that I have often thought of. Am I about right in asserting that only a little more than 30 per cent of the energy stored in coal is available at the boiler stop valve? This in
being converted into useful work at the enbeing converted into useful work at the en-
gine is again so wasted that in ordinary triple marine engines about 8 per cent is avail able to propel the ship. A common type of
marine engine is twin screw, four Scotch boil ers, developing $5,000 \mathrm{I}$. H. P. I have ofter wondered what condition would be brought about by dividing the engine into four or six high-speed types, and building them inside the boilers. Practically I think that it could be
accomplished, and I would value your opinion accomplished, and I would value your opinion
upon its theoretical efficiency. A. Your sug. upon its theoretical efficiency. A. Your sug-
gestion of putting the engines inside the boilers in order to save the heat lost by radiation certainly novel and ingenious, but we fear about right as to the proportion of the heat energy in coal actually delivered by the engine in useful work, but the principal losses are not
at points where they would be prevented by at points where they would be prevented by
the insertion of the engines in the boilers. Of about 90 per cent total losses only 1.5 to auxiliary pipes and about 2 per cent or a little over in radiation from engine; these are the only losses which could be saved as you sug-
gest, the balance being 1 per cent lost through gest, the balance being 1 per cent lost through
grates, 5 per cent radiation from boiler, 20 per cent or more in radiation from and the balance in main and auxiliary exhausts. The theoretical advantages would therefore be
hardly sufficient to justify such a change, apart from the practical disadvantages such as inaccessibility of the engine for repairs, etc.
(11022) E. E. L. asks: 1. I have a Wheatstone bridge arrangement the conductor water and into the circuit of the ordinary wire bridge is interposed an electro-magnet
arranged. so that it may lift a small arma ture. Supposing that a dilute acid be poured
into one of the arms, will a current flow through the bridge and will it be sufficient to lift the small armature? I intend using a small relay to lift a heavier armature; also a glass vessel for holding the water and car bon electrodes. A. The question you ask re garding a water resistance has only the answer that the current will lift the armature an electro-magnet if you make it strong ter is to make the experiment 2 Can small dynamo be used for charging a condenser or, in other words, is it possible to charge a Leyden jar to the same capacity as with frictional electric machine, by a direct con tinuous current? A. A dynamo will charge a condenser to its own voltage and no higher It may be 110 volts, or some other voltage friction machine has many thousands of volts in its spark, it can charge a condenser to much greater height than a dynamo can do An alternating current will not charge a con denser; a continuous current will do so.

NEW BOOK8, ETC

The War in the Air and Pabticularly White It Lasted By H G Wells New York: The Macmillan Company 1908. 12mo.; 395 pages. Price, $\$ 1.50$

The author leads up to a pecuinar situation in which the cockney hero finds himselt marooned on Goat Island with the bridge to the Am erican shore destroyed by the wreckage of dirigible balloon, and cut off from the main and by the swirling Rapids. The hero, how Japanese "heavier-than-air" machine and escapes. The book is filled with the most romantic, but not altogether impossible incidents. There is no question that the dirigible balloon and the heavier than-gir machine are both destined to play a very important part in the wars of the future. Mr. Wells writes tific. It must be said that his knowledge of New York geography is impeccable.
The Temperature-Entropy Diagram. By
Wiley \& Sons, 1908 . 12mo.; 300 pages, 109 illustrations. Price, $\$ 2$.
In the revised edition of the Tempretur Entropy Diagram a more extended application of the principles of the $T \phi$-analysis to advanced problems of thermo-dynamics has been made than was possible in the limited
scope of the previous edition. The chapter on the flow of fluids has been entirely rewritten and treats at length various irreversible processes. A graphical method of projecting orated for perfect gases and its application illustrated in the chapters on hot-air engines and gas engines. The various factors affecting the cylinder efficiency of both gas and steam-engines have been thoroughly discussed. One chapter has been devoted to the thermodynamics of mixtures of gases and vapors, and
another to the description and use of Mollier's total energy-entropy diagram.
The Mechanical Engineering of Steam Power Plants. By Frederic Remsen
Wiley \& Sons, 1908. 8vo.; 825 pages, 700 illustrations. Price, $\$ 5$ net former edition of this book, issued in 1897, embodied the studg and experience of the author gathered during the previs and brought together for teaching purposes. The years since then have been a period of great and rapid progress in the power plant and in all engineering departments con-
tributory thereto ; and while the old edition ributory trized here and there and pear by year, the time had come with the opening decade of the twentieth century that it be rewritten entirely. The present edition is the result of such rewriting. It is a new book so much enlarged that the old plates could not be used, but the size of page has been increased, new illustrations chosen, and many new topics and the former approved analytical view-point is retained and amplified, there has also been introduced a discussion in many chapters of the principles and data of applied mechanics attaching to the subject in hand. This has been done to enable teachers who desire to enliven the drini in the mathe matical classes to ind practical future meaning and to encourage teachers of the applications of theory to find easily the links and bases for such sound applications. The distinction be tween the applied thermal principles and those derivable from other departments of theory along the Rifiera, france and Italy

Written and illustrated by Gordon
Home. London: J. M. Dent \& Co.
1908. New York: The Macmillan
Company. 8 vo.; pp. 328 . Price, $\$ 3$ net.
This is a beautifully made book, with most charming colored illustrations. The Rivier strung together at irregular intervals on a rough mountain chain. Some are genvine an tiques, others are overlaid with modern work-
manship, and they vary much in size and
shape, but the mediæval holds good neverthe-
less. It has been the author's endeavor to less. It has been the author's endeavor from Marseilles to Pisa, omitting only a few towns close to Genoa which have suffered through the growth of factories and uninter esting houses. There is nothing more deightful than an automobile trip over the perect roads of the Riviera, and thousands of inthusiasts take this trip each year. The book to the series known as "Old world Travel." The aim of this new series is to describe both by pen and brush those parts of the Old World which travelers find most worthy of their attention, and to do for countries and districts what the same publishers' well-known "Mediæval Town" series has done for cities. The various volumes will prove not only welserve to the taveler during his visit, but was and will also bring the different districts vividly before the minds of those who are unable to leave home. The colored illustrations are in
all cases reproduced from drawings actually made on the spot.

INDEX OF INVENTIONS For which Letters Patent of the United States were Issued or the Week Ending Décember 1, 1908. AND EACH BEARINGTHAT DATE [See note at end of list about copies of these patents.]

まま

Can seaming machine. HE Diecks..........
Cans, machine for fusing or soldering head
upon square or rectangular, F. Eber
: an. 176

\&otio

No (ivi

: - - - : ! :

Coating machine, M. M. Smith. Colors, making lake, F. M. Winter

com

Cans, steriiuzing sioeet metail, j. G. © Hodgson
ตage

 harge door
900,721,

propeller or ga
stribution system, L. ${ }^{\text {a }}$
ching or tile laying ma
Dividers,
oor equalizer, E.
w. Linge
or
Door, safe, J. M. A
ft equ
Draft gear, W. M. Pond
ft timber reinf
Dust guard, E. Peckham ${ }_{\text {Dyeing machine, }}$
Egg case or carrier, M. H.
tur
eetric contro
Electric exhibit
Electric flui
Electric light
ectric machine, d
Electric machine, dy

 Engine balanced valve, steam, F. Bar
grover
Enine driving gear, petroion or asinarna
combustion or steam, C. J. Montgomery Engine starting mechanis. e. explosive, W. W. .
 Engrav
Envelop
Envelo
Envel

