curve considerably because of the mountain
ranges, plains, and rivers. In the storm the wind blows inward toward the center, an the storm as a whole rotates from east to
north, west and south, as we say, opposite north, west and south, as we say, opposite
to the hands of a clock in the northern hemisphere. This causes the northeast winds in the northern front quarter of such a storm The ocean has little influence on these storms from an easterly direction, but from the west, and the wind in its whirling in the storm blows from an easterly quarter in the front, and from a westerly quarter in the rear of
the storm as it goes away. It clears off with westerly wind, as you have observed.
(10996) A. W. asks: 1. What is meant by "polyphase" as applied to electric machines; and by "cycle" as applied to gas engines? A. a varying quantity passes, including all it values, and it fluctuates through these changes periodically. Thus a cycle of an alternating current of electricity is the successive values
of the E. M. F. through one series of changes from zero to its highest value, and down through zero to the lowest and back again to will have as many times per second as there are cycles, ordinarily 30, 60, or 120 . Polyphase currents are those whose E. M. F.'s differ from each other by a fraction of a phase Thus three currents a third of a cycle apart with which it is connected. See Sloane's "Electrician's Handy Book," price \$3.50. A cyelghts of one tide in about twelve hours at the seashore. A phase is any single value or height of the water. If two or three tides
come together by different channels in the same place or bay wc have a two-phase or threephase current of the tide. 2. What is meant by jibing a sall-boat? A. A salling vessel is tacked when in changing from one course on the wind to another it presents its in jibed when it is tumed in the oppo site arection so that it presents in ther a dificult and sometimes a dangerous opera tion. 3. Is a catboat so called because th mast stands straight up at one end of the boat
like a cat's tail from its body? A. We ar certain that a catboat is not so called because its mast stands straight up like a cat's tail The mast is at the front end of the boat, and tails set at the stern end. We do not know it far more likes the it was aiver becaus of the quickness with which these boats wil come about. 4. Does an electric motor differ
in structure from a dynamo? Can they be inin structure from a dynamo? Can they be in-
terchanged? A. There is no theoretical difference between a dynamo and a motor. In general, each may be used for either service There are, however, many structural diference can be easily told to which class any particular machine belongs. 5. How can a steady effective current proceed from a dynamo giv
ing an alternating current? The current changes polarity each instant, as understood A. A steady current is not produced by an
alternator. An alternating current can, however, be changed to a steady direct current by means of a rotary converter. 6. What ligh ing a dirigible balloon? A. Probably some use in a dirigible balloon.
(10997) O. E. G. asks: 1. Is the speed of radiant heat (whose medium is the same a light) the same as light and electricity? A. The
latest sclence does not make any such distinction as between radiant heat light, electricity, etc. They are all the same radiation. If the nerves we feel them as heat; if they can affect tween light, electricity, and radiant heat due to the difference in wave-length? A. The sole difference between the several effects is due to
wave-lengths. See the "New Knowledge," by wave-lengths. See the "New Knowledge," by
Prof. Duncan, price \$2. 3. If light moves in Prof. Duncan, price \$2. 3. If light moves in
transversal waves, how can it move forward A. In all vibratory motions it is the wave over a field of grain is the very best illustra tion of this one can have remote from th ocean. Water waves on the ocean are good
illustrations of a transverse wave with an on ward motion of the wave form. It is not matter which vibrates moves to and fro, th A. Wave-length is the distance from a particle moving in a certain direction to the next part cle in exactly the same condition of motion In a water wave, the wave-length is from drop on the crest, for example, to the next
drop exactly on the crest, also. 5. What is the wave-length of electricity, and does it vary with the amperage? A. There are all sort of wave-lengths of elect but not so short as those which short waves, but not so short as those whice
produce light. Those used in wireless teleg raphy with a single wire as an aerial are very closely four times as long as the height of aerial wire from which they are radiated into space. When a capacity is in the circuit this affects the wave-length. The wave-length varies with the rapidity of the oscillations the discharge. 6. Does a heated conductor of
electricity retard the current? A. A hot metal
emperature, and so reduces the current which reater electrical resistance when cold much when hot.
(10998) E. G. asks: Kindly give me clear definition of adiabatic heating, explaining fully the difference between a gas adiabatically heated and one heated by mechanica compression. A. The word "adiabatic" is de rived from the Greek and has three parts. A
means without; dia means through; batio eans going. This word as a whole mean without going through." Applied to heat, the ense is that no heat passes through to all team in a boller or any other gas in any res eptacle or in the air in the atmosphere as which is compressed without any b eaving it becomes hotter, and a gas which expanded without any heat coming into grows colder. Both of these are adlabat hanges. The gas which is heated by mechanical compression is heated adiabatically. Adia batic changes are of great importance in the ing of a given latltude to sea level, the average emperature of the air must be known. Is this verage obtained by taking the average of the dry thermometer readings at the A. M. and P. M. observations, or by taking the average of he maximum and minimum temperatures for he day? A. The average temperature of the ir in the problem of the reduction to the sea irel is the average of the temperature of the air at the various altitudes from the sea level
to the altitude of the observation. This can be ound only with considerable probable error, tude varies greatly in different regions, and ny error in this causes an error in the weight of the air column to be calculated. The actual emperature at the place at the time of ob
ervation is the only temperature to be em ployed in the reduction of that observation . Is water vapor properly classed as one of vapor is one of the constituents of the at mosphere. No percentage value can be given for it , since it varies very much, from a trace to as much as flve per cent of the amount of dry air. The chemical composition of air as ordinarily given is usually that of dry air

MEW BOOIS, ETC.

Canadian Types of the Oid Regime. 1608-1698. By Charles W. Colby.
New York: Henry Holt \& Co. 1908 8 vo.; pp. 366. Price, $\$ 2.75$
This handsomely made book is illustrated by well chosen engravings. Some idea of the conents may be gained from the chapter headings, which are as follows: "The Historical Back ground of New France," "The Explorer, Champlain," "The Misslonary. Brébeuf," "The ColoCoureur du Bois, De Lhut," "The Intendant Talon," "The Bishop, Laval," "The Governor Frontenac," and "The Woman," The chapters of this book represent lectures which were reently delivered in Ottawa. It is extremely well written, and conveys an immense amount of material which is
in special libraries.
Scientific Ideas of To-day. By Charles
R. Gibson. Philadelphia: J. B Lippincott Company, 1908. 12mo.; pp 344. Price, $\$ 1.50$.

This book is so fascinating that the reader almost feels Hke neglecting the author's warnng that the chapters should not be read at random, no matter how interesting they are.
This warning is fully justified, in any work of this kind, for it would be quite impossible out a wearying repetition of facts. In the present volume, the author has endeavored to using language beyond the reach of any reader. His explanations demand no previous knowldge of sclence whatever and no acquaintance with mathematics. It is the most admirable seen in years. Among the chapter headings re: "What Things Are Made Of," "The Stuf of the Atom,"","What is Electricity?" "What is the Ather?" "What is Magnetism ?" "More
About Electrons in Motion," "What is Energy?", "Waves in the Ather,", "What is
Light?" "The Explanation of Color," "Ideas Ob tained from the Spectrum," "The Birth of a Star," "The Age of the Earth," "Whence
Came Life?" "What Are the X-Rays?" "How Radium was Discovered," What Are the Rays Pleces?" "The Cause of Radio-activity", "What s Gravitation?" This is a book that it will pay anyone to read from cover to cover. It would make an admirable Christmas gift.
St. Botolph's Town. An Account of Old
Caroline Crawford Bost
Page \& Co., 1908. 12mo. Price, $\$ 2$.
The author has produced a most delightful
We have not read a more interesting book of this nature in a very long ime, making one understand a little better the part New England, in the person of its chlef town, has played in the mighty drama of nations made up of thinking. feeling men of course Boston was the biggest place in all of course Boston was the chief settlement in

Massachusetts. This numerical prominence
needs to be borne in mind if we would under stand many acts on both sides of the ocean To understand the America of to-day, too, we
must needs know the Boston of the forefath ers. The book is beautifully illustrated, print ed, and bound.
Lathe Design for High and Low Spee Steels. John T. Nicholson, D.Sc. New York: Longmans, Green \& Co 1908. 8vo.; Pp. 402. Price, \$6.

Untll the advent of high-speed steel the
necessity for a theoretical treatise was unfelt;
necessity for a theoretical treatise was unfelt;
but the new conditions imposed by the general but the new conditions imposed by the general
adoption of the high-heat steel were found to adoption of the high-heat steel were found
have rendered obsolete the long-treasured experience and accumulated data of the too maker. A recent statement of the problem solve them on a basis of experimentally ascertained fact, had consequently become impera-
tive. The substance of the book has already tive. The substance of the book has already appeared in large part in the columns of Th Engineer, and has already awakened wide spread interest. The tool designers will be glad to have such valuable matter in book
form. The work is excellently illustrated by large number of engravings, which are exe
cuted on a good-sized scale. Flüssige Kristalle, Myelinformen und Muskelkraft. Von O. Lehmann Braunschweig: Druck von Friedrich Flüssige und Scheinbar Lebende Kris Talle. Von. O. Lehmann. Leipzig:
Verlag von F. C. W. Vogel, 1906. Pp. Verl
10.

INDEX OF INVENTIONS

For which Letters Patent of the United States were Issued
for the Week Ending November 10, 1908.

AND EACHBEARINGTHAT DATE

[See note at end of list about copies of these patents.]

Abdomen compress and hose supporter, com- bined, T. P. Taylor..........93.,623. to

Carbureting plant, safety, C. M. Kemp.... Carrier system, H. A. Jackson. Cash register, T. Carroll Casting furnace, ingot, schmidt \& Desgraz Cereal cake or body, H. A. Lauhoff. Cereal cake or ood

50 10말
Ex: $=$

Hug yez

ceme

