recently patented inventions

Pertaining to Apparel

garment hanger．－R．C．Thomas，New York，N．Y．This garment hanger is con－
structed with two arms，each made of two structed with two arms，each made of two
strands with their inner end twisted and ad－ justably pivoted to the other arm．At the outer end of each arm is a shoulder loop made longitudinally adjustable through the inter－ mediary of a connecting block．

Electrical Devices．

SPARK－PLUG ATTACHMENT．－F．D． Caser，North Water Gap，Pa．The object of
this invention 1s to provide covers for the spark plugs of engines to prevent water or moisture from reaching the electrical connec－
tions on the spark plugs and therebs cause tions on the spark plugs and thereby cause
a short circuit．The device is particularly adapted for the engines of motor boats and
transposition bracket for insu－ Lators．－J．e．Skinner，Kingman，Kans． The purpose of this invention is to able intervals，so as to equalize induction effects on the several wires．The invention provides a device which may be supported by
the wires themselves without the addition of extra cross arms on the pole．

Of Interest to Farmers．
Fence post．－A．M．Weatherly，Sb．， Rome，Ga．The present invention is an im－
provement on a fence post previousls patented provement on a fence post arenned to be cast in a single piece．Its form is such that it may be unded with pockets or recesses which are closed at the back and separated by a recess extending at right angles to the above－men－ tioned recesses．

Of General Interest．

SMOKING PIPE．－W．R．KAUFMAN，Suk with a bulb in the stem which is adapted to trap the saliva．In the bulb is a central par－
tition of screen material which strains，dries， tition of screen material which strains，dries，
and cools the smoke to be strained and dried． and cools the smoke to be strained and dried．
When desired the bulb，which is composed of two sections
pLUG FOR gas wells．－W．f．Burgess， twood，W．Va．The invention provides means
for plugging gas wells whose yield of gas has or plugging gas wells whose yield of gas has
ceased．It consists of a hollow tapered body portion with devices slidable thereon and adapted to wedge and lock the body in the
well，and an elastic extensible sleeve or cylin－ der fitted with a tapered plug which is slid－
able in the body and thus adapted to extend able in the
TRAP．－A．O．Thompson，Wolverton，Minn． This trap consists of two ring－shaped jaws which are spaced apart to make room for an
intermediate opposing jaw that operates be intermediate opposing jaw that operates be
tween them．A simple latch is provided to hold the intermediate jaw and a trigger arm jaws so that it will be sprung by an anima jaws so that it will be sprung by an
endeavoring to pass through the jaws．
PRESSURE REDUCER FOR GASEOUS VAPORS．－H．A．Reed，New York，N．Y．This invention provides a pressure reducer for ale， beer，and similar liquids，and has for its ob－
ject to reduce the pressure of the fluid in rawing it from the barrel or cask so that the gas and liquid will pass out in proper pro－ portions without waste of the gas，thus obvi－
ating the danger of the beverage becoming flat． Calendar．－J．Ferreres，Habana，Cuba． This calendar is of the type provided with two one of the members bearing the names of the days of the week and the other the numerals vented by Mr．Ferreres is so arranged that the names and numerals will be right－side up and easily read irrespective of the extent to which the rotary member is turned．
COLUMN．－C．T．Cunnius，Long Branch，
N．J．Stave columns as generally constructed are apt to break at the joints and warp apart． The present invention aims to overcome thi difficulty by constructing the column of a plur－
ality of staves，all of approximately the same ality of staves，all of approximately the same
taper，with one stave having an inner and taper，with one stave having an inner and
outer section，substantially equal to the length of the other staves．Through the staves a emerging at the inner section of the sectional stave，where they are joined，to bind the staves together．The outer section is then applied t
ATTACHMENT FOR SEINES．－N．L． Lerille，Lockport，La．The object of the in－
vention is to provide a stake which is to be used to secure the ends of the seine in place
while the seine is being hauled．Means are while the seine is being hauled．Means are
provided for holding the seine close to the mud provided for holding the seine close to the mud
without damage to the seine．The stake is
ditted fitted with a number of points of differen length，which may be applied as may be neces sary for use on dif
depth of mud varies．
FILIERR．－Virainia Toninetri，Milan，Italy． upper one having a number of spouts project ing into conical holders supported in the lower chamber．These holders are adapted to be
fitted with filtering material．The filtered fitted with filtering material．The filtered
Hquid issues from the holders into the lower
chamb
sired．
CONSECUTIVE NUMBERING APPARA TUS．－C．Spielman and F．W．Wicht，New
York，N．Y．The object of this invention is York，N．Y．The object of this invention is
to provide an improved consecutive numbering to provide an improved consecutive numbering
apparatus fitted with a number of sets of num－ bering wheels，actuated simultaneously and of which any set may be placed in print in either
a transverse or a lengthwise direction． sets may be adjusted toward or from each other an
position．
HEDGE TRIMMER．－F．L．GILMAN，Engene， This hedge trimmer is of the hand mechanism which may be strapped to the per son and a many－bladed cutting shears operable by this mechanism and adapted to be guided y the hand along the hedge．
tie fastener．－J．P．Chambers，Chatta nooga，Tenn．This invention provides a simple flexible member which may be used to rapidly secure the ends of a cord tied about a pack
age．It is particularly adapted for tying packages of letters and the like，and should be
useful for the mail service as well as for law useful for the mail service as well as for law
yers，bankers，insurance men，and the like where numbers of packages of papers are kep on flle．The particular advantage of the tie is that it holds the ends of the cord．in such a
way as to permit the package to be untied a moment＇s notice．
COIN－CONTROLLED LOCK．－F．W．KAss Ler，St．Louis，Mo．This invention relates to use in connection with public telephone booths the object being to insure the payment of tolls．The lock is provided with means for closing the coin chute when a person is using other person to interfere with the lock．
GAME PIECE．－F．Walstein，New York，
N．Y．This game piece is adapted for N．Y．This game piece is aaapted for use in out－or－door apparatus for playing chess，chick－
ers and the like．It is arranged to permit of conveniently moving the piece about over the
game board and to securely hold the same in game board and to securely hold the same in
position in a fleld of the game board when a

HITCHING－WEIGHT HOLDER．－H．H． тотнILL，Lockport，N．Y．A means is pro－ vided by this invention for supporting a weight employed temporarily for putting a check on a floor of the vehicle body．Normally it clears the ground，but when desired the driver may release the weight，without leaving
and permit it to fall to the ground．
FLASHLIGHT FOR PHOTOGRAPHIC USE． －E．B．Moore，Los Angeles，Cal．When photographing an object by means of the ordi－ nary flashlight，the high lights are apt to be the deep shadows without any middle tones． The present invention aims to overcome this having a relatively large area．In this way having a relatively large area．In this way
the harsh effect produced by an arc light or common flashlight in which the light emanates from the concentrated point is largely over－

COMBINED LADDER，STEP LADDER， and scaffoliding．－H．H．Thompson，Law－ rence，Kans．The invention provides a ladder ladder or may be employed as a portion of a scaffolding．The present invention is an im－ provement on a construction previously pat－
ented by Mr．Thompson．The design is such that two ladders may be connected so
serve as the support of the scaflolding．

Machines and Mechanical Devices．
SOUND REPRODUCER．－W．A．CHAPMAN， Smithville，Ark．This sound reproducer is par－ ticularly useful in connection with talking ma－ chines of the disk type．Its object is to
provide an efficient sound reproducer which will eliminate harsh，shrill，and metallic tones nd exactly reproduce the volume，register，and one
CALCULATING MACHINE．－E．Leder，Ber－ in，Germany．The object of this invention is provide a machine by means of which the
ogarithms of numbers can be ascertained，and logarithmic calculations be effected．With this machine ordinary arithmetical calculations can be made rapidly and accurately by the employ－ ment of logarithmic principles．
TALKING MACHINE．－W．A．CHAPMAN， Smithville，Ark．The invention provides means for supporting the sound tube of a talking ma－ chine so that the tube is free to swing in two tion of the sound waves through the sound ube and the horn which communicates there ith．
Washing machine．－J．Becrer，Canal Dover，Ohio．A strong and efficient washing can be manually operated，which can be ad－ justed to adapt it for use with varying quan－ tities of articles to be washed，and which can be taken apart so that it can easily be shipped

COMPUTING BaLlot box．－C．a．ball， Marion，Ind．This computing ballot box is specially adapted for use of fraternal and whereby societies，lodges，clubs，and the metho of conducting the election of applicants for
invention provides a method of conducting a secret，a f⿴囗十一⿱䒑土灬品ative，or negative ballot，without
the aid of tellers or the use of paper ballots．

Prime Movers and Their Accessories． AUTOMATIC STARTING VALVE．－J．B． LaNe，Glenwood Landing，N．Y．The invention rolling the pressure in conduits， and the like，and more particularly relates to that type of controller in which the flow of liquid through one conduit，for instance a mo－ tive fluid for operating a pump，is controlled by the pressure in a separate conduit or con－ operated by the motive fluid．
engine starter．－L．S．Tuttle，East port，N．Y．A hand－operated starting device or internal combustion engines is here pro－ vided in which danger while cranking the en－
gine due to back fring will be eliminated． The crank automatically operates to release the driven shaft or other mechanism for driv－ ing the engine，should the engine back fre， and it is ejected from the shaft as the engine starts in the proper direct
fluence of its motive agent．

Eailways and Their Accessories．

CAR COUPLING．－O．L．Albertson，Rich mond，Va．The invention relates to an in－
provement in car couplings of the twin jaw type and provides an improved method of in－
terlocking the jaws so that when closed they terlocking the jaws so that when closed they
will not exert any pressure upon the opening will not
MAIL BAG CATCHER AND DELIVERER． ison＇R．Morrison，Derry，N．H． used on railways for receiving mail sacks from a passing train and delivering the same thereto．The device is arranged to relieve the impact of the mail bag so that injury to the tie plate．－F．a．Piper，Redlands，Cal The invention provides a strong and inexpen ive tie plate formed of sheet metal and hav Ing shoulders at the ends to engage the outer
edges of the rail bases．The plate is pro－ edges of the rail bases．The plate is pro
vided near the ends with openings to receive the spikes at opposite sides of the rail，and
with laterally disposed flanges constituting spurs which are forced into the tie to secur the plate thereon．
CAR MOVER．－C．H．＇Shotwell，Akron， 0 This car mover consists of a lever composed of two members which are pivoted together
the fulcrum being adjustable to operative posi tion after the load arm has been disposed against the car wheel．The load arm，which serves as a shoe，has a surface which con
forms with the configuration of the tread of the car wheel．The device may be attached t the periphery of the car wheel in such manne be locked to the wheel and turn with it．
METALLIC RAILROAD TIE．－A．M．BAIRD Topeka，Kans．The present invention is an ented by Mr．Baird．It is provided with an open channeled body and is fitted with metallic clamps for the rail，the clamps being secured in cross pleces or top plates connecting the
sides of the channeled body．The tie is par－ ticularly adapted for use on sharp curves of a railroad or any other portion of the road bed tie body is fitted with wings or lugs which prevent endwise creeping．
rail Bender．－D．Belioni，Edri，Pa． This device is designed for bending the rail straightenin＇t the rails．It belongs to that class of benders in which a bowed yoke with with a screw－threaded enlargement adapted t o recelve a screw stem which passes through the enlargement and bears against the rail at a
point midway between the hooks of the bowed point
yoke．

Vehicles and Accensories．

mOVing Van．－A．B．Yetter，New York he rear end of a moving van wherebs the capacity of the van may be increased when ever necessary，and which will protect articles
ordinarily strapped outside the end of the van． The attachment is adaptable to any type of and will not interfere with the openin
TRACTION WHEEL．－F．Bottrill，Tinti－ nara，S．Australia，Aus．This invention ha traction engines over sandy or yielding sur－ paces，and its novel forillating bearers flexibly mounted upon and attached to the wheel rim in one or preferably two circles，the bearers in each circle being arranged end to
end between suitable flanges extending around the rim．

Designs．
AND PICTURE FRAME．－
CLOCK STAND AND PICTURE FRAME． G．Keppler，New York，N．Y．The design a pair of legs in the form of dolphins．The frame is provided with a shell effect at the upper end，while at the sides are conventional flower effects．

Nork．－Copies of any of these patents will Please state the name of the patentee，title of

ae7²

（10980）C．H．C．says：Can y ou inform ne of the philosophy of the curving of a tennis ball when struck with a＂cut，＂and why some with a reyerse twist，carry a long way without dropping？Is the cause gyroscopic action，or
the result of the climbing motion of the ball the result of the climbing motion of the ball
gainst the air，or what？A．The curving of a against the air，or what？A．The curving of a
tennis ball is probably due to the same cause as that of a base ball．The rotation of the ball is such that the air pressure is greater on
the side toward which the ball rotates，push－ ing the ball in the opposite direction．See Scientific American，July 16，1904，for a dis－ cussion of this question．This explains upward and downward motions of balls，as well as sideways motions．There is no gyroscopic ac－
（10981）C．E．D．asks：In your reply to query 9606，you state that daylight is gone after the sun is 18 deg．vertically below the
orizon．It seems to the writer that this is an error．On almost any clear night in the latter part of June，the sun＇s light can be
traced，decreasing as the hours pass，farther traced，decreasing as the hours pass，farther
and farther north until the North Pole is and farther north until the North Pole is
passed，when it begins increasing until dawn． if this is not daylight，what is it？It is a ot so dark as in winter，and this must be are cause the daylight is not so fully excluded． A．You are quite right in supposing that the ight seen in the sky after the sun sets is sun－ ight．It is refiected from the dust particles in the upper air．This is twilight，not day－
light，since daylight implies the seeing of ob－ jects distinctly，while twilight，implies a dim， indistinct vision．Twoi here means betweern， that is，neither light nor darkness．The twi－
light zone is about 1,500 miles broad，to the east and west of the sunset line．At different the year a different time is required or the sun to reach an altitude of 18 deg．
elow the horizon．In our latitude this is more than two hours in midsummer，and the shortest possible duration of twilight in the torrid zone is one hour twelve minutes，all the year round．The writer has lived there，and
seen the night fall almost as soon as the sun ets．Twilight is not reckoned upon for work ing in the torrd zone，as it is here in the summer．－The twilight illumination of the sky itself does，and in the most northern portions of the United States the twilight zone does not dip below the horizon，even at midnight about latitude 48 deg．twilight of morning meets evening twilight at the north．Even in are very long，and the streets are filled with people much later in summer than with us below the horizon，it is night sun is 18 deg the sun is to be seen above the noizonht of other fact in this connection，is that the al is never dark．This，however，is not due to
the sun，but to the stars．The Milky Way i above the horizon in summer in our latitude and it gives a great deal of light by night，
enough to make the night sky of that time brighter than when it is not a part of our night sky，as is the case in winter．Then，too the stars which cannot be seen by the unaided
eye give us much light．The stars which ar not visible to the eye give more light than ＂New Astronomy，＂p．424，on this point：＂Ac cepting a sixth－magnitude star as the standard and expressing in terms of it the light of all catalogue of 324,000 stars to the $91 / 2$ mas lent to $\mathbf{7 , 3 0 0}$ sixth－magnitude stars
culation proves that the telescopic stars of
this extensive catalogue yield more than three times as much light as the lucid ones do. The stars, then, we cannot see with the naked eye give more light than those we can, because of
their vastly greater numbers." In the whole their vastly greater numbers." In the whole
heavens the stars give about $1-80$ as much light as the full moon. There is good reason (10982) G. F. says: 1. Is there any sound when there is no ear to hear it? For
instance, if a tree were to fall and there were no living thing within hearing, would
there be any sound? Please explain fully there be any sound? Please explain fully.
A. There may be sound when there is no ear to hear it, and the fall of a tree would pro duce exactly the same noise, whether or no there be any one near at hand. What we cal
"sound" consists in reality of pulsations o save vibrations in the air or whatever medium
the sound traverses. If a stone fell into a the sound traverses. If a stone fell into a
smooth body of water, it would produce waves smooth body of water, it would produce
on the surface of the water, whether
there be any person present to see them. In
the same way, it would produce waves o pulsations of sound in the air. 2. Give a rule engine. As an example, figure the pull of the engine. As an example, figure the pull of the revolutions, cutting off at two-thirds stroke
pressure, 120 pounds; traction wheels, 64 pressure, 120 pounds; traction wheels, 64
inches diameter, geared 1 to 17 . A. The en Ine which you. describe ought to be able t produce a drawbar pull of from ten to fifteen
thousand pounds for each cylinder, provided thousand pounds for each cylinder, provided
the driving wheels do not slip. If this force is more than eight or ten per cent of the
weight on the driving wheels, they are likely
(10983) A. W. P. writes: 1. What is the complementary color of purple or violet?
Is it green or yellow? A. The complementary color of purple is green. 2. Concerming
wireless telegraphy, I have read that "the wireless telegraphy, I have read that "the the length of a wave." How may the length of the wave be determined? A. The length
of electrical waves is dependent upon the of electrical waves is dependent upon the
number of osclllations per second of the discharge. With $300,000,000$ oscillations th waves are about 3 feet long, since the speed
of the waves is about the same as that of ight. The mode of securing waves of a par
ticular length is discussed in the several sys tems in Mayer's "Wireless Telegraphy," pric 2. 3. Which is the best battery to use with a small induction coil (spark) for experimenta
purposes-one that will give a steady current and not annoy one by polarizing every few minutes? A. For experimental purposes you will find the plunging bichromate battery as satisfactory as any. A good form is described (10984) B. B. asks: Which part of a wagon wheel, when traveling on the road, goes
the fastest, the top or the bottom? A. All parts of a wagon wheel go along the road with the same speed, the same as the horse moves So too all parts of the wheel turn around the
axle with the same angular speed, that is every point which is at the same distance from the center moves with the same speed, but each point moves with a speed which is
pro, portional to its distance from the center of the usle. The center line of the wheel does
not rotate at all. There are other motions of not rotate at all. There are other motions of
the parts of a wheel which are discussed in Queries 2622 and 9635 ; also in the correspond ence column of Vol. 92, No. 25, to which we
would refer you. We can send you these num-
(10985) H. A. K. says: I have a hollow cylinder $11 / 4$ inches diameter by 3 inches
high. How many cubic inches of air will be compressed into it at 100 pounds pressure pe
inch? At 200 at 300 , at 400 , at 500 ? I the height of the cylinder is cut in half, how many cubic inches will it contain at the same pressures? What is the rule for finding the
volume of air compressed into a given space at volume of air compressed into a gressure? What books treat on the
a gubject? A. Your cylinder contains 3.68 cubic subject? A. Your cylinder contains 3.68 cubic
feet of air at atmospheric pressure. At 100
feet of air at atmospheric pressure. At 100
pounds pressure it will contain 3.68 times 114.7
why a small battery motor will run on a 110power lamp is put in series. If a 50 candle-
ocandle power lamp is removed and a 16 candle-power put in its place, the motor will not start.
A. A 16 -cangle lamp does not carry current A 16 -candle lamp does not carry current
enough to run your motor; a 50 -candle lamp does. 2. How long a spark ought an inducinches in diameter, the core being 1 inch in diameter, the primary coil consisting of two dayers of No. 16 copper wire and the second
laysing ary coll containing 4 pounds of No. 36 cop-
per wire? A. You may be able to get a spark 3 inches long from your coll, but its proportions are not of the best. The primary winding is of too small a wire. No. 12 would have been right. The coll is too short. It
should have been 12 or 14 inches. This would have made the outside diameter less, and into a stro secondary nearer the primary and then have given a spark of four inches. See our Supplement No. 1527 for plans for a 4
inch coil; price ten cents. 3. Having five known parallel forces applied at known points to a stick, what is meant by taking one Whese points as the center of moments? ments, a force acting at that point does assist in any way to rotate the stick. It simis produces pressure on the point. 4. What
is meant by moments of forces? A. The moment of a force is the value of that force in producing rotation of the bar or wheel to
which it is applied. The value of any force in moment is equal to the product of the force
multiplied by the acting distance of the force. See textbooks of physics for full explanation
(10987) E. De V. asks: Will you please tell me what kind of steel makes the
best bar magnets? Also, I would like to know the relative strength of bar and electro-mag. Jessop's steel, some Stubs' steel, some mananese steel, and some tungsten steel. Prob-
any good high-grade steel will answer very well for the purpose, with little to choose. many opinerally the case when there are so relative strength" of permanent magnets. A good permanent magnet may lift five times its ore than this.
(10988) J. J. G. asks: Does an obect which is viewed through the telescope of an engineer's transit appear to be larger than may seem to you to be a foolish question, I find that several of my acquaintances, two of
whom are graduate civil engineers, claim that whom are graduate civil engineers, claim the image is clearer, it is no larger. By
wh looking through the telescope with one eye both object and image at the same time, and thus seen the superficial areas appear to be
about as 1 to 16. My friends claim that this about as 1 to 16 . My friends claim that this A. An engineer's transit usually is provided 6 diameters, or from 9 to 16 tines. If it did not magnify at all, an object seen through it with the noke ane a mine the magnifying power of a glass is to look at bricks at some distance with one eye through the telescope and with the other eye directly. Find how many bricks seen with the naked eye are covered by one brick seen
through the telescope. This is the number of diameters the telescope magnifies.
(10989) G. J. B. writes? In your Notes and Queries of April 1, 1905 (No. 9594) nches for one mile and 32 for two miles This is right (approximately) when running an east-and-west level but ceases to be true
when running north and south, or else the doctrine that the north-and-south axis of the earth is 26 miles shorter than the east-andthat if you run a level starting from a given point on the equator and running west through 90 deg. of arc with 8 inches allowance for place on the equator and run north through 90 deg. of arc, you would come out up in the
air at the north pole. This would be equally air at the north pole. This would be equally
true if you run the same levels with equal true if you run the same levels with equal
fore and back sights. A true instrumental level is a serles of short chords whose ends and paradoxical as it may seem, true and paradoxical as it may seem, a true level Mississippi River runs up hill, else its mouth could not be farther from the earth's center than the source. It is also true that no river
of the same levels could exist in an east and of the same levels could exist in an east and
west course, unless its source was underground west course, umless its source was underground
and it should rise gradually to the surface. and it should rise gradually to the surface.
The levels of the Amazon River are most deThe levels of the Amazon River are most
cidedly different from the Mississlppi. A. Defnitlons are the safeguards of a discussion. both sides to an argument a discussion is not proftable. And when you state that "an east-and-west level is not the same as a north-and-south level" and that "the Missis-
sippi River runs literally up hill" it is evident that the terms "level" and "up hill"
need definition. We cannot agree to either need definition. We cannot agree to either
expression in the sense in which the dictionary requires us to use terms. If we define
of ingelp, since it must be defined as depart
ing from a level by rising above it. The tury Dictionary, which is usually considered as good authority, defines level as "an imag nary surface everywhere perpendicular to th plumb line, or line of gravity, so that might be the surface of a liquid at rest
Every such surface is approximately that of Every such surface is approximately that of
an oblate spheroid, as the sea level, for ex an oblate spheroid, as the sea level, for ex
ample, is." Thls seems very plain. We can not think that anyone would maintain tha Mississippl the lattude its mouth is uphill yet if the river flows uphill surely the sea
also flows uphill, and a ship salls uphill in the also flows uphill, and a ship salls uphill in the northerm hemisphere here, as it salls south.
A level is not a surface equidistant from tre center of the earth, and is never defined a such. That would not be a level. Water
would not lie upon such a surface, and a level run north and south does not differ from on that a level is run differently in one direction from what is done in another. The only differ the level north and south, but the liquid of level, the ship on the sea and the waters of the flowing rivers, all are sensible to the ac-
tion of this force all the time and everywhere A level is the surface of still water, and th Water of a south-flowing river at its source
in the northern hemisphere is above the leve of its mouth, and the water of this river flow down hill from its source to its mouth.
(10990) J. F. S. asks: Will you kindly explain how it is that makers of dry batteries
rate their cells in amperes? Thus, they claim rate their cells in amperes? Thus, they claim
that a cell will show 14 or 16 amperes. I always supposed that an ammeter simply showed the rate at which current flows. Thi being the case, the reading on the ammete sistance in circuit. Would it not be better practice to test cells with a voltmeter? A. You current registered on an ammeter connected
in a circuit is dependent upon the voltage and resistance. In testing dry batteries, however it is customary to short circuit each cell for an instant through an ammeter to see what is the maximum rate at which it will discharge.
When new, this gives an indication of the capacity of the battery, and, as a cell becomes run down, the rate at which it will discharge when momentarily short-circuited decreases When this falls to 5 amperes the cell is
about used up for anything but very light intermittent work. Cells in this condition will sometimes still spark a gasoline engine if th vibrator is properly adjusted to suit the weak current they will supply. The voltage also
falls off slightly as a dry cell becomes run down, but this indication is not as definite as storage ces in the cell will show, whe with s discharging is a good criterion of the amount of charge still in the cell. A dry cell shows
1.5 volts when new and anywhere from 1 to 1.25 or possibly more when run down. A charge when full, about 1.9 when half dis charged, and 1.8 or 1.75 when fully discharged when on open circuit. In short-circuiting volts cells through an ammeter, but one circuiting dr time should be tested and care should be taken to have large enough wire to carry the current easily. The wires to the meter should hould short as possible and annection or 6 cells can be short-circuited at once, but this gives an average discharge only and does
not Indicate the condition of each separate .
(10991) W. I. H. asks: 1. What is the heat conductivity of carbon such as the it have in the scale of conductors? A. The
conductivity of carbon for heat is 0.000405 , when copper is 1.0405 on the same scale. This is less than all the metals, stones, and many minerals, and more than most woods, wool its fusing point, or does it only fuse in the hough under sufficient pressure there to be no reason why it may not be melted. It upon heating it sufficiently. It vaporizes in the electric arc at a temperature between 5,000 and 7,000 deg. F . The electric arc is the only source of heat hot enough to vaporize carbon.
3. What is its specific gravity? A. The specific gravity of carbon in the form of graphite is ight carbons would probably cause them to appear lighter than this. 4. How is it manufactured and of what is it composed? A. Car rom coal in retorts as graphite. Carbon carbon. It is an element, and so far as man is able to affect it, it is not made from any substance. 5. What holds it together, that is is it plastic When molded or molded unde
great pressure? A. Cohesion holds the part
cles of tates. In the electric light carbons the part cles are bound together by some sticky ma-
terial, and the rod is then burned in a furnace. Is it what would be considered an
xpensive product? Please give some idea o cost in molded shapes and in bulk. A. Carbon
ls not an expensive article. You know prob-
ably what a ton of coal or a cord of wood is
at re ber place. In buying either you pulverized and again molded into shape? A. Pulverized gas carbon, or graphite, is
molded, as we have said above 8 Can you molded, as we have said above. 8. Can you supply us with the addresses of firms making
articles of carbon? A. Consult our Manufacarticles of carbon? A. Consult our Manufac
turers' Index sent free on request. All turers' Index sent free on request. An
dealers in electrical goods have electric-light carbons, battery plates, and motor brushes or use in the telephone transmitter. Jewelers eal in diamonds, which are crystallized carbon. . All authorities do not agree upon the melting point of gold. Please tell the melt. The both in Fahrenhelt and Centigrade. 1,035 to 1,250 deg. C.; 1,080 deg. may be taken as an average value. This is from 1,900
to $2,250 \mathrm{deg}$. F .
(10992) A. L. asks: Kindly oblige me y answering the following questions: 1. What s best material to make a magnet of? 2. What the best means of making a magnet? orth pole of anotber magnet in practice the A. Permanent magnets are made A. Permanent magnets are made of steel, the
best steel to be found. Tool steel is often ased. See query No. 10987 on this page. Heat the bar to a cherry red, or if it is ong, the ends of the bar, and plunge it end-
ise into water. It will then be glass hard Draw the bar across the poles of a strong Draw the bar across the poles of a strong
nagnet, either another permanent magnet or, better, an electro-magnet. Do this ten to
twenty times, pulling it off in the same directon from one pole, and then reverse the bar and pull the other end from the other pole ween similar, and an attraction between oppoite poles of two magnets. If the magnets be site poles of two magnets. If the
strong this will also be strong.
(10993) R. E. S. says: In your valuable paper, the Scientific A merican, of July
29, 1905, under the heading, "Five Thousand 29, 1905, under the heading, "Five Thousand Degrees of Heat," I find these words: "We
have a heat that cannot be surpassed, and we obtain, in fact, a heat of 5,000 deg." Now, are you aware of the fact that the Carborundegrees of heat in producing its so-called carborundum? A thousand horse-power of electric energy, furnished by Niagara, is said to be
converted into over 7,000 degrees of heat. In converted into over 7,000 degrees of heat. In
fact the heat is said to be so intense that it fact the heat is said to be so intense that it
burns and vaporizes every known element. I have heard, from various sources, that Thomas Edison, in trying to produce diamonds, led to um. Cavery and manufacturio of sawdust and, and salt fused with coke of sawdust, mendous heat of 7,000 deg. It is said to be diamond in character, of the same hardness, to more indestructible. It is made up made into hones and the like, and is, I assure ou, absolutely the best grinding substance furnished by above facts I take from a paper of its agents. A. We note your criticism of he phrase used by our Paris correspondent, A heat of 5,000 deg." It is doubtless true that the electric arc furnishes the highest nown temperature, and that this is the temerature at which carbon volatilizes. It is not so easy as you seem to assume it etermine just what that temperature is. A Wright, published 1905, contains this stateent, page 9: "The temperature of the eleche highest authos never been det apo the lectric furnace is without doubt Henri Molsan, of Paris. In his book, "The Electric Furnace," published July, 1904, page 19, he says, Weces of apparatus; it depends upon the temerature reached by the electric arc which ay be, according to Vlolle, 3,500 deg." This crresponds to $6,300 \mathrm{deg}$. F., since Violle used
the Centigrade scale. The temperature of the electric arc is probably limited by the temerature at which carbon is bove 5,000 deg. F. to about 7,000 deg. F. In Chatelier's "High Temperature Measurements," published September, 1904, page 302, the "exreme temperature of the electric arc" is given $3,600 \mathrm{deg}$. C., whleh is $6,500 \mathrm{deg}$. F. Wootelopment of Physical Science," page 77, gives he temperature of the electric arc as 3,000 have given you the results as stated by the most rellable authorities. And we can say that we are not aware that it is certain that temperature of 7,000 deg. exists in the elecpondent used the learst estimate of the temperature, while the advertising circular which ou quote and which we have at hand uses paratus, as is natural that it should do. We do not know why our correspondent used the lowest figures, and personally we are accusgures on this point. One way or the other there is nothing to dispute about. If you will ead the books we have quoted, especially the High Temperature Measurements," which we
can furnish for $\$ 3$, you will appreciate the work done in this dirrection and the difficulties
ofle problem. Molssan's "Electric Furnace"
is also a book well worth reading by any one who would know the facts in the matter. We send it for $\$ 3$. This book contains the full history of the effort to produce diamonds artificially, in which Moissan has been the chief experimenter and the most successful one. It
may be that Mr. Edison has taken a hand in may be that Mr. Edison has taken a hand in this line of work, since he has done so in
almost every line; but his name has not been almost every line, but his name has not ben
publicly associated with the artificial producpubircly associated with the artificial produc-
tion of diamonds. Your sources of inforimation of diamonas. Your sources of informa-
tion in the matter may be better than ours. The invention of carborundum is credited to Mr. E. G. Acheson in 1893. Moissan, "Electric Furnace," page 264, says: "I had occasion to
find, in 1891, . small crystals of a silicide of carbon. I did not, how-
ever, publish anything on this subject at the ever, publish anything on this subject at the
time, and the discovery of the crystallized time, and the discovery of the crystallized
carbon sillicide really belongs to Acheson." It carbon sillcide really bel ongs to Acheson." It
is not "diamond in character," as you state, is not "diamomd in character," as you state, since the diamond ins simply crasptand of simpum is a compound of silicon and carbon. It is next to the diamond in hardness, or between 9 and 10 on the mineral Laranss, or hardness. Being harder than emery
scale of he
it is a better abrasive, although emery is still it is a better abras
preferred by some.

NEW BOOKS, ETC.

Man in the Light of Evolution. By John M. Tyler, Ph.D. New York: D.
Appleton $\&$ Co 1908 . Appleton \& Co.,
231. Price, $\$ 1.25$.
It is now about fifty years since Mr. Darwin published "The Origin of Species." A host of sooks have since been written on evolution,
Darwinism, and natural selection, but comparatively few zoologists have áttempted to show the bearing of the theory of evolution on man's history, progress, and life. They have usually left this problem to the sociologist and the archapologist. The author has attempted to mark out a straight and narrow path through he subject. He has viewed animals and man anatomical standpoint. Much is said of functions, powers, actions; less of organs and structure.
Subject List of Works of Reference
Boography, Bibliogiaphy, the Aux
hiary Historical Sciences in the

tionery Office, $1908 . \quad 18 \mathrm{mo}$.; 336 pages. Price, 6 pence.
An admirable addition to a most useful little Ale
as: Engine Manual: By W. A. Tookey
 There always seems to be room for a book
on gas engines, although some fifteen or twenty ears ago the literature on the subject wa extremely meager. The introduction of the automobile has caused widespread interest in internal combustion motors. Some years ago
the author produced several smail handbooks which met with favor, and since that time he has been sksed repeatedly to wett a has been asked repeatedily to wrtte a small,
comprehensive work on the gas engine, which would form a stepping stone from these handbooks to more scientific treatises. He has devoted special attention to the nature of dis-
turbances which usually affect the performance
turbances which usually affect the performance of gas engines when erected permanently in
factories, which to a practical engineer is of factories, which to a practical engineer is of
more value than treatises dealing with the more value than treatises dealing with the
theoretical consideration of scientific research, or "test bed" experiments. A special feature of the book is a series of indicated diagramed taken by the author in everyday work.
Halley's Comet. An Evening Discourse to the British Association at Their
Meeting at Dublin on Friday, Sep-
tember 4, 1908. By H. H. Turner,
D.Sc., F.R.S. Oxford: Clarendo Press, 1908. 8vo.; 32 pages.
In this paper Prof. Turner has presented a very excellent astronomical history o
Halley's famous comet. He gives all the rec ords of its former appearances.
Economic Zooloar. An Introductory
Textbook in Zoology. By Herber
Osborn, M.Sc. New York: The Mac
millan Compan
This book is not intended merely as a textbook for a school or college stadent, but it is hoped that it may be of service to that very
interesting body of citizens who wish to famil arize themselves with the general principles and the present status of knowledge regarding in such a lucid form as in the present wort can be made very attractlve. The book is ad mirably illustrated by 269 engravings.

Maynard \& Co., 1908.12 mo .; pp. 269 Price, $\$ 2$.
A most valuable book written by an expert, who brings the psychological laboratory into one phase of modern business life. The typical
business man is an optimist. For him the bosiness man is an optimist. For him the
future is full of possiblitites that never future is full of possibilities that never have
been aroused in the past. He is not, however, a day-dreamer, but one who uses his imagination in formulating plans which lead to im-
mediate action. The advertiser mas well be regarded as typical of the class of American
asiness men. At the time when advertise ted circulation; certain enterprising men saw the possibilities of advertising, and began sys tematically to improve the whole profession of
advertising. There is a vast difference between divertising. There is a vast difference between to-day. It is not strange that advertising has man mind function the influencing of the hiand destructive to the firms attempting it. As it is, the human mind in advertising is dealing with its only scientific basis in psychology, which is simply a systematic study of those same minds which the advertiser is seebing to influence. This fact was seen by wise adver Hisers, and some ten years ago various theorie arm. advertsing began to be reauced to concret dealing with memors, human instincts sugge ealing with memory, human instincts, sugge
tions, will, habit, laws of progressive thinking attention to the value of spaces, psychology food advertising, railway advertising, etc. It
is an excellent book accompanied by a full bibliography
Color Value. By C. R. Clifford. New York: Clifford \& La
95 pages. Price, $\$ 1$.
An admirable volume filled with good suggestions which will be of the greatest service
to all interior decorators. It is a scientif to all interior decorators. It is a scientific
treatise in every sense of the word. It treatise in every sense of the word. Its
study will prevent the hideous combinations study will prevent the hideous combinations
which offend the refined taste in so many stuay wit
which o
houses.
Die Saevaetiere Von Dr. Kurt Floericke. Mit Bildern.
Octavo. Stuttgart:
Kosmos Gesell Octavo. Stuttgart: Kosmos Gesell-
schaft der Naturfreunde, schaft der Naturfreunde, 1908. Pip.
105 . Price, 50 105. Price, 50 cents.

Dr. Floericke's book on the animals of the German forest is one of the popular series of
nature books which have long been published ature books which have long been published
by the well-known German scientific periodical Kosmos. The book is a simple, straightforward account, which should be read with interest by those who have no desire to penetrate deeply into natural history, but who want an intelligible, accurate, and non-technical book on the subject. With the exception of an attempt
at fine writing, which seems to be inevitable at fine writing, which seems to be inevitable
in all popular works, the book strikes us as an in all popular works, the book strikes us as an
accurate and caretul presentation of the subaccura
ject.
Experimental Elasticity. A Manual for
the Laborato By G. F. C. Searle,
M.A., F.R.S., Cambrage (England).

New York: G. P. Putnam's Sons,
1908. 12mo.; 187 pages. Price, $\$ 1.50$.
A highly specialized treatise which will be warmly welcomed by all physicists. The subJect is an interesting one and is admirably

Cement houses and How to Buedd Thema. By W. A. Radford. Chicago and New
York: Radford Architectural Com-
pany, 1908. Small quarto; Pp. 158. pany, 1908.
This ts a practical treatise on the construc ion of cement houses, giving standard specifi-
cations for cement, standard speeifications for concrete blocks, general information concerning waterproofing, coloring, paving, reinforcing, oundations, walls, steps, sewer pipes, chimneys, porches, floors, the use of concrete on the farm, with perspective views and fioor plans of con-

Electiric Furnaces. The Production of Heat from Electrical Energy and the Construction of Electrical Furnaces.
By Wilhelm Borchers. Translated
London and New York: Longmans,
Green \& Co., 1908. 8vo.; Pp. 224.
Price, $\$ 2.50$.
Price, $\$ 2.50$
The present volume is an English version of he second German edition of "Die Elektrischen Oefen" by Dr. B orchers, the well-known author-
ty on electro-metallurgy. The recent rapid development, notably abroad, of the electric furnace is sufficient to prove how important a part it is playing, and is destined to play in a still greater degree in the near future in connection
with all classes of metallurgical operations By the aid of electric furnaces it should be possible to develop new industries and in districts hitherto unsuitable for electrical enterreadily obtainable for the production of the sadily obtainabie for the production of the generated and supplied, as by the utilization of waste furnace gases and overhead transmission. To those who are comparatively familiar with the subject of electro-metallurgy, this book
will prove a revelation. It is filled with the will prove a revelation. It is filled with the
most interesting illustrations, numbering 279 most interesting illustrations, numbering 279
in all. It is a book which we can heartily commend.
autical Charts. By G. R. Putnam,
M.S. New York: John Wiley \& Sons,
1908 8vo.; Pp. 162. Price, $\$ 2$.
1908. 8vo.; Pp. 162. Price, \$2.

This is the first work on an important subject. In all the countries of the world, more
than a million copies of charts are now issued annually. A considerable portion of the human ace are interested directly or indirectly, either as mariners or passengers, or shippers on the
sea. Aside from supplying a handbook for those who might have a general interest in the subject, it was thought that a discussion of charts might lead to a further consideration
the principles governing their construction.
is an ex
Merck's 1907 Index. Third edition. New pages. Price, $\$ 5$.
An encyclopedia for the chemist, pharmacist, and physician, stating the names and synonyms, source or origin, chemical nature and formulas, ing and boim, appearance, and properties, melt gravities and methods of testing, physiologica effects, therapeutic uses, modes of administra tion and application, ordinary and maximum doses, incompatibles, antidotes, special cau the chints on seeping and handing, etc., medicine and the arts it is chemical en cyclopedia. But whereas Beilstein takes in all possible combinations, Merck's 1907 Index limits itself to the chemicals and drugs actually on the market, giving in regard to them in
formation comparable to Beilstein's. This atest edition is improved by the addition of he newest products of the chemical industry y the adoption of the latest nomenclature, by We have used older editions with much satis faction. It is indispensable for the editor' Mode

Coal, Its Octice in Mining. Vol. 1
Occurrence, Value, and Coal, Its Occurrence, Value, and
Methods of Boring. By R. A. S Redmayne. London and New York Longmans, Green \& Co., 1908. 8vo. Pp. 199. Priee, $\$ 2$.
The present volume is the predecessor of uccessive order, the series constituting a complete work on modern practice in mining. While the British colliery practice is some what different than that in vogue in America, information wors contains enough valuable who are in any way interested in coal mining Special attention is given to prospecting and argest part of the book. It is well illustrated by numerous engravings.
Ex-Meridian, Altitude, Azimuth, and Star-Finding Tables. By Lieut John Wiley \& Sons, 1908. 8vo.; Pp 393. Price, \$5.

All navigators will be interested in this taken up by rules for the conversion of time the finding of hour angles, and for plotting ines of position by the usual methods familia work on navigation. The book is a most commendable specimen of industry.
heating and Ventilation. By Charle Ameriban , S.B., M.E. Chicago 1908. 8vo.; pp. 221. Price, $\$ 1.50$.

In recent years such marvelous advance tific fields, and so rapid has been the evolution of mechanical and constructive processes and methods, that a distinct need has been created for a series of practical working guides of con venient size and low cost, embodying the ac approved modern practice along a great variet of lines. To fill this acknowledged need is th special purpose of a series of hand-books t Which this volume belongs. The volume it particularly adapted to the purpose of self
instruction and home study. The utmost care has been used to bring the treatment of each subject within the range of the common understanding, so that the work will appeal not beginner and to the self-taught practical man Tho wishes to keep abreast of modern progress. The method adopted in the preparation of this volume is that which the American School of Correspondence has developed and employed so
successfully for many years. The book is excellently illustrated.
Mechanical Pboduction of Cold. By
A. Ewing, C.B., LL.D., F.R.S. Cam
1908. G. P. Putnam's Sons, lmport ers, 1908. 8vo.; pp. 204. Price, $\$ 3.25$ This book is a reprint of lectures on the the Societs of Arts in 1897, with addition and corrections which show the advance of the past eleven years, and bring the accounts of machines and processes into accord with the practice of the day. In its main feature the art of refrigeration has undergone little change in that time, but notable progress has been made in some directions, and this has required the introduction of a good deal of supplemen tary matter. The refrigerating machine from a place that is comparatively cold to place that is comparatively warm, and the question of primary interest is how to do this pumping with the least expenditure of power. We are concerned with the theoretical limits to the economy of power that hold in ideal refrigerating processes, and with considerations as to how nearly the actual conditions under which refrigeration is carried out will allow another type of real machine is employed. The lectures are in great part an attempt to make this side of the sumics. The book is cellently sllustrated.
er Construction. By Henry N. Og-
den, C.E. New York: John Wiley \& Sons, 1908. 8vo.; pp. 335; 192 figures. Cloth, $\$ 3$.
The course represents the second part of a year's work, of which the book on "Sewer Design," already published, is the first part, and it is assumed that the reader is familiar with that volume. The work appears to be an excellent one, and is deserving of a good sale
among those interested in the subject.
Massing of Spheres. A Geometrical Demonstration of the Constitution of Matter. By G. J. Stevens. London:
J. Haslam Company, Ltd., 1908. 4to.; J. Haslam Company, Ltd., 1908. 4to.; pp. 21. Price, $\$ 1$.
The Letters of Jennie Allen to Her Friend, Miss Musarove. By Grace
Donworth. Boston: Small \& Maynard Company, 1908. 12mo.; pp. 291. Price, $\$ 1.50$.

INDEX OF INVENTIONS
For which Letters Patent of the United States were lssued for the Week Ending Novemher 3, 1908,
AND BACH BEARINGTHAT DATE
[see note at end of list aboat copies of these patentis]

 yez \pm
 er, C. E. sand *
4

 902.867
902,692
$\mathbf{9 0 2 , 9 1 4}$

