RECENTLY PATENTED INVENTIONS.

The Inventions described in this De-

partment were Patented through the
Scientific American Patent Agency.

Pertalning to Apparel.

STOCKING SUPPORTER. - T. PAPworth, Portland, Oregon. This supporter is provided with a pair of jaws which may be attached to
the underwear and a link locking device which may be attached to the sock or stocking. The device may be applied wherever conventent to
hold the hose taut on the limbs of the wearer.

Electrical Devices.

ELECTROLYTE.-A. VAN Winkle, Newarik, N. J. The invention provides a new el
trolyte for use in the electro deposition trolyte for use in the electro deposition of
zinc on iron and steel. The special object of zinc on iron and steel. The special object of
the invention is to provide increased conductivity of the solution and to improve the color of the deposit as well as to insure a
plating, especially on concave surfaces.

of Interest to Farmers.

marker attachment.-L. R. Turner, Long Pine, Neb. An efficient marker attachment for corn planters, and the like, is pro-
vided by this invention. The marker indicates the positions to be occupied by rows of plants or hills, and can be automatically disposed in a number of positions.

Of General Interest
COMPOSITION FOR SOLIDIFYING FLUE DUST.-S. W. Ramsey and G. W. Smith Youngstown, Ohio. In the operation of blast
furnaces for the reduction of iron there accufurnaces for the reduction of iron there accu-
mulates a considerable quantity of dust which consists of small particles of oxid of iron, coke, and other. constituents of the furnace object to convert this dust into bricks so that the iron it contains may be reduced.
BUILDING Block.-A. G. Mahler, Medford, N. Y. This building block is adapted to
be quickly laid in constructing walls and is be quickly laid in constructing walls and is
provided with improved means for connecting provided with improved means for connecting
or bonding the adjacent blocks. The block is also designed to facilitate the application of plaster on the inner side of the wall, and terior of the walls to the outside without al owing the admission of rain.
EMBROIDERY FRAME.-G. B. Lyon, Ithaca, N. Y. This is an improvement on a hoop and a clamping device for holding the fabric stretched thereon. In the present in
vention the hoop is constructed with flanges at each edge between which the clamp is ap-
plied. The latter is made of a transversely corrugated strip of elastic metal.
DEVICE FOR AUTOMATIC FIRING OR SELF-LOADING ARMS.-S. H. BANG, 24 Pehlenschlaegersgade, Copenhagen, Denmark.
The invention refers to a trigger mechanism The invention refers to a trigger mechanism in connection with self-loading fire arms by means of which the gun may be made to act trigger is pulled, or to fire auto
gate valve.-G. H. Benton, Metuchen, . J. The construction of this gate valve is very simple and its operation effective. It is
arranged to compensate for any inequalities in the seats and the gate faces, to insure at all
times a firm and active seating of the valve gates to prevent leakage, and to allow conWIND ACTUATED ADVERTISING DE-VICE.-R. RAY, Carrollton, Mo. This adver tising device is adapted for outdoor display provided with the customary vane for direct arranged to receive advertising signs.

SASH FASTENER.-H

 ooga, Tenn. The fastener provided by this invention is adapted to be mounted upon themeeting rail of the lower sash and lock both sashes in closed condition. The fastenger is adjusted for locking either sash opened more adjusted for locking either
or less, as may be desired.

Heating and highting.
BURNER.-W. H. DAMON, New York, N. Y. An improvement in hydrocarbon burners for
heating rivets is provided by this invention The burner is formed with air and fuel pas sages; a combustion flue surrounding th burner proper having air intake openings in
the side and bottom, and a regulating device closely fitting the flue and having like openings in the side and bottom, the openings of movable alternately into and out of register.

Household Utilities.

FURNITURE.-F. N. Churchill, Spokane Wash. The invention relates to a table o
simple construction which can be neatly fold simple construction which can be neatly fold
ed. When collapsed it can be shipped stored without danger of injury to the parts and at the same time requires a minimum of
space. SAD-IRON HEATER.-G. W. FALLIN, Mont gomery, Ala. The body of this sad iron is
hollow and carries an alcohol generator, and
first heated to produce alcohol vapor and this is then burned to heat the sad iron. The the inner side, and when it has attained the proper degree of temperature the body of the iron is inverted. While this side is being used
the other surface of the iron is heated by the the other surface of the iron is heated by the
burner so that it will be ready for use when burner so that it will be rea
the side in use becomes cool.

Machines and Mechanical Devices.

WELL-DRILLING APPARATUS.-R. D Moon, San Angelo, Texas. An improved mechanism for lifting the drill and permitting a quick and unimpeded drop of the drill bar is provided by this invention. The use of a high or top-heavy rigging is thus avoided, as
well as the great jar and noise found in the well as the great
use of ordinary rigs.
REVERSING MECHANISM.-T. H. and J. E. Holgan, New York, N. Y. The construcchucks and the mechanism is such that as a drill or tap is brought into engagement with the work the drill shaft will be engaged automatically with the driving pulley in a manner to feed the drill or tap into the material, and as the work is withdrawn, the shaft will be brought into such relation with the driving pulley as to reverse the direction of rotation STONE SAWING MACHINE.-A. Jones, Oolitic, Ind. The invention relates to stone sawing machines using rotating drums and and serving to cut stone. The object of this invention is to permit of adjusting the wires conveniently and quickly in the desired position relative to the stone for cutting the latter into pieces of the desired width.
CONTINUOUS-DRAW VACUUM WINDOWglass machine.-D. H. Hershey, Latrobe, Pa. The invention provides a method for drawing glass in a cylindrical form suitable for flattening out to make window glass, also to a method of shaping the glass by producing a partial vacuum around the cylinder of glass as maintaining a uniform Means are provided for as it is drawn upward from the molten glass. AUTOMATIC TRIP FOR CONVEYERS.-C Fredericeson, Cameron, Wis. This aut determined place so that the material in the hopper may be deposited wherever desired Should a wagon be under the cable of the conveyor the material may be evenly distributed
therein without the necessity of moving the
mechanical movement. - s. Jones, East Liverpool, Ohio. A means for converting continuous rotary motion in one direction into
alternate forward and backward rotary motion alternate forward and backward rotary motion ment is adapted for use on washing machines, churns, and the like. It is arranged to auto matically revolve a part of the machine, a predetermined numb
opposite directions
GRinding mill.-D. S. Anthony, Durango, Mexico. The object of this invention is to provide an improved mill more especially designed for grinding middlings and arranged onsure ready grinding of the corn, or other
material, to any desired degree of fineness, and o allow easy sharpening of the grinding mem-

MACHINE FOR FINISHING THE PACKng of barrels.-L. Storce, J. H. Vogt, nd L. Storck, Stamford, Conn. An improve barrels with pulverized or granulated material is provided by this invention. The machine is especially constructed to perform this operation on shipping cases which have been packed by a machine previously inven
by Messrs. Vogt and Storck.

SOUND BOX.-J. C. KERR, Valparaiso, Chile. The invention provides a sound box for talking machines in which practically the entire quantity of sound waves produced is
forced to pass through the sound tube, and in which inharmonious or disturbing vibrations re avoided and all deadening of the sound

PIANOFORTE.-W. R. T. Hill, Asheville, N. C. The invention provides an improved
frame for pianofortes in which the tension on chame for pianofortes in which the tension on
opposite sides of the frame is balanced so that pposite sides of the frame is balanced so that
the bending strain of the frame is eliminated, and the sound boards are made without ribs,
the strings resting on the bridge at each end.

Prime Movers and Their Accessories.

feed water heater.-J. h. Kidwell taunton, Va. This feed water heater is de acterized by the fact that it utilizes the ex haust steam from the cylinders for the pur pose of heating the feed water as well as using the hot gases in the smokebox at
the boiler for the same purpose.
STEAM TRAP.-A. L, Rigas, Ebensburg.
Pa. This improved steam trap is arranged to insure a positive and easy working of the valve controlling the inflow and the discharge of the water and means are provided for hold Ing the valve locked in one position until
the trap is accurately filled with a prede ermined quantity of water. The valve is tity of water has been discharged.

Rallways and Their Accessories.
GRaIN Car.--J. T. McNally, Chicago, ill The car is designed to discharge the grain ings, the openings of one bottom being movable into and out of register with those of the other bottom. A door is adapted to cover these perforated bottoms when the car is to be
used as an ordinary box car and this door is also adapted to cover one of the door open-
ings in the side of the car when the car is ings in the side of the ca
to be used in hauling grain.

Pertaining to Vehiclem.

TRANSMISSION MECHANISM FOR MOTon Vehicles.-C. M. Lfede, Lima, Ohlo The construction of thls mecharilsm is suc throw the driving shaft out of alinement an the moveraent of the vehlele both forward and he moveracnt of the vehicie both forward und ually varled, the transmlsslori passing from a
friction to a positive drive on shifting the friction to a positive drive on shifting the
gearing from slow to full speed. sphing stipport.-T. J. Fay, New York, Y., and J. M. Fisfortin, Rernardsfille,
J. The invention relates more partleularly specific weans for securing the sprtag sup ports of motor vehleles to the body or chassis. An improved elip is provided in which the securing bolts are formed Integral FIth the main body of the clip so that the breaking of spring will be firmly held at all time
all of the bolts should become broken.
DRAY Wagoy.-G. R. Mclemax, North Yukima, Wash, This invention provides an Improveruent in dray Fagons, sinch as are axle of the Fagon may be lowered by Iockin the wheels to the axle and the waigon when
then moved formardy operates to adjust the then moved forwardly operates to adjust the
maln frame over the axie. In thIs manner the Ioad may be lifted and secured to the wagon.
Note-Coples of any of these patenis will be furnished by Munn \& Co, for ten eents each Please state the name of the patentee, title
the Invention, and dule of this pane

 Notes sest
 ander werinted

the head of this column in the issue of August
yth, or will be sent by mail on request.
(10956) A. H. N. says: If soft coal ashes be mixed with water to the consistency
of mortar and then put in a round oak or other of mortar and then put in a round oak or other
soft coal heater on a good bed of coals and the soft coal heater on a good bed of coals and the
drafts opened, this mixture will burn freely How do you explain this anomaly? A. There is always a considerable percentage of uncon soft coal ashes-even though they mas appea to be free from coal; so that they will have a certain amount of fuel wherever they can be burned without clogging up a fire and choking
the draft. The addition of a moderate quan tity of water to a hot soft coal fire has a curious effect. If the temperature is sufficiently high, the water is decomposed, forming free oxygen and hydrogen, which later reunite at a point usually some distance above the body of the fire in a hot lame. No heat is actually the heat from the coals and give back the same quantity of heat in flame above the fire, often times giving the appearance, however, of makflame is desirable, as in fire under a steam boiler, it is a common practice to wet the coal
before firing it, for this reason. These facts will probably help you to explain the phenome(10957) M. F. S. says: 1. Would you kindly explain the real meaning of the word "watt"? One says that a 16 -candle-power
lamp takes 56 watts, say 60 watts for convenience, per hour. If it takes 60 watts per hour, it should take 1 watt to light it for 1
minute. Yet we all know that it takes the full minute. Yet we all know that it takes the full
60 watts to light it even for one second. A 300-watt dynamo does not give 300 watts per
hour, it gives them all the time; if such a dynamo were connected with a watt-meter, would the watt-meter register 300 watts after an hour? A. A watt has no reference to time. It is the unit of electric power. And just as hours, or any other time and is the same horsepower, so the watt is the same for any time.
If a lamp requires 60 watts to require the 60 watts 60 watts to light it, it will as for a whole day. What is paid for on the watt-meter is the watt-hours. If 1,000 watts are used for one hour, that is a kilowatt-hour ; and if for ten hours, the consumer must pay yor ten kilowatt-hours. This too is Just horse which might do a horse-power of work, he will pay for the same horse working for the
entire time which he does work. The idea seems simple. 2. Does the sun have any direct influence upon the weight of objects on the
earth? Example: Will an object be theoret earth? Example: Will an object be theoret The weight of objects does not vary from noon
midnight becaúse of the position with refernce to the sun. The change of distance from ith the in that time is so small as andared of no value at all.
(10958) F. G. S. asks: Is there any imple formula for calculating the power of a and E. M. F. of battery are known? Will this formula apply in the case of a solenoid? A. The tractive power of a magnet is found by the
$T C M \vee A$ $2661 L$ Hend T is he number of turns of wire, C the current in ore, A the area of pole pleces, and l the mean without tron the permenbility for a solenold permeability of the alr is the standard of cornpartsorn, a ard hernce is unity. For a stratght coll the result will be of little value because of the great Ienkage of lines of foree, and the
great Ienigth of the circult of the Inves In the
(10959) J. H. S. asks: The difference Hetween the work a tox folnch engine is capFould do, both engetries rumiring equal speed, With valye lifts, compression, und all condi-
thonis beltog equal. The direct argument Is that fowo cars were bullt identical with the exception of the motor, ore to be a 5×5-treh and the other to be a 5×6-Ineh direct can-
nected, or in other words one-to one sped, nected, or in other words one-to one specd,
which car Fould be the fastest prowided they were dilven to their limit? Also, would you pould have to run in order to develop the same horse-power as a 5×6 trich; ulso what relaof a motor. This last subject is one which seces to be very poorly understood; and while the writer is weII aware just what relation to
does have, we would ifke to have you give us an explanatlons of the matier, A. If we may hate your Inst question first as the simpler, Lafe relation of platon speed to horse-power Is
exactly the same Irn an Internal combustlor engine as in a stearn engine, 1 . ε., Increase of pistorn speed Indicates elther decrease of load or increase of power gererated in exactly the
same proportion in one as in the other. Your first questlur carmot be quile as posittively an-
swered, for the reason that indicated horsepower has not quite the same relation to brake pansion engines, partly, if not principally, for the reason that whercas in the latter the dif-
ference is entirely fretlon in the engerie, In he former It Includes overcompng of inerila
in the three "dend" strokes Including compres ny later mas. Foment instance, an ignition at
mon the d point do creases the aren of the card, from which, if cowpiete analogy with steam engine indicasumed, whereas it is found in practlee that retarding the lgrition up to a certain point in-
cereases the power measured on the bralse. As creases the power measured on the brake. As engine at the same R. F. N. would depend mon only two interdependent variables, the Would be a slightly higher press re Iri the 5×6 ofture ignition, on account of a larger volume
pas having been inspired and compressed into the same space, but this may be neglected. For the purposes of calculation we must sup-
pose the lgnition to be at a point 1 inch from he beginning of the stroke In both engines, as Whthout hnowledge of the period of igntiton we cannot otherwise calculate the relative vol-
umes to which the gas expmids. In the for mula $\frac{\operatorname{plan}_{33,000}=H . \text { P., } p \text { in the } 5 \times 5 \text { engine }=~}{\text { l }}$

$\sqrt{p_{1} \times}$

$\sqrt{p_{1} \times \frac{\bar{m}_{6}}{6}}$

$l=$ In the intst case, $\frac{5}{2}$ and in the second $\frac{6}{12}=\frac{1}{2}$
Therefore: H. P. of 5×5 engine: H. P. of 5×6

$\frac{5}{12} \sqrt{\frac{\pi i v}{5}}: \frac{1}{2} \sqrt{\frac{4}{6}}$

$=0.186: 0.204$; that is to say, the 5×5 engine has roughly 90 per cent of the powe
of the 5×6 at the same speed, and must there fore run about 9 per cent faster under the same load to deliver the same power as the figure, which cannot be obtained without careful test by both indicator and brake, but it is fair approximation, sufficient, we hope or your purpose. The inaccuracy lies in the determination of the ratio of expansion.
(10960) A. L. T. asks: Will you be so kind as to inform me if it is possible or im-
possible to make a so-called permanent magnet out of a pure soft iron, i. e., a magnet, for ex ample, similar to the steel horseshoe magnets as now made? Can a permanent magnet be made out of any iron? I do not refer to the residual magnetism remaining in the field mag nets of a dynamo when not in motion. A Any iron or steel which has once been mag except by heating it red hot. Its magnetism is then destroyed. Good soft iron, cast o
netism after the magnetizing force is removed. The retentivity to which you allude is the
same property in steel as in iron. The field magnets of a dynamo, when of iron, retain little ; when of steel, retain more magnetism. A hard steel retains so much that it is called a permanent magnet. It, hawever,
tain full magnetic saturation, but loses considerable magnetism very soon after the mag-
netizing force is removed from it. It is strongnetizing force is removed from it. It is strong-
est just after it is magnetized. From the above est just after it is magnetized. From the above
it will be seen that a magnet cannot be made of iron whic
(10961) M. C. asks: 1. How long an exposure would be necessary to make a lantern slide, by having a negative in contact
with a plate in a frame? Exposure by candie or lamp light. A rather fast plate being used, for instance, a framer Banner x . The time of exposure for a lantern slide depends upon the density of the negative, the if you are in doubt draw the slide and ex-
pose one-quarter of the plate at a time till the whole is exposed. Then develop and find which part was correctly exposed.
lantern slide plate should always be lantern sllde plate should always be used for
the positive for a lantern sllde. Such plates the positive for a lanterr sidie. Such plates
are made by all manufacturers. Y.ou .will have to get the time of exposure by experi-
ence. 2. Which in your opplinoin gives the
best best negathe technicaliy-the tank or time
method, the tentative method, or the Wat kins factor method? A. Personally we do
not like any of the methods of developing not like any of the methods of developing,
you mention. We always use a dark room, and watch the progress of the development.
We have no decision to give upon the tank time, or any other method. With a correc good negative ; without that, no method can ring forth a fine result.
(10962) J. R. D. asks: If agreeable, will you kindly advise what metal has the
most expansive property when subjected to most expansive property when subjected to
heat, and also state to what extent quicksilver or mercury will expand by heat, and whether or not quicksilver expands more by heat than does water? A. We give you the rates of ex-
pansion of several of the metals which expand pansion of several of the metals which expand
most rapidly by heating: Potassium 0.000249 sodium 0.000218 , mercury 0.000182 , indium 0.00014 , cadmium 0.000094 , lead 0.000088 , aluminium 0.000070. Mercury expands more
than water does for the same change of tem-
than water does for the same change or the rate of
perature near the frezing point. The rate expansion of water as given in the "Physico
Chemical Tables" of Castell-Evans is 0.0000644 All the figures we have given above are from the sam
thority.
(10963) T. H. P. asks: Is there any magnetic rod, or anything of the kind in use, I get one? A. There is no possible means of locating gold or silver ore by magnetism. Mag
netism has no effect whatever on either of these metals, and any claim to locate deposits
in the earth by a magnetic rod has no basis
(10964) P. G. P. asks: Please tell me what is the nature of phosphorus? Can it be
sept in a sealed bottle indefinitely? Will it kept in a seated bottle indenitely indity
retain its ilight-giving properties indefinitely?
Will heat affect it? A. Phosphorus is one of the elementary substances, Just as iron and
lead are elements. It does niot give light when it has been shut up in a bottle for some
time. It can be kept under water anywhere. So long as it is kept away from oxygen it can-
not give light or take fire. If the oxygen the air has access to it it, it grows hot and takes fire. lts light is due to the slow combustion of the phosphoru
it to glow in the dark.
(10965) D. L. asks: 1. Kindly explain through your magazine how, by experimenting
with a pendulum, it has been calculated that
the gravity force of the earth is 289 times as the gravity force of the earth is 289 times a
great as the centrifugal force at the equator A. The force of gravity at any place is deter-
mined from the trime required by a pendulum of mined from the time required by a pendulum or
known length at that place to make one oscilla known length at that place to make one oscilla
tion. The centrifugal force of the earth at the equator is determined from the length of the day, or the velocity of rotation of the earth a
tor 1 is 32.0902 . Hence if there were no centri the equator, this amount. The force of gravity at the equafugal force, the weight of a body would be the sum of these two, or 32.2014 , which is the real
mass of the matter of the body. Hence centri. fugal force lightens a body $0.1112 / 32.2014$ which equals $1 / 289$ very nearly. You can find all these matters demonstrated in the library

- of the university of your city. The librarians Will assist you to find what you need, or the prou. Watson's "Theoretical Astronomy" will contain it. 2. From an infinite or very great will a ttract a body with an ultimate velocity of 7 miles a second at the moment it would
strike the earth. How can I find the corresponding velocity with reference to the sun
and the moon? A. You will find the solution and the moon? A. You will find the solution
of the problem of fall from inninity in Watton as above, or in Youngs seneneral Astronomy,
Section 429. We can send you the book for Section 429. We can send you the book for
$\$ 3.25$. . If we imagine a tunnel through the
earth.
long), then letting a body fall into it, what
would be the maximum velocity, and at what point in the tunnel would that velocity be at-
tained? A. A body falling through the earth as you describe will have its highest velocity a the center of the earth. The finding of the
velocity is a problem of analytical mechanics, to which we refer you. 4. If a bullet sent out will reach a height of one mile, how far would it go at an angle of 30 degrees with the hort it go at an a
in a vertical direction, it will rise to the same distance when rising at an angle of 30 degrees
to the horizon. \quad. What would be the weight of a cubic foot of water at a depth of 8 miles A. The compressibility of sea water is 44 mil.
lionths per atmosphere at 12 deg. C.; that of pure water at the same temperature is 47 mil Honths, while at the freezing point it is 50.3 mil ably as we descend in water. Upon this datum you can calculate the density at a depth of 8 miles. We must say that your questions r mind us of an examination paper in co.
and we never liked to take examinations.
(10966) G. B. asks: In projecting a lantern slide upon a screen with a single doube convex lens the ines on the picture, ever, the observer goes back ten or twenty feet more from the screen all this color effect im-
mediately disappears. Will you please explain mediately disappears. Will you please explain
why this color effect is not equally visible at Why this color effect is not equally visible at
this distance? I understand, of course, if a chromatic lens is uned there will be no such color effect. What I do not understand is you cannot see it equally plainly at 10 feet, although all the other parts of the picture are equally visible at either distance. A. The lines or a picture are visible to the eye when a line
subtends an angle at the eye of about a minute of arc. This is the limiting angle of vision
without optical assistance. When one stands without optical assistance. When one stands one foot from the screen on which is a pic-
ture with lines projected by an ordinary convex lens, the lines fill more than this angle. So of the lines. At 20 feet distance from the screen a space twenty times as broad is re-
quired to fill the same angle as was filled by quired to fill the same angle as was filled by a line at one foot distance from the screen.
All which is in the wider space is combined in the eye at 20 feet into an image of the same size as was occupied by the line at 1
foot. The color fringes then are combined into White light again, and only the black is seen. If one uses an opera glass at 20 feet the
colored fringes are restored and are as visble as at the 20 feet divided by the magnifying diameters the lines and fringes appear as when seen at a distance of 4 feet. The restoration
of the colors by the opera glass constitutes
(10967) R. D. F. asks: Would you sindly answer these questions? Why will a rainbow form a half-circle at sunset? Why
does a rainbow usually show less than a half ircle? Why would a bow form a complete circle seen from a balloon? A. A line drawn
through the center of the sun and the eye of the observer passes through the center of the bow. An angle is formed with this line, the ngle of 40 degrees from this line in at an direction violet may be seen, and at 42 de-
grees from this line red may be seen. It should be obvious that all the points which are at the same angle from the axis will hie
on the circumference of a circle. The rainbow is for this reason a circular arc. When the sun is on the horizon, the axis will be in
the horizon and a half circle is above the orizon whose other half is below the horizon. If the sun is high in the heavens, the axis ine will go below the surface of the earth before it reaches the horizon, and the part of
the rainbow seen will be less than half a circle If one is upon a mountain top, so that the axis extends far out above the horizon, more than
half of the circle of the rainbow will be seen alf of the circle of the rainbow will be seen,
and from a balloon it is possible to look down upon a cloud and see a circular rainbow. or the whole of the bow. Looking down upon
the spray of Niagara Falls, one may see more he hun's a circle of a ralnbow formed by
(10968) W. W. asks: What is the cientlfic explanation of the fact that if an egg is held between the hands and compressed
along its longitudinal gaxis it is almost in capable of being crushed, while a pressure on trary and expected result? A. The ends of an
and eggshell are domes, and are filled with an in-
compressible liquid. If these domes are fitted nto the soft palms of the hands, and pressur evenly applied to the shell in the direction of
its longitudinal axis, it will require considerable force to crush the shell. The liquid contents soft palm sort palm prevents if from bursting outward
The part of the shell which is not covered by the hands is very nearly a cyllinder, and a o resist crushing.
(10969) A. E. S. asks: Kindly advise an electric doorbell circuit can be formed
tance of two blocks. Also the formula for the solution of saltpeter used in dosstroying thee
sumps by boring a hole and allowing the fuid stumps by boring a hole and allowing the fiuid
to remain all winter and in the spring pour remain all winter and in the spring pour-
ing in kerosene and setting afire. A. An elec ng in kerosene and setting afire. A . An elec-
tric circuit can be completed through the earth cor any purpose. Make a good ground at each别 of the line in water or moist earth, and used. There is no formula needed for using altpeter on a tree stump. Bore deep holes in the stump, fill them with saltpeter and then
ith water, and plug the hole. This is done t any'time. After six months or longer open he hole, fill it with kerosene oil, and set this on fire. The saltpeter causes the fire to smoul (10970) R. R. asks: Will you please sor the following question in physics for me? What is the difference, if any, between he diference whit? For instance, what is 10 pounds weight; or between 10 kilogrammes ass and 10 kilogrammes weight? A. The mass a body is determined by the quantity of
natter the body contains. Any body has an invariable mass. The weight of a body is not ravity but is affected by the force mass, 10 pounds of lead, for example, will be the same all over the earth, but it will not
weigh the same. It is customary to consider the unit of mass as the weight at a place Paris, France, the intensity of gravity is 980.96 \mathbf{m}. The weight of a body at Paris is then
$\mathbf{9 8 0 . 9 6}$ times its mass. Mass is defined a weight divided by gravity; or weight at an place. Gravity at Washington is 980.10 . (10971) R. R. S. asks: 1. Would nan standing exactly at the North Pole or twenty feet from the Pole be sensible of the
earth's rotation from west to east? A. A man at or near the North Pole of the earth would see the stars move in circles, clockwise, sensibly ing. The sun would without rising and set the moon once a month. While above his hori the sky. In this way the earth's rotation on its axis is just as sensible to a man at th Pole as to one at any other point of the earth.

2. Why does the moon rise farther in the north in the winter? And why does it appear neare moon rises at the same points of the horizo every lunation. Half of its month it is north of the equator and half of its month it is south of the equator. We only notice the rising of
the moon when it is near its full. The full moon is always opposite the sun. In winte the sun is south of the equator, and full moon
is north of the equator, in the same part of the is north of the equator, in the same part of the
sky where the sun is in summer. Hence the full moon runs high in winter. The moon does not appear nearer the zenith when it is near of the moon since new moon occurs in all points of the orbit in each cycle of the series.
3. How long does it take the sun to make a rotation? A. The time required for a spot to pass from the center of the sun around to the
center again is on the average 27.25 days. This the synodic period of the sun's rotation The true, or sidereal period, is determined ers obtain slightly diferent results, varying ers obtain slighty diferent results, varying
from 27.23 days to 27.38 days. The sun's rotation is very peculiar in that the velocity is
not the same for diferent latitudes. This would show that the surface of the sun is not
solid, but in a fluid condition. This is discussed in Prof. Young's book on the sun, which we send for $\$ 2$.
(10972) W. F. J. asks: Why does charge of electricity (static) pass to the outconductor were a solid would the charge pass to its outward surface also? A. A static charge of electricity is on the surface of any conductor, solid or hollow. The reason is the self-
repulsion of the parts of the charge for its own parts. Each unit of electricity is as far ity. 2. Why is there no lightning in electric A. There is lightning in winter. We have chusetts, lighting the snow to the greatest brilliancy. It is not a common occurrence. 3 . dynamo a loop? A. The external characteristic curve of a shunt-wound dynanio is a loop because of the fact that all the current goes
to the flelds when the external circuit is open. The voltage is then the maximu but there closed the external resistance is high and the field coils now begin to receive current, which weakens the voltage. As more and more current passes through the external circuit, less current passes through the field. A point is esistance takes so much from the field that the E. M. F. falls more rapidly than before and coint both current and E. M. F. fall steadily oint both current and E. M. F. fall steadily
to zero by cutting out resistance. See Sloane's Handy Book for Electricians," which we send
(10973) M. E. B. asks: The writer Would like your advice on the most promising
line of engineering that a man might take up line of engineering that a man might take up,
the line with the biggest future. I have been
a salesman for the past four years, but don't seem to be able to realize more than two take up some branch of engineering. I graduated from college as a chemist, but in my experience it is one of the poorest paid of the mechanics, I have been considering taking up structural steel or electrical engineering, but not knowing the line that gives the most promise I would ask what do you suggest, and would it be more profitable to take up a not able to give advice as to the line of work man should take up, not knowing him peronally, excepting to say, take up what you like best. No one can say whether steel conall anl depends upon the man. If he can push himon a salary at either in the employ of a company will hardly pay any better than employ 5 a mercantile company. To make money in either line one must be able to take contracts and get the profits of them. You are the best and only judge of yourself. Decide
the line you want to take up and push into it. (10974) J. A T. writes: Would you ndiy tell me where and how I can obtain in mining methods? Anything in regard to cost and places where this method is pursued will be appreciated. A. You will find instructive articles on hydraulic placer mining in our SUPLLEMENT Nos. 455 and 1281, and we can also recommend the "Hydraulic Gold Miner's
Manual," by T. S. G. Kirkpatrick, $\$ 2.25$, with Manual," by T. S. G. Kirkpatrick, $\$ 2.25$, with which we shall be pleased to supply you.
California is the principal scene of hydraulic mining in this country, but the valleys of the dining in this country, but the valleys of the placer gold have frequently, if not generally, preceded those of lodes in the hills. It is being superseded in many places by dredging, which facilitates the excavation of gravel from places where hydraulicking is impossible, on
account of the difficulty of disposing of tailaccount of the difficulty of disposing of tail-
ngs. By the latter method gravel may be ings. By the latter method gravel may be
excavated and washed at a cost so low that excavated and washed at a cost so low that
gravel carrying gold values of five cents to the ton have been made to pay.
(10975) E. L. says: Does the wheel n the outside rail revolve oftener than the wheel on the inside rail? If not, why not, recognizing that the outside rail is longer than
inside rail? A. We would say that the wheels on a steam railroad car or locomotive are igidly attached to the axle, and therefore have of speed. The outside rail, however, on a curve s longer than the inside rail. This makes a certain amount of slippage between the wheels and the rails unavoidable when going around
curves. The wheels, however, are somewhat larger in diameter near the flange than they re a few inches away from the fiange, and the tendency is for the fiange to hug the wheel as it is rounding the curve is rolling on wheel as it is rounding the curve is roling on wheel. This tends to decrease somewhat the
amount of slippage there would otherwise be. (10976) J. H. S. asks: In a great any electrical books and articles on elec tain piece of apparatus is stated, but the oltage is not mentioned at all. How are we to determine the number of watts consumed the voltage as well as the amperage is not
tated? I notice in the "rules and require ments of National Board of Fire Underwriters' they give the carrying capacity of wires in
amperes alone. How are we to know whether amperes alone. How are we to know whether
the capacity they state is for 50 or 220 volts? In field winding we are told so many ampere turns are required per square inch pole face urface for a certain density. How are we to do not know how many amperes are going to low over the wire when wound? A. It has been our experience to find both the volts and and kilowatts dynamo or motor, or the volts carrying capacityen on the name plate. The because it is amperes which given in ampere carry and not volts. The amperes heat the wires, and not the volts, and the higher th voltage the finer the wire required to carr to the Fire Underwriters, of no importanc the rules for wiring as they do for differen voltages. The safety of people from shock depends upon the voltage and not upon the amperes. In the winding of a dynamo the determined by the magnetize a field has been amperes and the size of wire to carry them When he determined the size of the magnet chine. Hence the ampere turns are the ma(10977) A. B. wishes to learn more about lunar rainbows. A. Some of the correspondents of our paper who have reported up-
on lunar rainbows of late seem to be confusing two phenomena which are very unlike and aue to entirely different causes-the rainbow rain from a cainbow is due to falling point of the horizon from the sun or moon very high ahove the horizon and have a
long arc of the bow visible, not over 42 deg.,
at which angle none of the arch would be
sunset. In a primary bow the red is on the sunset. In a primary bow the red is on the the outer one has the red on the inner side of the arch. If a bow is formed by the moon-
light at night, the colors are very faint, and light at night, the colors are very faint, and
very rarely or never can more than three colvery rarely or never can more than three col
ors be distinguished-red, yellow, and green. ors be distinguished-red, yellow, and one is fortunate to see one. The writer has seen
two in forty years. They are doubtless two in forty years. They are doubtless but are so faint as to escape notice. Halos, on the other hand, occur frequently, and are seen without any difficulty in the vicinity of both the sun and the moon. The rings of col ored light, seen close to the sun and the moon, or nearer than 10 deg., are called coron* The smallest halo has 22 deg. radius, or about waif that of the primary bow, but it is a ring with the sun or moon in its center. It sur
rounds, when seen fully, the sun or the moon A halo of 46 deg. radius and one of 90 deg. seen, which pass through the sun or moon and are parallel to the horizon. Where these circles cross the circle of the halo, we sometimes see so bright a spot of light that it is called a mock sun, or sun dog. Complicated figures are sometimes formed by the crossing of these circles. The halo of 90 deg. is very but one. Halos are always at a very great height above the earth's surface, so high that water cannot exist, and the halo is formed by als of ice. They are signs of a storm, sinc they indicate the saturation of the upper air and the lower air will soon be affected. These are not discussed very fully in recent mete-
orologies. The reader is referred to Loomis's orologies. The reader is referred to Loomis's
"Meteorology" for much interesting matter up"Meteorology" for mu
(10978) M. D. S. asks: I desire to se cure the formula of the solution for making blue prints; how to apply it to the paper, and how to develop and finish it, after printed
Can you inform me of any book treating on the matter and where to procure it? A. To make solution for blue-print paper, make 5 ounces of water; also a second solution o 1 ounce of citrate of iron and ammonia to 5 ounces of water. These two solutions will
keep indefinitely in separate bottles. To prepare the paper, take equal parts of each solu on and mix them. The mixture is sensitive o light, and the rest of with work must be in' the solution cover the paper by passing wise of these, so to have an even layer of liquid all over the paper and yet not enough o flow or drip. The paper is hung by a pin in the dark to dry. It is then ready for printing. After printing in bright sunlight, the picture is developed by putting it under
water. Wash thoroughly till the white parts water. Wash thoroughly
of the picture are clear.
(10979) W. K. asks: 1. What action (chemical) does zinc chloride furnish in a dry
cell? Sal-ammoniac? Does manganese furnish cell? Sal-a mmoniac? Does manganese furnish
any action besides its depolarizing effect? A The zinc chloride does not exert any chemical action in a dry cell directly; that is, the ac mmoniac) is to form zinc chloride. The zin salts put into a dry cell serve principally to keep the paste porous and moist, since these have a strong affinity for water. Manganese
dioxide serves simply as a depolarizer in a dry cell, as it does in a wet cell. 2. Does high initial amperage increase life of a battery, o The amperes of a cell depend upon the exter al resistance, and there is no propriety in giv ing amperes, unless it is stated also against hat resistance the amperes are flowing. If large number of amperes are drawn from a cel at first, the cell will be shorter lived than if a low amperage is drawn. A cell will have a certain number of ampere-hours of life. It 100 ampere-hours, the cell will last approxi mately 100 hours if 1 ampere is the rate of current, but only 10 hours if 10 amperes be
drawn. This law is as true of dry as of we cells. 3. What do you consider best type of wet and dry cells on market to-day for tele phone service? A. We have no judgment to
give as to the best dry or wet cell. We presume there is no cell which deserves such a distinction. There are many reliable houses offering cells. We presume your local dealers are reliable, and that you are safe in taking their advice. We do not advertise in Note consulted, and we think our advertisers are unusually reliable. We doubt if there is any such thing as a superlatively best thing of an kind. We are not willing to say that there is 4. In gas and gasoline engines, what affects the life or service of the batteries? A. Ther is nothing very peculiar in the service a bat tery performs on a gas engine, except the regu larity of its action. It wears out as any other battery does by the work it does, and rather it is called upon for current. It is a popula mpression that a battery should last indefinitely, but really it is like any other source o power. It can only give back the power which is given to it, and when that is done the battery stops work. No one is ever ready to have
the battery stop. Few understand that a bat tery uses up materials as an engine uses up coal. So much zinc and chemicals, so much
electricity. It is a slmple matter.

NEW BOOKS, ETC.
Arts and Crafts in the Middle Ages. A Description of Mediæval Workmanship in Several of the Departments Account of Special Artisans in the Early Renaissance By Julia De
Wolfe Addison. Boston: L. C. Page \& Co., 1908. 8vo.; 378 pages. Price, $\$ 3$.
The very general and keen interest in the sign full of promise and pleasure to those who are working among the so-called mino look into the past, particularly those centuries known as the Middle Ages, in which the handicrafts flourished in special perfection, and to see for ourselves how these crafts were pursued, and exactly what these arts really the arts and crafts of the olden time, which are adapted to inform those who have no intention of practising such arts, and yet wish which erstand and appreciate the examples which they see in numerous museums or exhibitions, and in traveling abroad. Mrs. Adby a large class of readers. "Arts and Crafts in the Middle Ages" is not merely a beautifully illustrated "art book." It is a valuable work, destined to fill a special niche in
the library of books which are worth while. Marive Piouneriva Engineer-Commander A. E. Tompkins, Royal Navy, London: Macmillan Company, 1908. 8vo.; 812 pages Price, $\$ 4.50$.
The writer was until recently instructor in steam and marine engineering, marine construction, etc., at the Royal Naval College, Greenwich, England. All those who go down the sea in ships have a profound respect world of the great vessels. It is more than world of the great vessels. It is more than tail the marine engineer has under his control. Even to those who are moderately fami liar with marine practice, this book will prove a revelation. It is filled with the most valuable material. The illustrations are numerous,
well executed and, as far as we can see, they are new. Engines of all sizes and descriptions are dealt with as well as auxiliary engines, pumps. pumps. Great attention is paid to the pro into consideration. Electrical machinery comes in for a fair share of attention. Boiler pres ervation and repairs, care and adjustment of machinery, the engineer of the watch, are all adequately dwelt upon. The subject of marine steam turbines is very well discussed, and
the very latest practice, as the engines of the the very latest practice, as the engines of the
"Mauretania" are outlined. Internal-combustion engines for boat propulsion are also in cluded. The entire book has been rewritte and revised, and forms a complete text book gines and boilers.
Internal Combustion Engines. Their
Theory, Construction and Operation
and H. D. Diederichs, M.E. New
York: D. Van Nostrand Company,
1908. 8vo.; 597 pages. Price, $\$ 5$.
This is a very well-made book and the in ention of the authors in its preparation ha een to present in as simple terms as possible he fundamental and theoretical principles re lating to the internal combustion engine, and to describe the various methods of applying book does not in any way treat of the proporon and strength of the various machin nt sources and is, in the main, an outgrowt of a course of lectures on the internal combus
tion engine delivered to students of Sibley years. Th hermo-dynamics of the gas engine, the theo retical comparison of various types, combustypes of internal-combustion engines, ignition, types of internal-combustion engines, ignition
muffers, starting apparatus, estimation power of the gas engine, methods of testing internal-combustion engines, and performance gas engines and gas producers, cost of treatment. One of the most peculiar-looking engines in the book is the Sargent complete
xpansion engine. It is built as a double-act ng tandem. There is but one valve to contro dmission and exhaust for each end of each pases while a second cam operates the igniter The construction is radically different from that used by other designers.
The Motorman and his Duties. By Ludvised and enlarged by Lawrence E .
Gould. Chicago: The Wilson Com-
pany, 1907. 16mo.; 195 pages. Price, $\$ 1.50$.
The purpose of this book is to familiarize the reader with the operation of an electric car. technicalities and mathematics many points not generally understood by the average emloyee who has to do with the operation of a great electric railway rolling stock. Such
knowledge cannot fail to make his services
factory to himself, and fit him for promotion.
parts of an electric motor car, but to give some desire to make the handiling of cars their live ihood. It is based on experience gathere during a number of years in the electric rall and work and on results and observations made on operating roads.
Motor Car Principles. The Gasoline Au tomobile. By Roger B. Whitman
12mo.; 318 pages. Price, $\$ 1.25$ net postage extra.
As the technical director of the New York School for Automobile Engineers Mr. Whit on the mechanical principles of the motor His little volume is primarily intended or the man who is not endowed with over to learn all that he can about his car. For that reason Mr. Whitman has written his not strain the mind of a man who is not trained engineer. The book is divided int hirteen chapters, in which are discussed gas oline engine principles, engine parts, engine balance, 2 -cycle engines, carbureting and gas ine feeds, ignition, transmission, running gear, the location of troubles and maintenance and construction
American Machinist's Handbook and Dictionary of Shop Terms. By
Fred H. Colvin, A.S.M.e., and Frank Fred H. Colvin, A.S.M.E., and Frank
A. Stanley. New York: Hill Pub ishing Company, 108. 18mo.; 51
pages; full leather limp. Price, $\$ 3$ It is with a feeling of confidence that we
open this handsome little pocketbook, for the American Machinist has always stood, for th racy and reliable shop methods. The for accu filled with good diagrams and tables. We al ways welcome an accurate pocketbook as it is always certain to cut down trying menta machine shop practice. It is worthy of maod sal
Small Holdings. By F. E. Green. Lon don and New York: John Lane Com-
pany. 16 mo .; 122 pages. Price, $\$ 1$ pet.
The author has written of conditions which obtain in England, but at the same time it will prove of great interest to those who have tails places of say 10 to 2 aces. Full de The book is charmingly illustrated with en gravings printed in duotone.
Notes on Practical Mechanical Draw
Carlos L. McMaster, B.S in C.E.
East Lansing Mich. Published b the authors, 1908. 8vo.; 160 pages. Of making books on drawing there is n end. The present work contains some unique eatures, such as machine sketching, which is
most admirably treated. The section relating to lettering is also good.
A Short History of Engraving and Etching. For the Use of Collector and Students. By A. M. Hurd. Bos
ton: Houghton, Mifflin Company, 1908. vo.; 473 pages. Price, $\$ 5$
beautiful book, illustrated by 110 engrav ings and a frontispiece in photogravure. Ther is a full bibliography and a classified list and ples is well made. The extensive classified Collectors will hail this book with of patight. Kbaft. By Prof. Dr. E. Reyer. Leipzig: 1908. 8vo.; 380 pages. Price, $\$ 1.50$

INDEX OF INVENTIONS

 For which Letters Patent of the United States were Issued for the Week Ending October 27, 1908,AND EACH BEARINGTHAT DATE [Seenote at end of list about copies of these patent..]
 902,023
902,177
902,174
902,157
902,125
901,954
902,182
902,163
902,182
902,183
9
902,077
902,499
902,255
902,073
902,046
902,508
902,057
902005
901,956
901,993
902.511
902,294
902,095
902.058
902,214

