RECENTLY PATENTED INVENTIONS.
The Inventione doscribed in this Departmont were Patonted through
Scientifio Amorican Patont Agency.

Electrical Devices.

electrosonator.-R. Sakamoto, Tokyo, Japan. The device relates to sound trans man body to an internal organ. The sound is produced by a vibrator operated from an electromagnet. In use the examiner who lis-
tens through a stethoseope applied to the body near the sound-producer may deter mine the exact position, form, and motion the internal organ of the body, as well as
accurately determine any dislocation, enlargeaccurately ditermine any dis.
ment or disased condition.

of Interest to Farmers.

PROCESS FOR EXTRACTING HONET.L. W. AVANT, Atascosa, Texas. By means of this invention the honey may be extracted
from beehives without opening the hive or from beehives without opening the hive or
materially disturbing the bees, and without robbing the hive of the wax of which the cells are made. The advantage of this is
that it relieves the bees of the labor of gathering the wax, thus economizing time and energy to the gathering of honey.

Of General Interest.
waterproof fuse cap.-T. m. Danrexis, Valdez, Alaska. Thls cap is adapted to be attached readily to the end or the fuse
in a watertight manner. Its design is such blasting which miss-lifes ${ }^{\circ}$ mue to the fact that the explosive in the cartridge becomes wet.
MATTRESS.-F. A. Kaiser, Scranton, Pa. As usually made it is difficult to fill the edge with the stufing or filling material so that
the "roll edge" is uniform. In the present invention a separate strip of felt, cotton bat ting, or the like, is provided, which is placed along the inner surface of the covering and
through a portion of this strip, after the through a portion of this strip, after the
roll edge is formed complete, the main body roll edge is formed complete, the main body
of the stuffing or filling material may be inserted in the ordinary manner.
lock for bag frames.-LL. b. Prabar, tion is to provide a lock in which the thumb piece of the latch is formed integral with the body of the latch, and extends through an opening in the side of the casing. The casing is so formed that the thumb piece may
be readily removed to a position parallel to the bag frame, but further movement is pre-
vented by engagement of the thumb piece with vented by
the casing.
mOTH ball holder.-G. Thompson New York, N. Y. This moth ball holder is adapted to be attached to the frame of an
upright piano in a position above the action, upright piano in a position above the action,
and without interfering therewith. The holder
will retain the will retain the ball until all not the felt thu action from the moths, but to prevent particles
case.
SPool CaSE-C. J. Alpren, New York,
$\mathrm{N} . \mathrm{Y}$ This case is adapted to be applied to a work basket and is so arranged as to per-
mit the free withdrawal of the thread, but mit the free withdrawal of the thread, but it
will frictionally bind the same and prevent will frictionally bind the same and prevent
its unwinding except when intentionally pulled its unwinding except when intentionally pullee
out. The device is provided with a cover Which grips
FAN.-E. Goosch, New York, N. Y. The fan is of the rotatable type for hand use Thich may be rotated by reciprocating thumb piece which projects from one side the fan handle. The object of the invention
ts to enable a person to fan himself with litis to enable
tle exertion.
circular back for cameras.-E. l Hall, New York, N. Y. The purpose of this ble to almost any type of camera by mean of which a plate holder may quickly and read ily be shifted from one position to anothe
without removing it from the apparatus.
Stevedore rig.-J. Knoppri, New York, N. Y. The object of this invention is to en able the cargo to be not only lifted out of the hoister line. This object is attoined by peculiarly rigged gaft along which the hoiste line runs and by means of which the hoister
acts first to lift the cargo out of the hold and then to swing the gaff and its load side wise over the dock.

Honsehold Vtillites.

CLES.-ECTION FOR WATER RECEPTA vention is particularly adapted to provide connection suitable for laundry tubs which
will furnish suitable valves independent of each other for directing hot or cold water both, through a single outlet into the tub. WINDOw
mere, N. Y. The invention
Helates to
dow locks, providing a type of lock in which
there are two bolts, one for each sash, but in which these bolts are independent of each ther for some purposes,
unison for other purposes
WINDOW-BLIND GUIDE AND STOP.-W W. Broce, Baltimore, Md. In raising and lowering window shades that are wound on a pring-actuated roller, it often occurs that the hade slips out of the hand and files up,
wedging the stick in the bottom hem between the roller and the window frame so that it causes a good deal of trouble to release it.
The present invention obviates these difficulties by providing guiding means and a stop or the shade.

Machines and Mechanical Devices.

MILK PURIFIER AND HOMOGENIZING machine--H. H. Srtussy, Sioux City, Iowa, The invention relates to machines of the class in which milk is passed centrifugally through
purifying and homogenizing media, and in purifying and homogenizing media, and in
which the impurities and the homogenized milk Which the impurities and the homogenized millk
are separately discharged from the machine. In the present invention the milk is conducted through straining media and then hrough an irregularly-shaped conn causes the globules of butter fat to be brik.
up and disseminated throughout the milk.
CANNon PINIon--W. F. Jost, Pocatello, Idaho. The invention relates to horology and has for its object to provide a cannon pinion securely locked to the center arbor to prevent lifting and throwing it out of gear With the minute wheel, to provide true and
ven friction, to carry the hands safely when even friction, to carry the hands safely when the watch is running, and not to interfere with
the motion of the balance wheel when seting. The arrangement allows of placing or
 ing the jewels.
Controlling mechanism.-H. Meyer, New York, N. Y. The invention is adapted mechanism arranged to control independentl the tempo, action, expression, the damper, and
the hammer rail in a very simple and effthe hammer
blacking machine.-E. e. Taliaferro, Colorado Springs, Colo. In this bootblacking arhine a set of brushes are provided which travel around the foot form on which the shoe is placed, so as to effciently polish all withdrawing the brushes to permit of placing the shoe in position. The mechanism auto operations.
Lathe attachment.-A. e. Whiting, eston, W. Va. The invention relates to bor ect is to provide an improved lathe attach ment designed for quickly and accurately centering the work to bring the latter in axial inement with the lathe.
MACHINE FOR UNRAVELING TEXTILE Fabrics.-P. F. Vogsl, Clinton, Tenn. The object of this invention is to provide an inexpensive mechanism to be used in combina-
ton with loopers which join together edges f knit goods. It serves to unravel the sel vage edges of such goods a
raveled yarn upon a reel.
UNIVERSAL INDICATOR.-H. P. BOETTCHER, Jersey City, N. J. This indicator is and machinists' use, operating, when applied o the work, to accurately and automatically show to what extent, if any, the work is out of true.
UNIVERSAL ELEVATING AND LOWER ING DEVICE.-E. G. Gebacer, Santa Fe, New mexico Ty. The construction provided by this ventant position as it maintain a cable uncoils from a rum. The drum is arranged to travel to
and fro as it rotates, the reversing of th and fro as it rotates, the reversing of
travel being accomplished automatically.

Prime Movers and Their Accessories. STEAM SERVICE CONTROLLING AND Chicago, Ill. This invention provides an ap paratus intended for use in connection with steam service plants by means of which to automatically reduce steam pressure to the desired degree, and to record the differences in pressure and the volumes of steam deliv-
ered, whereby to admit of convenient compuation of the horse-power and other condi ons concernon with the steam service
Explosion Engine.-A. W. Cotrrell and M. A. Moors, Douglas, Ariz. Ty. In this explosion engine there are three explosion explosions at every revolution. The chamber being long permit the exploded gases to ex pand to atmospheric pressure before leaving
the engine thus giving more power from a given amount of fuel, reducing the noise o
the exhaust, and acting as a cooling agent to the engine.

Railways and Their Accessories.

SAFETY APPARATUS FOR RAILWAYS.

 -A. BoNOM, New York, N. Y. By providing along the track, and controlling mechanismoperable by these trips on trains going in
either direction, Mr. Bonom furnishes a safety vent two trains from meeting when going in opposite directions on the same track.
JOURNAL BOX, A, Now,
JOURNAL BOX.-W. A. HUFF, Newark, N The object of this invention is to provide a
ornal box of simple construction having im proved means for lubricating the wearin surfaces and for preventing a waste of o from the box by working along the journal The construction tends to keep the oil in clean condition. Provision is made for the
automatic deposit of solid particles which may automatic deposit of so
accumulate in the oil.

Vehicles and Their Accessories
PNEUMATIC TIRE.-H. W. Dover, Holy, ood, St. James, Northampton, England. Th invention relates particularly to means fo principal object is to pr vide a construction which will so hold the tire that the effect the internal pressure will be to cause the tir to become more securely fixed in, position in crease of its diameter as heretofore.
COMBINED VEHICLE
T. C Ch.-D. C. Lassiter, Shelmerdin N. C. The invention relates to that class of moved from the spindle, in order that lubri cant may be placed on the spindle. The object of the present invention is to provide the handling of the whels of the vehicle while lubricating the spindles.

Designs.

CASING FOR SODA-WATER FOUNTAINS -C. F. Powers, Coosada Station, Alabama This patent presents a casing for soda wate fountains including a body portion surmounte jars being arranged in rear of the others, and the smaller jars appearing in a row acros portion, all of the jars being similar in appear ance and having each an ornamental cover
Note.-Copies of any of these patents will e furnished by Munn \& Co. for ten cents each Please statione the name of the patentee,
the invention, and date this paper.
 the head of this column in the issue of Augu
(10921) C. L. H. asks: Can you tell
(10921) C. L. H. asks: Can you tell be used as a blowpipe? I wish to use it to melt small amounts of platinum. A. It is not
dificult to arrange an electric are blowpipe for melting metals or soldering. We should use the current which passes through the car-
bons for the magnet. Put the magnet of a bons for the magnet. Put the magnet of a lew turns of wire in series with the carbons.
Adjust the number of turns of wire and the distance of the magnet from the are to produce the blowing power required. The appa ratus is so simple that no special instruction
is required for setting it up or operating it. (10922) F. B. W. asks: Can you ex plain the phenomenon of the Aurora Borealis? A. We cannot explain the theory of the Au rora Borealis. The most we can do is to state
the view held by the best scholars concerning the view held by the best scholars concerning
it. To begin with, highly heated metals or it. To begin with, highly heated metals or
carbon send out numerous minute particles with high velocities. These particles are called corpuscles, or electrons. They are known to carry charges of negative electricity, and to move with a very high velocity. It is reasonable to regard the sun and other stars at their enormous temperatures as sources of such partcles, which move in mighty streams through the celestial spaces. When such particles as is seen in vacuum tubes. Such luminosity is associated with the discharge from the nega tive electrode of these tubes and has a name "cathode rays." In the upper air these corpuscles from the sun may well be considered to produce luminous effects, such as the auroral light. Arrhenius first suggested this theory of the aurora, but it is now quite gencrally adopted. Duncan's "New Knowledge,
price $\$ 2$, page 238 , gives it in some detail. It is also to be found in Thomson's "Conduction Electricity through Gases," price \$4.
(10923) E. E. asks: How is the focus of a concave lens determined? Is it the radius Please inform half the radius of the curvature? Please inform me as to both plano and double
concave. A. All foci of concave lenses are virtual. For a biconcave lens of glass, whose Index of refraction is 1.5 , with the same radius length is equal to the radius of curvature. For a plano-concave lens of the same glass, the
principal focal length is equal to twice the
cave and convex lenses agree, excepting that
the focal length of concave lenses is negative. The formula for determining focal length of concave lenses is
(10924) W. E. F. asks: What would e the apparatus necessary to charge a storage attery from a trolley wire of an electric railmotor to run say 10 hours; and about what would the outfit cost, and how long would it take to charge it? A. You will require half as many storage cells to run your motor as
the volts taken by the motor, since each cell Will give 2 volts. To obtain the number of amperes you will need, divide 746 by the volt-
age of the motor. This gives the amperes for ne horse-power hour. Multiply this by 5 and equired for 5 horse-power for 10 hours.
(10925) C. C. McC. asks: Do you pubish a work on the construction of voltmeters and ammeters that would enable one to conSuptlement No. 1215, price ten cents, will ive information for the construction of a volt meter and ammeter which may answer your
(10926) W. H. G. asks: 1. Please ive acid used in pole indicator and ground deector and state what size and kind of wire is
ased. A. Make a solution of alcohol, 10 cubic entimeters, phenolphthalein, 1 gramme. Add to thys distilled water, 110 cubic centimeters Make a second solution of sodium sulphate, 20 grammes, in 100 cubic centimeters of water. Soak blotting paper in the first solution, and drain off the superfluous liquid. Then soak
the paper in the second solution and dry the paper. To test the poles of an open circuit, moisten a strip of the paper, and place the ends of the wires about two inches apart upon
t. A red spot will appear around the end of the negative wire. 2. Is .there any way in which a bipolar dynamo can be made to give rent? I cannot run a Ruhmkorff coil because of this, and would like to know if there is any instrument or battery that I can connect in circuit to stop this alternation? A. A dynamo
gives a direct or continuous current when its rmature is provided with a commutator. The same machine gives an alternating current
when its armature is fitted with rings connected to the windings. Either form of dynamo will work a Ruhmkorff coil equally well. If the alternating current is to be used, screw
down the vibrator so that it will not vibrate. 3. Do I understand that in the system of wireless telegraphy explained in Scientific Amgrican of January 4, 1902, there is no Ruhmkorff coll used in the transmitting part,
but just the batteries connected to the earth? A. Yes; but Hertzian waves are not used in his system. 4. What are inductance coils,
and please give an idea of how made? What is a choke coil and how made? A. An inductance or a choking coll is a coil to reduce the current by its induction upon the
current as it passes through it. A second current is set up in the inductance coil, which lows in the opposite direction to the main
current and thus chokes it off, so to speak. 5 current and thus chokes it off, so to speak. 5 .
Please give number of SUPPLEMENT, if you have same, that has plans and working drawIngs for constructing small gasoline motor
A. See Supplements Nos. 715 and 716, for construction of gas engines, 23 figures, 10 cents by mail. Also a book on "Gas Engine
Construction," by Parsell and Weed, $\$ 2.50$ by mail.
(10927) D. A. H. asks: Have scientists generally accepted the theory that the lectric current does not flow through a wire ric follows the space around it? A. An elec lows through the material of the wire, flows in he wire, and also sets up a magnetic field around the wire. In this field a magnet is at racted by the lines of magnetic force. When an electric current hows with a varying inten sity, either increasing or diminishing in inten rush and as suddenly dying out, then electric aves are thrown off into the space around the ire, it may be with great force, so that they are sent many miles. It is these waves which
are used in wireless telegraphy. They are not in the wire. The wire is but a core or center around which the waves whirl with
remiendous energy. We are but beginning to learn their power and value, and have no yet harnessed them and broken them into our cle entitled "Humidity and Heating sys ems" in rour ScipmiFic AmgPTang sys it that the humidity of the air in the house heated by artificial means is so much less than that outside? Does the air lose any of it moisture by being drawn into the house and heated? A. The humidity spoken of is not th amount of moisture in the air, but the per entage of moisture as compared with the ota at that temperature. Air saturated with moisture is said to have 100 per cent of hu midity. The whole name is relative humidity which expresses the meaning better. It is the moisture relatively to complete saturation Now, the capacity of the air to hold moisture varies greatly with the temperature. In a summer morning fog may lie thick over the
earth, because the air was saturated with
moisture, and the excess of water appeared
as fog. The sun rises, warms the air and the oog disappears. Why? Not because there is any less moisture in the air than earlier, for the dew and fog will come again at nightfal
and last till morning probably; but because a and last till morning probably; but because at the higher temperature of midday the air can
carry more water in the condition of invisible vapor than it could at the lower temperature of the early morning. Now apply this principle to the heated room. The air inside the
room is warmer than the air out of doors: and though it may contain the same number of grains of water vapor to the cubic foot, that amount of water vapor will not bring the relative humidity of the room as high as it
will the out-of-door air, because it will take will the out-of-door alr, because it will tak
more water to produce the same per cent o more water to produce the same per cent of
humidity in warm than in cold air. The warm air has a greater capacity for water vapor than cold air has. It is for this reason that w should have a water pan in the hot-air box of the furnace and add water vap
heated air before it enters the room.
(10928) H. L. P. asks: Will you kindly publish in your query column a list of
all the different kinds of ether waves, their ate of vibration sinds of ether waves, their lengths, and do they all travel at the rate of
$\mathbf{1 8 6 , 0 0 0}$ miles per second? A. The ether waves 186,000 miles per second? A. The ether waves
concerning which you inquire are the vehicle by which the radiations pass from the sun to the earth. These radiations become heat, light or electro-magnetism, and other forces perhaps,
when they strike upon organs which can appropriate them as such. That which strike nerves of sensation gives us the sensation of
heat. You will find much about these matters heat. You will find much about these matters
in Thompson's "Light, Visible and Invisible." So far as we know, all these waves pass
through space with the same velocity, about 186,000 miles per second.
the book named for $\$ 2$.
(10929) E. S. asks: Can you tell me what material, fluid, solid, or otherwise, will
retain its heat the longest, or where can I get a table of materials that are the best
non-conductors of heat, and also what material or composition which when heated will retain its heat the longest, fluid, solid, or
otherwise? A. We are not able to say what material will retain its heat the longest, but Kent in his "Mechanical Engineer's Pocke table of many materials with figures for each In this table the radiating power of lamp-
black is taken as 100 . On this scale polished iron is about 25 , and polished silver and gold are only 3; so that of the materials which
Kent names, polished silver and gold retain their heat the longest. All substances giv off their heat much faster when rough tha
when polished. All liquids and gases ar when polished. All liquids and gases ar
good non-conductors of heat. So too ar good non-conductors of heat. So too are
numerous solids, such as asbestos, all woods, and many solids. It would not be possible
to select one and say it is the best non-conduc to select one and say it is the best non-conducthis point. The retention of heat and the
conduction of heat are two totally different conduction of heat are two totally differen differently in relation to the two qualities.
(10930) H. M. asks: 1. Could not the core of an induction coll be made longer and
the secondary coll be placed beside the primary the secondary coll and not over it, and thus save considerable length of wire, and also number of turns of
wire in secondary? A. Induction coils have wire in secondary? A. Induction colls have of the various parts, with the result that it is a general agreement of experimenters that the
usual mode of arranging is the best. The secondary coll is sometimes placed by the side
of the primary in the transforming of alternat of the primary in the transforming of alternat
ing currents for lighting, but then the core is especially designed to save the lines of force be unnecessarily long, since the object is to secure as sudden a demagnetization of the core as possible. You would better conform to the
proportions of coils as given in the best books. Take Norrie's "Induction Colls" for a guide We can furnish it for \$1. 2. Do the outer colls of the secondary add as much strength to the coll as do the turns of wire wound nearest the
core? A. The outer turns of secondary wire have not the same value in producing current have not the same value in producing current the finest possible wire. No. 36 to 40 is emthe finest possible wire. No. 36 to 40 is ema plece of iron calculated? If I know the
ampere turns how may I know the strength ampere turns how may I know the strength
of the magnet? A. The magnetic resistance, or reluctance, as it is called, is equal to the
length of the circuit divided by the product of the permeability by the area of cross section in pounds is found by the formula,

Pounds $=T C \cdot M \cdot V A$

in which $T C$ is the ampere turns, M is the of poles, and L is the mean length of magnetic circuit. 4. What voltage will a flie-bar telephone generator furnish? A. The ordinary
telephone generator will give from 65 to 75 volts. What a five-bar generator gives we are not able to say. 5. Why is it that a generator
requires more power to turn its armature requires more power to turn its armature
when delivering heavy current than when on
power to drive its armature when it is deliver-
ing current because it is then doing work. ing current because it is then doing work. n engine running free does not require much power, but when heavy machinery Can you give me the formula for constructing tangent galvanometer so that certain degrees deflection will equal certain value of current always represents the same current in a given tangent galvanometer. You do not require any special formula to determine the current for any deflection. Use the ordinary formula for the tangent galvanometer, and substitute the natural tangents for tangent a in the formula calculate the corresponding current in each
case. Form a table of these currents for each ase. Form a table of these currents for each
angle, and keep it for reference. You will hen save the trouble and labor of making the alculation for each reading; we mall you a you will find mention of articles on
ruction of galvanometers.
(10931) E. S. asks: Will you kindly ive me the sclentific reason for the hour beore dawn being the darkest and coldest, par
ticularly the former? A. We do not know any scientific reason for the belief among people arkest The popular proverb is, "It is alwas darkest just before dawn," which we always understood to refer to the mental attitude of a man who is hard pressed and finds help.
The coldest hour of the night is found to be The coldest hour of the night is found to be
from 3 to 4 A . M. The darkest hour is. when rom 3 to 4 A. M. The darkest hour is. when
the sun is furthest below the horizon, or mid the sun is furthest below the horizon, or mid-
night. We do not see any other sclentific conlusion. All daylight is grom the mosphere after the sun is 18 deg. vertically
below the horizon, the time which marks the end of twillight of evening and the beginning of the morning twilight. Between these two times it is deep night and there is no reason
why one of the hours should be darker than nother
(10932) W. A. P. asks: I am building on accor mate to find if have a good or perfect condenser? If I put
250 volts 1 lamp in series across the foil ends get no trace of leakage or short circuit but 110 alternating lamp series does not ligh the lamp, but there is a blg leakage-so much
that it cannot be held in the hand. I refer to using the condenser only, as the coil has not bullt on the primary and receive only $\%$-inch spark with or without condenser, the maximum nuark with or without condenser, the maximum
number being 96 sections. Does this appear right? A. The leakage of a condenser is found by charging it and discharging it immediately
then charging it and leaving it for say 15 minutes and discharging it again. The ratio of the discharge gives the leakage. There is no way of finding the leakage without proper
nstruments to measure with. We do not see any proof of leakage in what you write, though direct current of 220 volts shows mean that whlle with an alternating current 110 volts hat an alternating current does not charge condenser at all. A condenser is not used on a coll when the alternating current is used
with it. Without instruments or means of measuring the condenser you should make sur of each sheet of the paper, make the condenser
as well as possible and rely upon the thoroughness of your work.
. (10933) A. L. R. asks: 1. In running levels for a waterway of considerable length,
like the Panama Canal, is not the rotundity of the earth an important factor that must b considered? A. In running levels for water
ways of considerable length the line which is actually run is substantially a circle whose taken by the instrument the earth. The sigh tings are so short that the curvature of the each new setting of the instrument the lin of the level is parallel to the circumference
of the earth at that point. 2 . If it were pos of the earth at that point. 2 . lake ten miles in width, so that it is per ectly level and absolutely without sag, would wire be necessary that the shore end of the han $162-3$ feet above the water to prevent the mmersion of the wire at the center of the traight line across a lake ten miles in width the anchors must be elevated not less than ine from going below the level of the water the center. 3. An extensive and perfectly level plain is traversed by a range of moun tunnel terce which, for a rallroad, require a tunnel ten miles in length. If such a tunnel ndicated by the surveyors' level or by "tees" indicated by the surveyors' level or by "tees"
placed at both ends and the center, assum ing the possibility of sighting that distance would not the center of the tunnel be lowe and would not the water in the tunnel drain toward the center? Would the specific gravity
of an object placed in the center of the tun nel be affected by the superincumbent weigh of the mountain mass? A. If the tunnel whic you mention were to pierce a range of moun
tains ten miles long, it would not go in straight line with the mountain, but be a
of the earth, or else, as a matter of good
engineering practice, it would be enough higher engineering practice, it would be enough highe
in the center, than indicated in the abov statement, to allow drainage in both direc tions. If such a tunnel were excavated with
a surveyor's level stationed at the point where the range of mountains left the level plain side of the mountain range 65 feet above the plain. If the tumnel were excavated in an exact straight line from the plain of one side the tunnel on either side there would be down grade of 65 feet in ten miles, or $61 / 2$
feet to the mile. The tunnel would be level in the center, and would be at that point $162-3$ feet below the surface of the plain. The speof the tunnel would be slightly less than out side on the pl
the mountain
(10934) W. B asks: 1 A chicke cains about twice in weight for the firs they live on, as they do not eat anything? days without food, chicks can go for severa egg left in the stomach to supply nutrimen They will eat on the flrst day, however, if food is provided. Chicks almost double in size the flrst day, owing to the organs being re-
lieved from the compression of the eggshell, lieved from the compression of the eggshell,
and as the down on the chick dries, it fluffs and as the down on the chick dries, it fluffs
out and adds to the apparent size. It may be but it is far from true as a general rule. We Where too much molsture has been kept in the Where too much moisture has been kept in the and the chicks hatch in a swollen, puffy condition. During the flrst day the surplus water in them evaporates, so that they shrink, and weigh less than when they were hatched.
may be true, too, that when there has be too little moisture in the incubator, and the
eggs have been dried down too much, the eggs have been dried down too much, the
chick will absorb moisture after being hatched and so increase in weight. Where the chick conditions of moisture have been kept just right in the incubator, there will be very little, if any, change in weight during the first day. than a raw egg. Where does it get the extra weight? A. The shell of an egg is very porous,
and moisture and air also pass through it and moisture and air also pass through it
without difficulty. Hence in boiling water is without difficulty. Hence in boiling water is
absorbed by the egg, and this increases the weight of the egg. 3. Why docs sap run up the tree? A. Sap is carried up a tree by os-
motic pressure and capillarity, chiefly. The evaporation from the leaves tends to assist the flow during the season when the leaves are on the trees. These
textbooks of physics.
(10935) H. H. A. asks: Kindly anwer the following question: Does the date 180 deg. meridian, or is it merely nautical reckoning that recognizes the date line? A The date changes at any place when the line
or meridian of midnight passes over that place The date is constantly changing all the wa round the earth during the twenty-four hour of any day. The international date line is a 180th meridian. To the east of that line the ate is alwa day later than on the we the time. The meridian through the middle of the night is moving all the time around the earth. On the east of that meridian there s another. A day is dying on the west side of that meridian, a new day is coming on the east. At eleven at night in your place, the
line of midnight is one hour to the east of you. The day has one hour left. The ne hour it has reached you and passes over your head, speeding west ceaselessly, around and around the earth. However, when a ship ince it has passed out of one day into an ther.
(10936) J. M. C. says: I am making armature core, and after cutting out about on (?) I am using is not free from steel send you three pleces. Examine them, and write me as soon as possible if they. are all
right. I have an equal number of all three Ight. I have an equal number of all three
rades cut. No one here can give me a deded answer as to their being strictly iron. Would it make so much difference if there was
little steel in them? The three are all speies disan find here except tin. Is tin good heet steel you send will answer for the armature core of a dynamo. The plece marked
3 is thinner and softer than the others and will be better, since more disks can be got into the same space. You cannot get sheet iron nowadays very easily. Steel has crowded
ut of the market. As you may mow, stee out of the market. As you may know, stee arbon in it. It is iron with carbon, not ifferent substance
(10937) C. S. W. asks: It takes several years for light from the sun to reach the
earth; the light we now see started from the on years ago. If the sun's light were extinas long time as it takes the light to reach
the earth? On this theory, does an eclipse occur at the time we see it, or is it only the
eesult that we see several years after the eclipse takes place? A. It requires 499 seconds for the light to come from the sun to the arth, and about one and one-third seconds moon intercepts the light of the sun, we see the fact in one and one-third seconds after it o affect its light, we see at such a time after it occurs as may be required for the light to pass over the space between us and that star Anything that occurs on the sun is seen by (10938) M. J. McC. asks: Does the part of a wagon wheel touching the ground while in motion stop while the other part of the outer rim of the wheel revolves, or do all velocity? I have heard this,argued, but I concould be in motion the ary. A. The part of the rim of a wagon wheel which is in contact with the ground is at rest while the rest of the wheel moves along in the direction in which the wagon is traveling and the whole wheel moves around a line drawn through the center of the axle. Both statements are facts. We might add to this curiosity of motion that the top of the rim of which the wagon is going twice as fast as the hub of the wheel moves. To understand the matter it is necessary to distinguish kinds of
motion. The wheel has two certainly. motion. The wheel has two certainly. In
moves with a rolling motion over the earth t rotates on its axle. Its motion of rotation as viewed by a fly which might be standing on ne of the spokes is a continuous motion round and round, always repeating itself. The mo tion along the ground is of another kind. If
fly stood on the ground as the wheel passed by him, he would see a point of the rim come down to his side and stop. It would imme dately begin to rise, and would go up high again and again a point of a whel in con tact with the earth is not in motion with con erence to the point of the earth on which it is pressing unless it is slipping backward, a con dition which this case does not include. It is roun the on the grouna, but in motion areund its hub or axle. Rest and motion are may be at rest. To some other point it may be in motion. And it is sometimes quite puz may be in reality. This is the case with some of the motions of the herely with The motion of a wheel may be tested bode ng a small circular disk and fastening a chal crayon in a hole close to its edge. Then roll it along a fence in such a way that the chalk will mark a line on the boards. You will be nee that in seeing its real path. You will traced by the crayon is called a cycloid.
(10939) W. B. C. says: Will you kindly state in your notes and queries column a
process for treating wood for open fireplaces so that it will burn with colored flame? Also the substances used to make a slow-burning colored fire? A. In a pail of water put 4 ounces copper chloride, and soak the wood in this solution. When dry it will burn with a
green flame. Zinc chloride and strontium Chames m green fire may be made by mixing potassium chlorate 36 parts, barium nitrate 40 parts, and sulphur 24 parts. For a red flame use potas slum chlorate 40 parts, strontlum nitrate 39
parts, sulphur 18 parts, lampblack 3 parts. These formulas are from the "Sclentific Amer can Cyclopedia of Receipts," which contain many others, besides thousands of valuable
receipts. We send it for $\$ 5$.
(10940) C. A. G. asks: A D and C B are parallel horizontal planes, X is a $40-65$
Winchester rifle. The distance $A C$ is one foot and is vertical. Now a bullet is shot from the gun X , and the instant the bulle passes point A, another bullet (same size, etc.) is dropped from this same point, i. e., A. Win of a second of each other? Besides answering this question, I wish you would give me the data from which you derive your answer. A
Both bullets in the case proposed will strike the level plane below at the same instant, no within a tenth second of each other. Th the the gun falls by gravity as readily and a much as one which is dropped from the samion which covers this case is stated as follows whether fiven force pro body at rest or in mo tion, whether it acts alone or at the same time AC, which is shot fro powder and gravity, to cause it to pursue the
path AB in the same time as the other ball passes through AC
(10941) G. W. S. says: Assume an air-pipe of considerable length, say 100 feet,
open at its ends. Apply an air-pump of 10 pounds force at one end. Apply an air-pump of 10 the pipe because of a pressure at the inlet o 25 pounds against 15 pounds pressure at the
outlet. Transfer the pump outlet. Transfer the pump to the other en

Again air will pass, in the same direction, due
to a pressure at the inlet of 15 pounds and to a pressure at the inlet of 15 pounds and an
outlet pressure of 10 pounds. The latter ar rangement is alleged to be the more efflcient.
Why so, since in each case Why so, since in each case apparently the actual moving force is the superior pressure
at the inlet end, and there is the same dif-
而 no difference in efficiency, wherein lies the acknowledged great economy in an exhaust is placed at the tail of the system, as against a force pump of the same power placed at the
head of the system and supplementing the power of the exhaust piston? Apparently here also the actual moving force in each case is a
"push." A steam heating book uses the simile of pushing and pulling a rope-apparently an inaccurate one. A. There is no difference in
efficiency between pumping air through a pip and drawing it through by suction. The work equired to move the same quantity of air at the same velocity will be the same in either
case. The idea that you have regarding the greater efficiency of a vacuum steam-heating system is correct, but for a very different rea-
son. The great difficulty with steam-heating son. The great difficulty with steam-heating
systems is that air gets into the pipes and radiators, and is difficult to dislodge by the
circulation of steam under pressure. By means circulation of steam under pressure. By means of an air pump, producing a slight vacuum
in the entire system, however, there is in the entire system, however, there is no
diffculty in keeping the system free from air and having
(10942) C. M. H. asks: Could you give me simple method for treating cloth or changes color-pink for rain, blue for fair? A. A formula which recently appeared for the so-called color barometer is as follows:
Cobalt chloride, 30 parts; sodium chloride, 15 parts; calcium chloride, 4.5 parts; gum ara-
bic, 7.5 parts; water, 45 parts. Soak cloth in this solution and dry. The solution absorbs moisture from the air, and so changes color.
The cobalt chloride is the substance which The cobalt chloride is the substance which
changes color by moisture. The cloth is no grometer, since it shows the presence of mois ture in the air, and not the pressure of the
(10943) A. B. asks: 1. Can you tell me of a simple test to tell platinum wire?
A. Platinum is characterized by its high fusing point, about 3450 deg. Fahrenheit. It can not be melted by any temperature below that
of the oxyhydrogen flame. This is the simplest test. Heating in an ordinary flame doe acid, but is dissolved by aqua regia. 2. Is it true that there is a salt lake that has a crust
of salt on the surface? If so, what is the name of it? A. There is a place called Salton in California where salt is plowed up from
the surface of the shore of a lake and purithe surface of the shore of a lake and puri-
fied for the market. Later another crop can be harvested from the same place. Salt does of salt over the surface of a lake. 3. Why is it that ice is a non-conductor and water is water when pure is a conductor of electricity Water owes its conductivity to minute quantities of impurity in it. Ice tends to freeze it-
self pure from impure water. Hence ice is self pure from impure water. Hence ice is
usually a non-conductor of electricity. A. Can you explain to me what watt and watt-bours denote? A. A watt is the unit of electrical working for one hour makes a watt-hour. You working for one hour makes a watt-hour. You
would all such questions, answered in Swoope's "Elementary Lessons in Electricity,"
which we can send for $\$ 2$. (10944) H. O. N. asks: There has been quite a bit of discussion here on this sub
ject, and I write to you so that I may help ject, and I write to you so that I may help it
along. Which goes the faster-the top of a wagon wheel or the bottom? What would be
the center of it in that case? Is a wheel that the center of it in that case? Is a wheel that
is on the ground any different than a pulley in the same case? Some say that the top goes
twice as fast as the axle, and that the bottom stands still. A. The discussion about the "going" of a wagon wheel turns wholly upon
the use of the word "go." Define going, and all will become clear. A wheel goes with ref erence to the axle in one manner and with ner. Going may then be rotating or moving
along. It rotates around the axle. All parts
rotate alike, going around at the same. speed, that is, going around in the same time, each point in its own proper circle. The whole
wheel moves along with the axle over the road wheel moves along with the axle over the road
at the same speed as the axle and, for that matter, at the same speed as the whole
wagon moves over the road. This being settled, it remains to inquire how the parts of the wheel move with reference to a point on
the ground past which the wheel may be "going." Consider a point just in front of the whee. As it approaches this point the tire,
or rather a point on the tire, comes down and rests for a moment on this point of the
ground. It is not in motion on that point if there is no slip of the wheel on the ground This is what is meant by saying that the bot
tom of a wheel "stands still." It is at rest on tom of a wheel "stands still." It is at rest on At the next instant that point of the tire
begins to rise from the ground, and goes on
motion is a very curious motion, as you c
see by marking a point on the tire of a wh
and nd watching its path as it comes down the ground and rises again to the top of the
wheel. It describes the curve called a "cyloid." Now when the point of the tire at rest on the ground, the axle does not stop.
it moves right on, and so does the top of the It moves right on, and so does the top of the
wheel. As the top of the wheel is twice as
ar from the ground as the axle is, it will seen that the top of the wheel must be
moving along two times as fast as the axle moving. This can be seen in another way Take a point on the rim which is at the same
level as the axle and is behind the axle. As level as the axle and is behind the axle. As
the wheel rolls along the road this point goes up and over and comes down to the front of the wheel and to the same level as the axle t has gained on the axle the whole diameter
f the wheel. It was behind and now is in front of the axle. To do this it must have moved faster than the axle over the road See if you can calculate how much faster.
During the next half turn of the wheel this point drops down to the ground, rises again to the same level, and is behind the axle, by the whole diameter of the wheel. It has lost distance, and has gone over less space than the axle of the wheel went over in this half
turn. See if you can calculate how much less turn. See if you can calculate how much less
distance it has gone over. You will find that distance it has gone over. You will find that
there is just as much distance lost as there there is just as much distance lost as there the upper part of the wheel. There is more of curious interest in the rotation of a wagon
wheel than your questions implied. Most of the differences of opinion in discussion would
be removed by a careful definition of the terms removed by a careful definition of the terms
mployed and a careful statement of the conditions of the case which is under discussion There are many hot discussions in which both
sides mean the same thing, but use words in sides mean the same thing, but use words in different senses in expressing their meanings.
Probably this is the case with your discussion.
(10945) S. T. B. asks: 1. I have read that in the secondary colls of induction coils
there is sometimes a current of 30,000 volts there is sometimes a current of 30,000 volts
with as low as 0.001 ampere. To me this with as low as 0.001 ampere. To me this
seems to conflict with Ohm's law. To put it at a safe figure, the resistance of the secondary coll of such an instrument would not be mor than 500 ohms. Then if we divide volts by
ohms according to Ohm's law, we would get 60 amperes. This I can plainly see would be mpossible, but please point out my mistake
in reasoning. A. We do not see any reason why Ohm's law should not be applied to any case of volts and amperes to find resistance. No
correct result can be impossible. It is, howcorrect result can be impossible. It is, how-
ever, not to be supposed that the resistance in he case given is that of the secondary coil alone. It is that of the coil and the air for
the spark length, whatever that was. Even when air is ionized, several that was. Even high resistance. Nor is the resistance of as. No. 36 wire B. \& S. has 2.4 feet per ohm, and 00 ohms would be only 1,200 feet, while
arge coil giving a 12 -inch spark would requir at least 17 miles of such wire, with a resis tance of 18,270 ohms. Spottiswoode's great
coil had 280 miles of wire in its secondary; con had 280 miles of wire in its secondary;
but that is more than is required for the same in your note, one in underestimating the amount in your note, one in underestimating the amount
of wire used in secondaries and another in cutting the air resistance as a factor ndary coil for a given voltage. Now again he self-induction at the moment.of breaking the primary circuit causes a tremendous inductive effect upon the turns of the secondary with the result that a tremendous voltage is produced in the secondary coil. This rises enormously above 30,000 volts when the spark
distance is large. A table recently issued shows that 20,000 volts are required to throw spark 1 inch between sharp points in the
ir; while to throw a spark 15 inches, 150,000 volts are required. Now coils have been made to throw 45 inches. 2. How does magnetism interfere with the working of a watch? A. The magnetism of the steel parts of a watch affects the motion of the hairspring and bal-
ance wheel when that is of steel or has steel alancing parts upon it. 3. Have diamonds ever been produced artificially? A. Diamonds
have been made artificially by Moissan in his have been made artificially by Moissan in his
electric furnace experiments, and they have been found in meteorites. See Moissan's
(10946) W. R. M. asks: I am puzzled (10946) W. R. M. asks: I am puzzled
(10 a problem in electricity. Here it is: What over a problem in electricity. Here it is: What
number of volts and amperes will light a 12 att electric lamp?

You see the products are all the same from the multiplication of the volts \times amperes. Please perage. A. We do not see any puzzle about your problem. You show that there can be seven
different ways of dividing the volts and amperes different ways of dividing the volts and amperes
so that the lamp will-have 12 watts. There is so that the lamp will have 12 watts. There is
no puzzle about that. It is quite true. The nly question is, which would be the better way decide that to be either the 6 volts and 2
volts and $1 / 2$ ampere. The higher the voltage the
smaller the wire necessary to carry the current without overheating the
cheaper the wiring will be
(10947) C. B. R. writes: What con trols the circulation of elaborated sap of trees?
Why does, or does, it rise in the spring? Or
where does it come from? At what time each month can a bush having sugar in its roots be cut so that it will sprout and grow What time each month will it die if cut? What stops the circulation or keeps it back from
the roots at times? Why should freezing the ground make a free flow of sap, and no frost moderate fow? Why when a board or stra settle down, at other times it will rise? The rise of water in trees from the root tips to outermost twig is a strange thing, and its mechanics is not even yet clear. Capillarity The power of living protoplasm to imbibe wate was once thought to explain it. Again, others have thought that the evaporation from the
leaf surfaces causes the water below to rise as if drawn up by pulling on the end of a and undiscovered causes may be raise the water sometimes hundreds of feet. The water rises most easily in the new wood, spring. We do not believe that the time of the month has anything to do with the sprouting of seeds or the growing of sprouts.
This is an old superstition connected with the This is an old superstition connected with th
moon, which dies hard. If a twig is cut of the power of growth in the tree usually duce other shoots to take its place in the support of the life of the tree. Late in th
season these sprouts do not so readily appear There are always buds in the bark which will grow if moisture is supplied to them. They
may stay years without starting, and wounds may stay years without starting, and wounds
given to the tree may then make them start to grow. Sap circulates freely till the ring of wood and new bark is formed and the walls of the cells have thickened so that water can
not easily pass through these walls. The is not then much. The season of growth of a tree in which a hole has been made, in the sugar maple, in early spring is due not to the freezing of the ground, as most suppose, but to the expansion of the water by the
warmth of the sun during the day. The tre is gorged with sap, which is ready for th production of wood for the spring. The night are cold, below the freezing point, the day is
warm; the large difference of temperature expands the sap, and forces some of it out of any large fluctuation of temperature from the day to the night and back again ceases, the tree also ceases to give sap for sugar. We do no
understand the question of the board laid on the ground and sometimes sinking and at others
rising. We never saw or heard of that be-
(10948) C. K. B. asks: What is the cause, or where do the prevalling westerly
winds of the northern hemisphere originate? How does the rotation of the earth cause the
deflection of the trade and anti-trade winds of deflection of the trade and anti-trade winds of
the northern hemisphere? A. The general sys tems of the winds are due to the greater hea of air from the cooler regions on either side of the hot region. The heated and lighter air under it, and it flows away to the north an south in the upper layers of the air. After
this air is cooled it descends, and flows along this air is cooled it descends, and flows along
toward the poles, only to return and again take part in the general circulation of the
winds. The rotation of the earth on its axis causes great changes in direction of these curwinds and we or hortheast and southwes ferent parts of the northern hemisphere. This is but a rough and general statement of the Winds, but may serve as a basis for fuller read As the current of cooler air flows along over zone north of the equator, it is passing from a region where the velocity of rotation of the
earth is less to a place where it is greater. earth is less to a place where it is greater.
This causes the wind to lag with reference to the earth under it, and to appear to com from a point farther to the east than it ha wind, and is the northeast trades. For a simithe ocean become southwest winds, or the anti trade winds.
(10949) L. K. asks: Will you kindly tell me through your valuable paper which
way the compass points south of the equatorto the north or to the south pole? A. In both hemispheres the magnetic needle points to both poles, except for the declination of the
needle. That the north end of a needle should point to the north pole necessitates that at
the same instant the south end should point toward the south pole. Along the line of n The needle points to true north and true cauth (10950) L. A. T. asks: Will genuine amber burn? A. Amber burns with a pale
yellow flame, with a good deal of black smoke, yellow flame, with a good deal of black smoke,
evolving an agreeable odor, and leaving a black evolving an agreeable odor, and leaving a black
mass of carbon behind. As it is about 79 per
gen and oxygen, it is evident that it must be
combustible. We should infer the same fact from its origin. Amber is a fossil gum, partly soluble in alcohol and ether; since it frequently contains insects, it must have been a viscid liquid when these were entrapped to their destruction. Imith amber may be made cle, although in the genuine amber the insects re usually of extinct species. 2. Is there ny imitation of amber that can be electrified so that it will pick up bits of paper as amber electrified by rubbing, it is probable that imita tions of amber may be electrified. 3. Kindly give me an infallible test by which the genuine rticles can be identified. A. Amber contains nearly 90 per cent of a resin which resists al solvents, called succinite, and $2 \frac{1}{2}$ to 6 per cent
of succinic acid. There are also two other resins soluble in alcohol and ether, besides an il. The determination of these by analysis
(10951) J. W. asks: 1. How is bicycle riding explained? By what laws does a is balance hition upon the bicye maintains its upright position upon the same principle that a rotating wheel maintains its plane of ro ation. This is most clearly illustrated in the Foucault pendulum and the gyroscope. As long as the bicycle is moving, it will not fall over. 2. Scientists claim to find the shape of the arth by the pendulum. This would all be very well if the density of the earth were the same in all of its parts, but as that is very improbable, It sems to me that the resuts of hese measurements are also very improbable. there any way The time of vibration of a pendulum deplace where it is hung and swung. The varition in density of the earth is not great, and the mean density is known to sufficient accuracy. It is not probable that the results of pendulum measurements are greatly in error, igned as ar at all beyond the variations as
imits of the determination. We have no better way to determine the form of he earth than by the pendulum, and measureeral cyclopedias for the article Parallax, I find that astronomers do not make any allowance for the motion through space of the solar system and of the star whose distance is to be measured. Do they really make any allowainly influence the parallax. A. The proper motions of some stars are known, and can be allowed for when these stars are observed. This is so little that it cannot affect the paral lax to a sensible amount. The nearest star
is $41-3$ light years distant from us. The sun 8 minutes and 19 seconds from us in terms of the velocity of light. The annual parallax are; its distance is $25,000,000,000,000$ miles. The variation of its parallax due to the motion of the sun in a year through space is not ap-
preciable 4 . We are bothered here with preciable. 4. We are bothered here with
alkali water. Is there any way of making such alkali water. Is there any way of making such
water drinkable? A. Without an accurate water drinkable? A. Without an accurate
chemical analysis of your water, it is impossible for us to express any opinion. The quesalways a somewhat difficult one, and it seldom happens that impure water can be much improved without considerable trouble and expense. In case you have not tried it, however, we would suggest your boiling the water for a
period of about twenty minutes. With some aters this will cause a sediment to form, which when allowed to settle, removes many of he impurities with
(10952) J. D. asks: Can you give me your query department of your paper, data on gasoline motor cycles to explode mixture? Using four dry batteries for the primary exciB. \& S . silk-covered copper wire. Can this be used on secondary? A. A strong and reliable spark can be made for gas ignition with a coll nches following proportons: core length inches, diameter $3 / 4$ inch, made of No. 20 iron
wire, B. \& S. gage. Primary of three layers of No. 14 copper magnet wire, cotton covered. Secondary 1 pound No. 36 silk-covered wire Condenser of forty sheets of tinforl, 4×6 inches. The insulation of the secondary should be very carefully attended to. Failure here
will cause a loss of the whole. The details of he work are given with great fullness in Nor the work are given with great fullness in Nor
ries "Induction Coils," which we can send you for $\$ 1$.
(10953) A. A. B. asks: I wish to ask hrough your paper if it is not possible for o complete the bulb without having to form the little sharp point on the rounded end? A Incandescent lamp bulbs are made without any
point upon the large end. They may be had point upon the large end. They
from dealers in electric supplies.
(10954) L. A. H. asks: Is there such thing in the realm of science as flame or
combustion without emitting light? A. Comcombustion without emitting light? A. Comsance with oxygen. This may take place with rapidity, so that much heat is produced, and hat no light, but often it takes place so slowly hat no light is seen, and the temperature may not rise very much above that of the air. The
(10955) F. W. B. asks: 1. Please give (in substance) an explanation of the phe-
nomena of rotating storms, such as whirl nomena of rotating storms, such as whirl
winds, cyclones, etc.
Do they always rotate in one direction, and why? A. The rotation
of storms is caused by the rotation of the of storms is caused by the rotation of the earth on its axis. In the northern hemisphere
these storms rotate in a direction opposite to these storms rotate in a direction opposite to
the motion of the hands of a clock; in the the motion of the hands of a clock; in the
southern hemisphere they turn with the hands southern hemisphere they turn with the hands
of a clock. All cyclones, hurricanes, tornadoes, of a clock. All cyclones, hurricanes, tornadoes,
etc., follow the same law. 2. Is it possible for a whirlwind to rotate for a time in one direction, and then reverse and whirl in the opposite? I ask this last especially for the reason that two reputable persons of my acquaintance claim to have seen this phenome non. A. Small whirlwinds, such as form in a field or at a street corner, probably turn in either direction; but if one was seen to rotate
one way, and in a brief time another was seen in the same place turning in the opposite direction, we should consider that these were two different whirlwinds, and not a whirlwind
which had reversed itself.

NEW BOOKS, ETC.

We have received from Knowledge, 27 Chan cery Lane, London, W. C., a circular slide rule devised by Major B. Baden-Powell. The instrument consists of two similarly figured dials, an outer ixed one and an inner rota mic sequence, and the numbers are arranged in spirals, so that the decimals coincide, as in all slide rules. While not professing to be an absolutely exact calculating machine this simple appliance ought to prove of the greatest use in everyday life. It is so sim ple in action, so compact, and yet so reliable that it should find a place on the writing table of all those who have frequent calcula tions to make. Not only does it enable one very rapidly to obtain approsimate results, even with large figures, in multiplication and
division, but for those who have to deal with foreign measures and wish to know, al most at a glance, the equivalent in English measures, this should prove helpful. One measures, this should prove helpful. may be noted, that any special measures which have to be converted, such as rubles to pounds, carats to grains, or kilowatts to horse-power, can be temporarily marked on the card. The equivalent fractions of decimals, propor
and square roots are also easily found.

The Modification of Illinois Coal by Low Temperature Distillation. By
S. W. Parr and C. .K. Francis. UniS. W. Parr and C. . K. Francis. University of Illinois Engineering Ex
periment Station. Urbana, Ill.: Pp. 48.
The details of this paper are many and intricate, and the conclusions rather vague and be that coal can be made more ${ }^{-6}$ available for certain purposes by treatment, but neither the cost of the treatment nor the total B.T.U. of the evolved gases is given. In fact, the re
search is incomplete and hardly ripe for presen tation.
Electricity: What Is If? By W. Den-
ham Verschoyle, M.E., M.I.M.E. M.A.I.M.E. London: Swan Sonnen schein \& Co., Lim. New York: The
Macmillan Company, 1908. 16 mo ; Macmillan Company, 1908. 16 mo .;
cloth; 259 pages; illustrated. Price, cloth
$\$ 1$.
A purely theoretical position has been taken by the author in discussing the question: Wha is electricity? In seeking the laws that rogu-
late the intermediate action of energy and late the intermediate action of energy and
matter the finding of new facts has been subordinate to generalization through chapters on the gyron, atom, molecule, heat and light, electricity and magnetism, dissociation and devolu tion, and life. The importance of theoretical work in the new science as demonstrated in this volume may cause additional attention t be drawn to it when known that the tables and confirmation in ths have rece Sir william say. Spectrum analysis is dealt with in the say. Spendix.
Cement Laboratory Manual. A Manua of Instructions for the Use of Stu dents in Cement Laboratory Prac York: John Wiley \& Sons, 1908. 12 mo .; 122 pages, 28 figures. Price,

This manual has been prepared for the use of students taking the course in cement laboratory practice in the University of Illinois, and for the use of others who may have occa-
sion to use such a laboratory manual. Instructions for the problems originally used in the course mentioned were devised by Ira 0. Baker, professor of civil engineering, Univer-
sity of Illinois, under whose direction the ausity of Illinois, under whose direction the authat institution for three years. This manual has been prepared by revising and extending the instructions already in use. The problems which are given herein are suitable to class use and are not intended to serve as instructions for the testing of cements for
commerciel purposes. However, the problems commercien purposes. However, the problems
have been designed to include all of the tests have been designed to include all of the tests
which are ordinarlly made, so that a student
purposes, although the experience which is re quired for the production of uniformly satis factory results in the latter class of work of practice, and cannot be obtained to any considerable extent by a laboratory cours which is
testing.
Elements of Railroad Track and Construction. By Winter L. Wilson. New
York: John Wiley 12mo.; 320 pages, 181 figures. Price \$2.
In this volume no attempt has been made construction with any considerable amount o detail, but rather to present a few of the fundamental principles in such manner that th inexperienced engineering student can form general idea of the subjects. There are
number of excellent treatises on track which number of excellent treatises on track which
go into the subject with a wealth of detail and a thoroughness of discussion which is of immense value to the maintenance-of-way engineer with some experience; but, unfortunate
ly, these books are not suitable for class-room work, both on account of the student not being able to appreciate the value of the details and also on account of the impossibility of reading these books in the time usually given to such subjects in an engineering course. Details of practice can be much more readily ence. There is not much time in the four zear of an engineering course that can economically be given to the details of practice, but it is essential that the student should understand the fundamental principles of the subjects. In this volume some of the general principles of
track and of the part of railroad construction with which the part of rallroad construction with which the young engineer may come in

Highway Engineering. By Charles E. Morrison, A.M., C.E. New York: John
Wiley \& Sons, 1908.8 vo.; 315 pages,
60 figures. Price, $\$ 2.50$.
This was prepared for the second-year stuat Columbia University, with a view to fur nishing a test in which the fundamentals of detail, such should not be buried in a mass trequently found to be the case in works of a similar character. This book is, therefore, not a reference work, but rather one in which it has been the endeavor to outline and emphasize those basic prin ciples which are essential to good highways. The Engineers' Descriptive Charts in Colors. Showing the Development o
velopment of the Steam Engine.
Showing the Development of the Elec-
tric Generator. By Joseph G.
Branch, B.S., M.E., Author of Sta-
tionary Engines, Conversations on
cago: Rand, McNally \& Co., 1908.
$281 / 2 \times 22$ inches; illustrated. Price, 50 cents each.
The charts, are clearly illustrated and effecment of the subjects is both technical and historical and the charts will prove to be an invaluable aid to all engineers, firemen, machinists, students, and electricians.
Steam. Power Plant Engineering. By
G. F. Gebhardt. New York: John
Wiley \& Sons, 1908. 8vo.; 816 pages,
461 figures. Price, $\$ 6$.
This book is the outcome of a series of lectures delivered to the Senior class of the
armour Institute of Technology, Chicago, Ill. It is primarily intended as a text-book for
engineering students, but, it is hoped, engineering students, but, it is hoped, will The be of interest to practising englneers. The field embraced by the title is a large one ment to essential elements. Much of the matter contained in the author's original notes, valve gears, steam boiler design, and the like, has therefore been omitted. The numerous the appended bibliographies, which have been carefully compiled, are depended upon to ex tend the scope of the work. The standard
codes of the American Society of Mechanical Engineers for conducting engine and boiler trials are in frequent demand by engineers and have therefore been included as an appendix. Authorities have been freely consulted and extensive use made of current engineering literaure, due acknowledgment being made by foot note or reference whenever possible. The mat ter included is represefinative of A merican prac tice and no effort has been made to include Long Odds. By Harold Bindloss. Boston, 1.
$\$ 1.50$.
This latest and best book by this popular eller of tales is a story of splendid endeavor,
the scene Portuguese West Africa. A promise the scene Portuguese West Africa. A promise
to a dying partner sends the Quixotic hero out into the steaming jungle on an errand of freedom and into innumerable perils which of the mysterious and fascinating Dark Con tinent. The vivid picture of the so-called contract labor conditions, which amount to Negro slavery, is of particular value to everyone in
terested in the Congo reform movement. Ther terested in the Congo reform movement. Ther
whose acquaintance every American will glad-
y make, and the absorbing love story holds the make, and the abs
the reader enthralled.
Herculaneum, Past, Pbesent and FuTURE. By Charles Waldstein, Litt. D., Ph.D., L.H.D., and Leonard Shoo bridge, M.A. With Appendices. Lon-
don and New York: The Macmillan don and New York: The Macmillan perial 8vo.; 324 pages. Price, $\$ 5$.
Dr. Waldstein has written an exciting book, always had more romance about it than the prosaic layman has been prepared to admit but in the present instance it makes a pecuiarly alluring appeal. If it stirs the blood to think of what the excavator feels when he un covers a single tomb in Egypt it is positively thrilling to contemplate the possibilities summed up in the name of that Campanian town which was buried by an eruption of Vesuviu in $79 \mathrm{~A} . \mathrm{D}$., and has been left almost undisturbed in its sleep ever since. There are rea-
sons why we are justified in believing that Herculaneum, if fully uncovered, would vield Herculaneum, if fully uncovered, would yield treasures of art and olher vestiges of the an
cient past incomparably richer than those dug up at Pompeil. The Italian government ha committed itself to excavate Herculaneum on its own responsibility. The work will neces-
sarily be slow. It requires prodigious sums which only the nations of the world, acting which only the nations of the worid, acting
together, could supply. No better contribu tion could be made toward a movement cul minating in such a scheme than is made in
these pages. Obviously, excavation at Hercuaneum should reveal innumerable at Hercu a few hundred to be found at Pompeii. Fur thermore, the two towns suffered in distinctly different degrees from the malice of Vesuvius Herculaneum is a mile and a quarter neare than Pompeil to the foot of the volcano. Pom peil suffered enough in all conscience, but Now what happened at Herculaneum? With overwhelming suddenness a sea of liquid mud of about eighty feet.
The Book of the Pansy, Viola, and Violet. By Howard H. Crane. New
York: John Lane Company, 1908 16mo.; $106 \mathrm{pp} . \quad$ Price, $\$ 1$.
The beautiful flowers of the pansy, that we are now accustomed to see in nearly every in one short space of time. They are the out come of many years of persistent effort on the part of a comparatively few enthusiasts, who by dint of infinite patience and labor, have helped to evolve the glorious blooms that are now so largely grown. The pansy dates only was evolved from carefur breeding the pans deals with everthing relating to the pansy the viola, and the violet.
Les Nouveaux Livres Scientifique et In dustriels. Vol. I. Annees 1902 à 1907 Ouvrages publiés en France. Du 1er Juillet, 1902, au Juin, 1907. 1° Table alphabétique des sujets traités. 2° Table alphabetique des noms d'au
teurs.
3° Livraisons trimestrielles (Nos. 1 à 20). Paris: H. Dunod et
E. Pinat, Editeurs, 1908.

INDEX OF INVENTIONS For which Letters Patent of the United States were Issued for the Week Ending October 13, 1908,

AND EACH BEARINGTHAT DAT

[See note at end of list about copies of these patents.]

