rock-drill.-J. B. Marshall, Broken Hill, New South Wales, Australia. According to this invention the recess is made in two
portions and its depth varied to give smalle escape for the air at the forward end of th piston, thus the front end of recess passing the front relief port permits not sufficient
escape to cause sudden reversal of valve nor escape to cause sudden reversal of valve nor
does reversal occur until a deeper part of the does reversal occur until a deeper part of the
recess encounters the relief port. adequate
reversing.

Prime Movers and Their Accessories. traction-engine.

heir accessories. A. \quad S. Wysone

Meade, Kan. The inv Meade, Kan. The invention lies largely in the detail construction and arrangement of the
transmission gear and in the frame and th bearing boxes for the shafts. Frame portions are secured adjustably in the main frame and
the bearing boxes of the adjustment devices, the bearing boxes of the adjustment devices,
all with the view to facilitate the adjustment all with the view to facilitate the ad
of the tension of the sprocket chains.

Railways and Their accessories.

 VENTILATOR FOR CARS, -H. VAN NESS, New York, N. Y. When the ventilator is prop erly set to the roof of a car and particularlywhen the car is in motion, a current of air will enter the ventilating chamber at one end and pass over the ventilators, creating a suction to draw all foul air upward and conduct it to an exit at the opposite end of the car, thus
providing a perfect ventilation without drafts.
TRACK-SPREADING SIGNAL.-I. M. Bond,
Tacoma, Va. The object of the invention is to Tacoma, Va. The object of the invention is to
automatically indicate the spreading of the automatically indicate the spreading of the which the device is applied. It frequently
happens that one of the rails of railways under constant usage, especially on shar curves, is loosened and sprung outward, and this point. Mr. Bond's novel derice secure the avoidance of this trouble.
SMOKE AND CINDER CONDUCTOR.-H.
L. Larisey, Charleston, S. C. The aim of the conduct the smoke and cinders from the smoke box of the locomotive back over the locomotiv tender and cars, to increase the draft and t prevent back draft in the fire box when the
doors thereof are opened, to insure a free ex haust and thus relieve the locomotive engin of back pressure.

Pertaining to Recreation.

ADJUSTABLE SWING.-C. F. Bean, Port Tampa City, Fla. In this swing the character and degree of the tilting motion may be varied
at will. The invention admits of general use at will. The invention admits of general use,
but is of peculiar value in reference to swing used for recreation and comfort, and in which tilting motion
game Device.-F. W. Moseley, St. provide a puzzle of that type which is manipu provide a puzzle of that type which is manipu-
lated by the hands of the operator to bring rolling objects to predetermined positions,
wherein magnets are employed at the various wherein magnets are employed at the various
stations for the rolling objects, and to prostations for the rolling objects, and to pro
ide rolling objects attractable by the said magnets.
toy.-W. F. Schoenhut, Philadelphia, Pa The aim in this instance is to provide a toy
in the form of human or animal figures having movable body parts, to allow a child to con veniently and readily change the position of he body parts relative to each other, with to suit the mood of the child.
PUZZLE.-R. W. Kemp, Jr., New York, N. Y. In the present patent the invention re
lates to puzzles, the more particular being to produce a device provided with rolling bodies and so arranged as to enable the opera-
tor, by a little skill, to place the rolling tor, by a little skill, to place the rolling
bodies in various predetermined positions.

Pertaining to Vehicles.

AUTOMOBILE DRIVING-GEAR. - R. S McIntyre, Riverside, Cal. The invention per-
tains particularly, though not necessarily, to tains particularly, though not necessarily, to a means for driving motor vehicles, in which
a countershaft is employed with the engine or motor by certain means for driving the
shaft and for changing the direction of shaft and for changing the direction of
revol ution, and connected with the rear or revolution, and connect traction wheels of the vehicle by means with the traction wheels.
FRAME FOR AUTOMOBILES.-E. SANCHIS, bject of the invention is a system of motor car with three or four wheels characterized by the special construction of its frame and
its method of suspension. These arrangements permit of doing away with the ordinary construction of car-body while giving the driver's seat the form of seats used for large carriages,
of suspending it comfortably and bringing to the driver the mechanism of the control and steering gears, which can be arranged in the same manner as a lime vehicle and withou the tri-car, while giving it definite solidity.
Harness.-W. H. Sneed, Pensacola, Fla The purpose of the inventor is to provide shaft
supporting collars, or shaft holders for vehicles supporting collars, or shaft holders for vehicles,
adapted for attachment to the saddle straps,
o constructed that in harnessing a horse t and faciitating the work, since necessity of backing the animal to a predetermined position the shafts is not necessary.
NUT-LOCK.-D. B. Hanlon, New Liberty Ky. The invention relates particularly to im-
provements in locking devices for nuts on provements in locking devices for nuts on
vehicle axle skeins, an object being to provide vehicle axle skeins, an object being to provide
a nut lock that may be readily and quickly a nut lock that may be readily and quickly
adjusted for locking the nut in position and as readily detached when
MOTOR-VEHICLE
MOTOR-VEHICLE STEERING-GEAR.-W E. Slatel, San Francisco, Cal. In its pre orred embodiment the steering road wheels cylinder ; the admission or exhaust of fluid pressure to and from the same being under venient to the driver, and the fiuid pressur being stored in the reservoir which in turn is charged by a pump coupled with the engine
of the vehicle or with some other suitable of the vehicle
driving element
COLLAPSIBLE BABY-CARRIAGE.-G. A. Svanberg, Fort Lee, N. J. The principal bject of the inventor is to provide a carriage re cart propelled by han, of which the parts are few and arranged to be conveniently
packed and folded so as to occupy but a small compass and which will then be in condition to be conveniently, quickly, and easily readjusted in operati
in place for use.
Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each. Please statite the name of the patentee, title of the invention, and date of this paper.

FMf (1)
 Notes andQueries. and

 HINTS TO CORRESPONDENTS. and Address mist accompany all letters or arno antention Fill be pactid thereto

his turn.
Buybrs wishing to purchase any article not adver-
tised in our columns will be furinikhed with
addresses of houses manufacturing or carrying
the same. houses manuracturing or carrying
Special $\begin{aligned} & \text { Britten Information on matters of personal } \\ & \text { rather than general interest cannot be expected }\end{aligned}$
 Minerace. sent for examination should be distinctly
marked or labeled.
(10587) W. B. M. says: Will you kindly answer the following inquiry? Is the
weight of water in a boiler "under steam pressweight of water in a boiler "under steam press-
ure," additional pressure on bottom of boiler? s the result the same when the water is above a good belt dressing? A. The weight of wate in a boiler under steam pressure is additional pressure on the bottom of the boiler, and the
result fs just the same when the water is result is just the same when the water is
above the boiling heat. Heating water does above the boiling heat. Heating water does
not change its weight. One-half neatsfoot and one-half castor ofl makes a good belt dressing. (10588) C. S. says: I have a blower making 100 revolutions per minute; discharge
pipe is 24 inches in diameter; the blower is used for a pneumatic cash system of 75 stations. Now I would like to know if I can dis-
charge the exhaust air from the blower into charge the exhaust air from the blower into
my smokestack without interfering with the ny smokestack without interfering with the
draft of my furnaces. I have in use two boilers, 125 horse-power each; the stack
square, 3 feet x 4 feet 6 inches, and also ha an offset a little above the center of the stack. The only place where I could exhaust into boiler fiue, that would be at the bottom of the stack. If I can't exhaust in this place, I
would have to carry a line of pipe up on the would have to carry a line of pipe up on the
outside of the building to a point above the outside of the building to a point above the
boiler fiue. Which would be the best? And would I need an elbow in the stack, so the air
shoots up, or is it unnecessary? shoots up, or is it unnecessary? A. You do
not give the height of your stack, nor the velocity, pressure, and volume of the air from the Root blower, so that it is impossible for us to make any exact calculation; but unless
you have a draft very considerably in excess of what you actually require when forcing your boilers, it would not be wise for you to discharge the blower into the stack, because that
would have the effect of materially reducing the size of your chimney. On account of the distance of the stack from the boilers, it is
more doubtful if you have the draft to spare In case you try the experiment, insert the discharge pipe from the stack, with an elbow pointing upward. (10589) C. J. S. says: How long is the scaling ladder in use in the New York Fire Department, and where was it invented,
and how long is it in use in Berlin? Which and how long is it in use in Berlin? Which
is more improved-New York or Berlin? A. The scaling ladders used in the New York Fire
Department were first used in 1883, and they
run from 12 to 20 feet- $12,14,16,18,20$. At about the first time they were used, a very
successful rescue was made by Chief of Battalion Binns. We have no information relative to the scaling ladders in use in Berlin, except that they are used. In general, we may say American-built fire engines are the best made, and we have never heard it ques-
tioned that the secondary part of the fire equipment was any less good. Owing to the methods of construction employed abroad they
have fewer fires, therefore there is no such have fewer ires, therefore inere is no such
demand for improvements in fire apparatus as
(10590) O. N. writes us: Is a 16 candle power bulb frosted more luminous than one that is not frosted? That is to say, will on thecande-power frosted bulb give more light
than one that is not frosted? A. An incan descent electric lamp with clear glass bulb will emit more light than one with a frosted bulb. The bulb cuts off light. No arrange flament. It is the filament which gives the light, and not the bulb. Even a bulb of clear glass absorbs some light. One of partly op
glass will, of course, absorb more light.
(10591) N. A. N. says: Will you please decide if there is a difference between a mile
square and a square mile? I hold that a mile square is a mile around $i t$, and a square mil is four miles around it. A. A "mile squave" and a "square mile" have each the same area but the phrases have very different meanings A mile square is a figure one mile on
side, and all its corners right angles. side, and all its corners right angles.
square field one mile on a side is a mile square A square mile contains 640 acres, and mas be in any shape whatever, circular, rectangula etc., or of any irregular form.
(10592) F. A. F. asks: Kindly answer the following mathematical problem to set you $01 / 4$ inches in diameter, $61 / 2$ inches high; the question is, How many pellets or buckshot $1 / 4$ inch in diameter will this globe or aquarium hold? A. The problem you send us may ad-
mit of a mathematical solution, but so mit of a mathematical solution, but so far as
we know it only admits of solution by experiment. Fill the globe with shot and count
moly admits of solution by experithem. The globe is apparently an irreguia inches. This is not a spherical as $61 / 4 \times 61 / 2$ shape is not determined by two dimensions only. The rate of curvature of its parts is it be assumed that the dimensions only. I axes of an ellipse, then the solid is an ellipsoid
of revolution and its form is definitely known of revolution and its form is definitely known.
But it can hardly be assumed that a glass blown by ordinary processes of the sho is an ellipsoid of sufficient accuracy to base a mathematical calculation upon. If its solid contents shimply are known, the number
spheres which it would contain could not eve then be calculated without more data. And if the problem were solvable, what would be the use of doing it? We are fond of working cal value, and though we sometimes work ou problems for correspondents, which are simply puzzles, we always feel that the time is misspent, since we are beyond the age when we d
such work simply for mental (10593) W. H. asks: I would b obliged to you for a little information on fol-
lowing: Suppose we take a motor, and from the same motor get the power to rum a dyna mo, and place both pieces of machinery in eceptacle from which we could extract th air, and therefore form a vacuum. Do you
think that we could get more return for the power expended, on account of relieving both depriving the bearings of the oxygen, would they be less liable to heat? A. We know no reason to suppose that a dynamo will perform than in the open air. This idea has been ad vanced very many times. We usually reply that any one can easily try the experiment
and find out if it be so. Nor has oxygen anything to do with the heating of bearings. is as operative in a vacuum as in the air is as operative in a vacuum as in the air
The friction of the air retards the motion of a machine somewhat. This retardation would be absent in a vacuum. The work of pumping the air out of the receptacle and maintainthat this would cost more than overcoming he friction of the air
(10594) E. C. R. asks: If a sealed glass lobe containing atmospheric air is weighed in air, and then a vacuum is produced in said
globe, and the globe reweighed, will it weigh the same, or more, or less than when filled with air? All other conditions assumed to be equal, and also assumed that the experimen is mechanically possible. A. If a glass globe
be weighed with air in it, and the air be then pumped out, the globe will weigh less than it did with the air in it. Air has weight just a not only mechanically possible, but nearly ever high school student in the country who studies physics performs it. It is the usual method of determining the weight of air.
(10595) C. R. S. asks: 1. I understand that a pure red pigment should reflect only those lengths of waves which would give the
sensation of red. Similarly with green and
violet pigments. Do we possess such pig
ments? And further, in the ments? And further, in the case of inter we pigments which would give waves of nearly one length, or with the orange pigment a re lection of waves confined between the red and green, etc.? A. We probaijy have no perfectly pure colors in pigments, but the aniline dyes vermilion, emerald, and IIofnis:n's violet RB come very near it. Any pigment may be a
combination of two or more pigments, and combination of two or more pigments, and give a color corresponding very closely to a
color in light which has but one wave length alor in light which has but one wave length.
a compound color may appear just like a simple color until it is analyzed. 2. Explain instead of black, as would meed to be thiole result. A. Red and blue give purple, as the should, and not black.

NEW BOORS, ETC.

a Manual of Hydraulics. By R. Bus quet. Translated by A. H. Peake. New York: Longmans, Green \& Co. Price, $\$ 2.10$
The price of coal has risen so steadily that the ratio of the efficiency of steam engines to constant, in spite of their wonderful improvement in construction and design. This has power as a convenient energy source, especially powe the developments in electrical science have enabled energy to be conveniently transmitted from the spot where it is produced to
the region where it is needed. This book exthe region where it is needed. This book ex-
pounds the principles underlying the use of pounds the principles underlying the use of
water-power, and discusses the application of water-power, and discusses the application of
these principles to almost every type of hy draulic prime mover in commercial use, showing the relative merits of each type and the ones, and only a very are simple arithmetical ones, arithmetic and geometry is necessary in order that the whole of the many examples may be followed. The measurements have aft been changed to
"British units," and the constants occurring "British units," and the constants occurring in the various formulse modifled to suit the
reduction. The book occupies the middle reduction. The book occupies the middle
ground between the popular descriptive work round between the pop
and the abstruse treatise
Theory and Pbactice of Pianoforte Building. By William B. White.
New York: Edward Lyman Bell.
8vo.; cloth; 160 pages; illustrated. 8vo.; cloth
Price, $\$ 2$.
The development of the American pianoorte is a study which is interesting to the
artisan as well as to the pianist, since the artisan as well as to the pianist, since the
skill of each re-acts upon the work of the other. There has not been wanting a number
of writers who have treated of the history of writers who have treated of the history of the subject, but an exposition of the cor-
rect principles of design has not hitherto act principles of design has not hitherto form that possesses permanent value to the American manufacturer. "The Theory and pore than two years of conscientious study are than two years of conscientious study in a concrete form. The general outline of the ook can be explained with little detail. After short historical sketch, follows a general a short historical sketch, follows a general
tatement of the laws that govern the propagation and transmission of sound. This eads to a concise explanation of the peculiariles of stretched strings and their behavior nder varying conditions. From this it is but their dimensions, and the manner in which they arome the agents of a sound production in the instrument. The next department is that resonance and the resonating apparatus of the instrument. The framing that holds gether the elements is next subjected to analysis and explanation, with the mechanisms of touch and percussion. The volume closes
with the draughting of scales, and the calculations for shrinkage that are rendered necesary by the vagaries of cast iron.
The Steel Square Pocket Book. By Dwight L. Stoddard. New York: The Industrial Publishing Company.
32mo.; cloth; 159 pages. Price, 50 cents.
Many books have been written upon the steel quare, but one of pocket size will be met with
or by all who use the tool. Although in this oy by all who use the tool. Although in this
little volume it has not been attempted to describe all the various operations that can be erformed with the steel square, the endeavor made to place those that it does deal with before the eye by illustrations rather than to
confuse the mind by complex printed descriptions.
THE

The Architects' Directory and Specifi-
Cation Index for 1907. New York: 192 pages. Price, $\$ 3$. This directory, known among architects, manufacturers, and dealers in building ma-
terials as the Red Book, has just come out erials as the Red Book, has just come out
or the year 1907 , and is gotten up in a very cor the year 1907, and is gotten up in a very
commendable manner. The general list of architects shows an increase, and the change of addresses and of firms has been very conderable during the last year. The activity rearrangements among the members of the pro-
fession. The list of architectural socleties has

