long to perform its duty, for it is easy to see the great advantage to be derived from the use of an oil having every drop impregnated with solid lubricating matter This seemingly simple problem, however, is one that has until lately baffled engineers of experience but it has now been found that amorphous graphite when reduced to an impalpably fine powder, when mixed with oil in the proportion of about one tea spoonful to the pint of oil, will remain in perfect sus pension long enough to feed through lubricator tubes without clogging, thus causing every drop of oil to carry its mite of graphite.-The Railway and Engi neering Review.

BLOOD PRESSURE AND MENTAL CONDITIONS

In addition to those bodily movements which ar called "voluntary," various bodily phenomena which are clearly involuntary accompany violent mental ex citement. The blush of shame, the distinctive flushes of joy and of anger, the pallor and sweat of fear, the tears of grief, and the "creeping" of the flesh provoked by horror, are familiar examples. The respiration is quickened by joy, and retarded by anxiety, and the feeling of relief finds expression in a deep sigh. Violent emotions often disturb the digestion. The heart "bounds with joy," "is paralyzed by horror," "leaps to the throat" in terror. The connection between the heart and the emotions is so intimate that the heart was long regarded as the seat of the soul.
Most of these involuntary physical concomitants of mental excitement are brought about by a special part of the nervous system, the sympathetic nerve and it branches which ramify to every part of the body. The best known branches are those that govern the dilata tion of the blood vessels, which are profoundly affected by mental states. These phe nomena are susceptible of ex act quantitative determina tion by means of a method devised by the Italian physi ologist Mosso. The result is fairly accurate measurement of the variation of blood sup ply in the brain. The subject is laid on a board which is balanced on a fulcrum at the center of gravity in the man ner illustrated in the accom panying engraving. When th subject is quiet and undis turbed the board lies horizontal. Now, if an unpleas ant sensation or emotion is induced in the subject his head is involuntarily elevat ed, indicating diminution in the quantity of blood in the brain. An agreeable sensa tion or emotion produces the opposite effect.
In the course of the last twenty years, a great many experiments of this characte have been made by many in vestigators, and have led to substantially identical results.

The method of experiment should be adapted to the character of the subject. In many cases the feeling of pleasure can be aroused by offering a coin or other gift. At the moment of presentation the head-end of the board is tilted sharply down, indicating a sudden rush of blood. Then if the gift is taken away, with the explanation that it was presented in jest, the blood vessels contract and the head-end is elevated. Similar results are obtained by giving students favorable or unfavorable reports of examinations, reading poems to persons of fine sensibilities, etc.
There are great differences in the intensity of the physical effects of various mental processes. Difficult tasks in mental arithmetic, performed in private, cause only slight contraction of the blood vessels but the same calculations made in the presence of several persons, especially persons regarded with awe, cause great contraction. In general, emotional excitement, which common experience proves to be more fatiguing than purely intellectual activity, also affects the board more strongly.
Like many other modern discoveries these revelations are not absolutely new. Variations in the pulse were regarded in antiquity as indications of mental perturbation. Nearly 2,500 years ago Erasistratus, by feeling the pulse of the son of King Antiochus in the presence and in the absence of his young and charming stepmother, successfully diagnosed the young prince's puzzling malady as an "affection of the heart."

Severe bodily pain is commonly attended by alterations in the pulse and the pupil of the eye. This method of ascertaining whether a patient's suffering is as

balanced board osed to ascertain the relation between blood presbore and psychical conditions.
the sea, certain earth tilts and tuffis which had formerly been submarine and were now at a height of 4,500 feet. All these indicated a tremendous uplift, sufficient to cause greater faulting in the original continent. The rivers of Fiji were of comparatively youthful development, and even at present passing through their cañon cycle. Many beautiful examples of hanging valleys were observed.

The Scientific American Trophy.
The Scientific American Trophy is now on exhibition in the window of Messrs. Reed \& Barton, 32d Street and Fifth Avenue, New York. It is attracting much attention. It will be competed for at St. Louis October 22, 1907.

Change in the Time of allowance of United States

 As most inventors know, it has hitherto been the practice of the United States Patent Office to issue patents on inventions three weeks after the date of allowance on payment of the final government fee. The Commissioner of Patents has given instructions that hereafter the period between the date of allowance and the issue of the patent shall be four weeks.Farmers have always considered that hogs should be turned loose in an orchard. By picking up the windfalls they destroy many insects, whose presence is often the cause of the fall. It is stated on good authority that they are very destructive to the larvæ and pupæ of the codling moth, and will grow fat in an infested district.

A UNIVERSAL ABTRONOMICAL CLOCK

by dr. Alfred gradenwitz.
The astronomical clock which is illustrated herewith is a most marvelous example of horological and mechanical skill. It was designed and constructed by Christian Reithmann, astronomer and scientific mechanician, at Munich, and involved four years of work (not including two years of preparatory calculation; the mathematical rate calculations were worked out to from six to ten decimal places, in order to dispense with any future readjustment of the works). It is intended for the tower of the new Munich town-hall, and pending the completion of this building has been exhibited at the German Museum of that city.
This clock, the decorative part of which was exe cuted by Prof. Otto Hupp, has the form of a threetower structure, and is fitted with thirteen artistic dials. The lower part of the construction, in front of which there is a projecting balustrade, together with the planetarium, is made of stained wood, and the middle and upper parts of ornamental gilded copper. An enormous number of wheels was required to per form the manifold functions of the clock, the planetarium alone comprising no less than 400 wheels with an aggregate number of 20,000 teeth, in order to repre sent with astronomical accuracy the revolution round the sun of the eight main planets and their satellites.
The central dial of the clock consists of twelve parts Two of the hands will indicate the local time of Munich, and a third the mean European time. Adjoin ing this central panel is a polytopical clock, comprising \& twenty-four-hour ring, the hours of the day being marked in white, and those of the night in black figures On another ring surrounding the whole there are marked in artistically arranged pan els the names of the eighty principal cities of the world Each of these panels is pro vided with a golden arrow pointing toward a given part of the ring, which bears the Roman figures, thus allowing the local time of the city in question to be read at any moment. All of the dials and hands are real masterpieces of art.
The main dial to the left of the polytopical clock is th astrolarium, showing th actual position of the sun and moon among the con stellations, as well as the right ascension, declination and longitude of these bodies. The dial of the astrolarium comprises several movable rings, one of which gives the nodal position of the moon's orbit, the position of perige and the distance of the moon Whenever the sun and moo meet in one of the nodes o the lunar orbit, there is known to occur an eclipse of the sun; if, however, the moon at the same moment enters the earth's shadow, it will traverse the latter producing an eclipse of the moon. The motions of the moon and sun are represented by Mr. Reithmann's mechanism with their characteristic irregularities, hus reproducing with absolute accuracy the relativ positions of the two bodies, and the times of eclipses. On the inner part of the astrolarium dial there ar shown the phases of the moon and seasons of the year as well as the length of day and night for the actual de A smaller dial on the lefthand tower will mar sidereal time, which is known to correspond to two uccessive passages of a fixed star through the meridian. This time is the most important to astronomers, allowing the mean time (according to which our clocks are adjusted and regulated) to be calculated.
The calendarium dial, to the right of the central dial, will indicate automatically the day of the week and the month, as well as leap days and leap years, while by means of an extensive mechanism the mova ble holidays are readjusted automatically, on the las day of December. The same dial further comprises two smaller dials, the apertures of which are opened more or less according as required for illustrating the duration of visibility of the sun and moon above our horizon. The rising and setting of these heavenly bodies are represented as well. The phases of the moon are likewise shown above a crowing cock (marking the hours) on the top of the middle tower. On the lateral tower of the clock, above the calendarium, there is marked true solar time, that is to say, the time given by sundials, and which corresponds to two successive passages of the sun through the meridian. A movable stellar map with the various constellations

