

Stoney Creek Bridge, Selkirk Range, on the Canadian Pacific.

Canadian Pacific Railroad Bridge Across the Sknzzy River, Fraser Canyon.
hew bailroad combtrdotion im canada and the morthwret.-[See page 10.]

SCIENTIFIC AMERICAN

ESTABLISHED 1845

MUNN \& $\mathbf{C O}$.
Editors and Proprietors
Publishod Woekly at
No. 361 Broadway, Now York

TERMS TO SUBSCRIBERS

 THE SCIENTIFIC AMERICAN PUBLICATIONS

NEW YORK, SATURDAY, JULY 6, 1907.

The Editor is always glad to receive for examination illustrated articles on subjects of timely interest. If the photographs are sharp, the articles short, and the facts authentic, the contributions at regular space rates.

OUR NAVAL FORCES IN THE PACIFIC.

When the British Admiralty decided, a few years ago, to call home the squadrons which she had been in the habit of maintaining on the Halifax and West Indies stations, reducing the garrisons both at the famous Nova Scotian fortress and also on the Island of Bermuda, the step was interpreted by the world at large, and very properly so, as an evidence of the cordial relations existing between Great Britain and ourselves. The concentration of the weightier portion of a country's fleet in any particular place may be taken as in dicating where that country considers that its interests are, for the time being, most threatened. It is equally true that the withdrawal of naval forces is invariably accepted as indicating that the relations of the two powers affected are thoroughly amicable.

We have heard a great deal of loose talk, lately, about the possibility of a war with. Japan. Had the Japanese been a less highly civilized people, this irre sponsible chatter might easily have blown the war spirit of that warlike people to a white heat long before this. We hold it to be a proposition indisputable, that if the Japanese press and certain Japanese officials had discussed the possibility of war with the United States with as much reckless abandon as a certain daily journal in this city and certain men of more or less prominence in the country have done, Congress would long ago have resounded with threats and denunciations, and not a small section of the country would have been eagerly awaiting the call to arms. Fortunately, the governments both of the United States and Japan have been entirely unaffected by this foolish and utterly baseless talk of possible conflict; and that the Navy Department, at least, is satisfied that Japan is friendly, and intends to remain so, is proved by the fact that our naval forces in the Pacific have been reduced to a very conservative peace foot ing. By way of proving our proposition, we submit below a statement of the number and type of the ships of our navy which are stationed at present in those waters which the alarmists would have us believe are shortly to witness a disastrous naval conflict.

Stationed on the home coast, then, we have at pres ent in commission not a single battleship. Of the three which are there, the "Oregon" is just now undergoing reconstruction; the "Wisconsin" is repair ing; and the new "Nebraska," very much behind her date of completion, is only now getting ready to go into commission.
We have no coast defense vessel in commission, the "Wyoming," which is the only vessel of that type at present on the Pacific coast, being now at the yard undergoing repairs. The most effective ships in commission on the coast are the three semi-armored cruisers "Charleston," "St. Louis," and "Milwaukee," vessels of 9,700 tons and 22 knots speed, protected by a partial and light belt of 4 -inch armor and a 3 -inch deck, and carrying a battery of fourteen 6 -inch guns. Two more powerful armored cruisers, the "California" and "South Dakota," of 13,400 tons and 22 knots, protected by a 6 -inch belt, and armed with four 8 -inch and fourteen 6 -inch guns, will shortly be placed in commission, the "California" during the present summer, and the "South Dakota" during the autumn. We have also in commission on the home coast the protected cruisers "Chicago" and "Albany," old boats, built respectively in 1885 and 1897, and the gunboat "Prince ton." In the same class, but out of commission, are the cruisers "Boston" and "New Orleans" and the gunboats "Bennington," "Marblehead," "Petrel," and "Wheeling." Of destroyers on the coast we have in commission the "Preble" and "Perry," and out of commission the "Paul Jones"; while there are three tor pedo boats in commission and two out of commission

Out of commission also are the two submarines "Grampus" and "Pike." Among the fleet auxiliaries we have in commission the collier "Saturn" and the transport "Buffalo," while out of commission are the transport "Solace" and the hospital ship "Relief." Down in Central American waters is stationed the gunboat "Yorktown."

On the Asiatic side of the Pacific the strength of our fleet lies in its armored cruiser squadron, which consists of four vessels of the "California"" class, namely, "Colorado," "Maryland," "Pennsylvania," and "West Virginia," all of which are in commission. In addition to these we have the old monitor "Monadnock," and out of commission the monitor "Monterey." In the protected cruiser class the United States is represented by the sister vessels "Cincinnati" and "Raleigh," built in 1892, each carrying eleven 5 -inch guns, and three sister ships "Denver," "Chattanooga," and "Galveston," of 3,200 tons and $161 / 2$ knots speed, each armed with ten 5 -inch guns; while two other vessels of the "Chattanooga" class, the "Cleveland" and "Denver," are now en route to the Asiatic station. Our representation in gunboats is quite numerous, but if we exclude the comparatively modern "Concord," "Helena," and "Wilmington," of between 1,400 and 1,700 tons, the other seven, which are small and very much out-of-date gunboats, captured from Spain during the last war, must be reckoned as of little value. The Asiatic fleet also includes five destroyers, two of which, the "Barry" and "Chauncey," are in commission, and the others in reserve. The fleet auxiliaries attached to this station include three colliers and three supply vessels in commission, and a transport and a collior out of commission at Cavite in the Philippine Islands. Down in the south mid-Pacific, at Samoa, is stationed the gunboat "Annapolis."
In summing up, then, it will be evident that the Navy Department of this country has no apprehension of any near or even remote hostilities, inasmuch as there is not a single battleship in commission, and our fighting strength is represented only by the six armored cruisers of the "California" class, the three semiarmored cruisers of the "Charleston" class, eight small protected cruisers from ten to fifteen years of age, four modern gunboats, four destroyers, and three torpedo boats.

THE ENEMIES OF STRUCTURAL STEEL.

Too much cannot be said of the excellent qualities of structural steel of the standard composition and workmanship. Its reputation for the combined qualities of elasticity, toughness, resistance to compression, and shear and durability has been established by years of useful duty in a thousand different forms and under a thousand different conditions. Steel, however, is subject to two insidious forms of attack, the peril of which lies in the fact that the damage is done under conditions where inspection is difficult and in many cases impossible. We refer to rusting and electrolysis.
The destructive effects of rusting are so well understood, that the efforts to protect the steel commence at the very time that the material receives its finishing pass in the steel mills. In all well-regulated works the finished work receives a coat of protective paint before it is placed in the storage yard, or shipped to the purchaser. If the paint be applied to thoroughly clean surfaces, quite free from rust, and if the steel work be again carefully painted before it is inclosed in the concrete, terra cotta, or other fireproofing material of the building, and the space between the fireproofing and the steel is carefully filled in with cement, experience has shown that it will probably be safe against deterioration by rusting for all time to come. But these theoretical conditions are seldom perfectly fulfilled. Too often the finished shapes at the mill are exposed to the moisture and acids of the atmosphere long enough to take on a coat of rust; and unless this be very carefully removed, the mere application of the ordinary paint of commerce will not prevent oxidation from taking place under the paint on the surface of the steel. In proof of this, we direct attention to the case of the reconstruction of the Mutual Life Insurance Company's building in San Francisco, when, in tearing down the six upper stories, an excellent opportunity was afforded to observe the behavior of structural steel in a steel and masonry building. We made editorial reference to this subject in our issue of March 16. From the account there given it seems that, where the steel had not been thoroughly cleaned before painting, there were occasional instances of some rust under the paint, and although these were rare, they indicated the necessity for a thorough cleaning of the steel before it is painted. Furthermore, there is a sense in which the preservative paint may defeat the very object at which it aims, by serving to conceal badlyrusted surfaces from inspection. The ideal protective covering, both for steel which is to be inclosed from view, and that which will be permanently exposed to the attack of the weather, would be a covering which, like-varnish, would be sufficiently transparent to enable the condition of the underlying steel to be carefully
inspect d. If some composition could be produced, which combined transparency with protective qualities, a long step would be taken in the direction of rendering all steel work, whether exposed or concealed, imperishable.
The problem of the electrolysis of steel is one that we have always with us. Interest in the question was recently revived by the presentation before the American Institute of Electrical Engineers of the experiments of Mr. Knudson of this city, an account of which will be found in our issue of April 13. In these experiments three lengths of wrought-iron pipe were set in three blocks of Portland cement sand concrete. When the blocks were three years old, one of them was placed in a tank of sea water, another in a tank of fresh water, and direct current was fed to them, pieces of sheet iron being placed in the tanks to act as negative electrodes. The third block was placed in sea water; but no current was fed to it. After the blocks had been immersed for thirty days, the third block was found to be in perfect condition and the embedded pipe perfectly bright; but the two blocks to which current had been fed had developed cracks durng the test; the pipes were considerably corroded; and the concrete had so greatly deteriorated, that it could be cut with a knife. In drawing deductions from this experiment it must be remembered, of course, that the conditions were unusually severe; but they were not so severe but that the ever-present danger of electrolysis is strongly emphasized. We mention this case, because it not only illustrates the action of electrolysis upon steel work as shown in the corrosion of the embedded pipes, but it indicates how increasingly necessary it is, in these days of reinforced concrete, to prevent the leakage of current from conductors. Although the evils of electrolysis have undoubtedly been greatly exaggerated, we believe that the mischief done is more far-reaching than the electrical companies and the owners of large electrical power plants are willing to admit. The remedy lies in more careful insulation. In the case of armored concrete buildings or buildings of skeleton steel, care should be taken to absolutely insulate the foundations and all that portion of the building which lies below the line of saturation of the earth. Much of the insulation of underground electrical conduits is undoubtedly very faulty, and it has become a question whether the thorough insulation of all forms of conductors should not be made the subject of legal enactment.

SIX MONTHS ELECTRIC OPERATION OF THE

GRAND CENTRAL STATION.

The results of electric operation at the Grand Cen tral station and terminal yard, as shown during the six months which have intervened since the electric current was turned on, have been very gratifying. Already the new system has loosened up the congestion, practically abolished the delays to incoming and outgoing trains, and restored the spirits and good temper of the company's patrons to their normal reading.
In proportion to the size of the yard, there was no other terminal in this country, or probably in the world, which was placed at such a disadvantage, from the operator's standpoint, as the Grand Central terminal. The area was so restricted that, outside of the express and mail cars, which of necessity had to be unloaded there, it was possible to store very few trains in the yard, and therefore the majority of the trains, after discharging their passengers, had to be run back over the main lines for a distance of $51 / 2$ miles to the Mott Haven yards. Furthermore, these yard move ments had to be made in the midst of the regular train movements, and all of them through the two and a quarter miles of the Park Avenue tunnel, which was as badly steam- and smoke-obscured in winter as it was insufferably hot in summer.
At the present time, in spite of the inexplicable, but seemingly inevitable, delay of the New York, New Haven and Hartford Company in getting its electric system into operation, the New York Central Company, by the use of its multiple-unit local trains, and the almost complete substitution of electric locomotives for steam locomotives on its through trains, has made a vast improvement in conditions, both in the tunnel and the station yard. The atmosphere in the tunnel is greatly improved, and were it not for the continuing nuisance of the New Haven steam locomotives, the air of the tunnel would to-day be absolutely clear and sweet. The reduction in the number of train move ments in the yard and station has been remarkable. Formerly, every time a steam train entered the station and left it, there were four separate operations connected with the train, involving eight signal operations. First, the train pulled into the station; sec ondly, a locomotive backed up to the rear end of the train; thirdly, the train was pulled out from the sta tion; and fourthly, the locomotive which brought the train in backed out of the station. But the multipleunit train merely enters the station and leaves it again, the only transfer being that of the motorman, who walks from one train to the other.
When the electric operation was commenced in De
cember of last year the total number of movements to and from the Grand Central terminal was, according to the official time table, 1,213 . By the introduction of electric operation, the total yard train movements have been reduced by 690 . It is this reduction more than anything else which has loosened up the congestion that completely disorganized the schedule during the autumn and early winter of last year.
Over and above the adjustment of the train schedule, the station and yard have been greatly improved in other respects, and notably in the reduction of noise and the abolition of steam, smoke, and cinders. The multiple-unit trains, as used in local service, and even the large 97 -ton locomotives, run with a smoothness and quietness which are very noticeable. When that greatly hoped for, but long-deferred day arrives on which the New Haven Company shall have been able to make its high-tension system work, and that company's steam locomotives shall have been withdrawn, there will be very little visible or audible evidence of the existence in this part of the city of one of the greatest terminal stations in the world.

ORIGINAL METHODS OF TONING DEVELORED PHOTOGRAPHIC PRINTS
 \section*{by miluon b. punnett.}

The desire to obtain colors other than those given by development per se has led the manufacturers and users of bromide and so-called gaslight papers to resort to different methods. Of the many methods used, the one that has found the greatest application is the so called sulphide method, of which the Velox redeveloper may be taken as a good example. About twelve years ago the writer recommended in one of the photographic magazines a similar method for obtaining sepia colors on lantern slides. Sulphide tones properly made are permanent. Sufficient time has elapsed since their introduction to thoroughly prove this. Facility of production is also in their favor. The tones are, however, not very varied, nearly always being some shade of sepia. Experiments to obtain some other permanent sulphide tone were made by the writer with what appeared to him to be'a fair degree of success. It was found when finished prints made on Velox or Nepera bromide paper. (I mention these papers because my experiments were confined to them) were immersed in a solution of ammonium sulphocyanate and sodium sulphide, a good purplish tone, very often equal to a gold tone on printing-out paper, was obtained
The following formula has proved the most satisfactory of any tried:

Immerse the fixed and washed (and preferably dried) print. The toning action begins almost immediately, ranging through the purple tones first and then into the sepias.
Allow the print to remain in the toner till the desired color is reached, then wash fifteen minutes in running water and dry às usual.
With the bath at 70 deg. to 80 deg. F., prints will tone in from fifteen to forty minutes; at 90 deg . to 100 deg. F. five to fifteen minutes will suffice, but it is not advisable to use the bath at a higher temperature than $100 \mathrm{deg} . \mathrm{F}$., owing to its softening action on the film.
Prints developed with Velox N. A. developer tone quicker than prints developed with ordinary developer. The rapidity of the toning may also be increased by adding more of solution B, but not more than one drachm should be added to the original solution at one time, as this would render the bath.too alkaline and soften the film.

It works best when freshly mixed, and after forty minutes or so more \mathbf{B} solution may be added.
The old bath may be kept for future toning, but before use it should be filtered or decanted to remov the white precipitate formed, and fresh B solution added, but it should be discarded when it becomes so alkaline as to affect the film.

It will be found that the toning is influenced somewhat by the character of the negative used, different degrees of density in the negative affecting the silver deposit on the print and the subsequent action of the toning solution.
It will also appear that matt papers tone more readily than the glossy, and that purple tones are easiest secured on glossy papers.
It must be confessed that the laws governing the action of this bath are not as thoroughly known as could be desired. Sometimes it will work quite rapidly, and
again under apparently the same conditions it works much slower.

Further experiments have shown that its certainty of action could be greatly improved by mixing with it hypo alum toning solution, made according to the following formula:

H	ounces
Water	50 ounces
Heat to boiling and add	
Powdered common alum	

Allow to stand until cold. It improves by standing. Bath No. 2.

A	1/2 ounce
C	1/2 ounce
Water	3 ounces
B	1 drachm

When B is added the solution is clouded by the precipitated aluminium hydroxide. This precipitate does not interfere with the toning action.
This latter bath (No. 2) yields tones equal to and quite often superior to the former bath (No. 1).

It also smells more strongly of hydrogen sulphide, and it is not advisable to use it where the ventilation is poor. As its action ceases, more of B can be added.
The latter bath has also better lasting qualities. I have known it to tone without adding an additional quantity of B after it has stood over night.

a preliminary bath.

Prints from some negatives when bleached and redeveloped with sulphide solution sometimes incline more to the yellow than is desirable. Having ascertained this fact, colder tones can be obtained on subsequent prints to be toned by using bath No. 1 as a preliminary bath. How long the print should remain in bath No. 1 cannot be stated with exactness, as there are several factors to be taken into consideration; chief among these are, 1 , how much the color given by the bleach and redeveloping method differs from the desired color; 2, how fresh bath No. 1 is. The fresher the bath, the quicker it works. Other things being equal, the longer the print remains in bath No. 1 the colder the tone, In a freshly-prepared bath at the ordinary temperature, even fifteen seconds is enough to effect a change in color in the finished print.
As a general thing, any immersion, even one falling far short of the time necessary to produce a visible effect, is quickly made apparent by the print refusing to bleach as much as it would have done were it untreated, when placed in the bleaching solution.

Prints should be well washed before placing in bleaching solution, and should remain in it from 5 to 10 minutes or until it is certain that the bleaching is completed.

After bleaching, prints should be rinsed free from bleaching solution and redeveloped as recommended in the Velox redeveloper instruction.
What chemical reactions take place in what I would call the sulphide sulphocyanate method of toning I have not investigated far enough to state.

However, hydrogen sulphide is released, and this in its nascent condition no doubt has power enough to attack the silver of the image. It is also certain that other reactions have an effect, for if the ammonium sulphocyanate is replaced by an equal weight of the potassium salt, the toning action is very much slower.
To the question, Why does this method give a different. color from that obtained by simple bleaching and redeveloping with sulphide solution? it might be answered, Because the conversion of the silver is not so complete as in the latter process. In reply would say that it would be hard to imagine the colors obtained on some prints as resulting from a combination of sepia and black.
As they are, the processes described are practical, but there is room for improvement.
To the photographic chemists the reactions involved will also prove worthy of investigation. Bearing on this subject three other experiments which were made are, without doubt, worth mentioning. A developed gaslight paper print partially immersed in a dilute solution of sodium sulphide, toned only on the parts which were exposed to the combined influence of the solution and the air. A print wet with water and used as a cover to a glass containing a sodium sulphide solution toned in the parts exposed to the fumes. When hydrogen peroxide was used to wet the print in place of water, quicker and better results were obtained. With the necessary fuming box this method might prove a commercial possibility.

To Dredge Nevada Placers.

Plans have just been perfected to dredge placers in Nevada on a colossal scale. The purpose is to operate placer mines at Osceola, Nevada. An immense pumping plant and gasoline hoist will be purchased; also two large dredges, capable of removing 2,500 yards of earth a day, are to be installed. Churn drills will also be employed to ascertain the extent of ground that is capable of being worked by dredges.

SCIENCE NOTES.

What is known as the poisonous bean of Java, which caused a number of serious accidents, was studied not long ago by M. Guignard. It appears that a poisonous grain has also been found in France by M. Bertrand, and this is the grain of vetch (Vicia angustifolia) which is used in the Medoc region for feeding cattle. This variety is different from the ordinary vetch (Vicia sativa) and gives a grain which shows an odor revealing the presence of hydrocyanic acid when ground up in water. To isolate the active body, which appears to be a glucoside known as vicianine, the grains are exhausted by cold alcohol. The extract is then treated by ether, which takes off the chlorophyls and the fatty matters. There remains a pasty mass which is taken up by alcohol and the latter deposits crystals of the vicianine. After re-crystallizing in water this body is seen in the form of brilliant colorless needle-like crystals which melt at 166 deg. C. The aqueous solution has a certain action upon polarized light. It appears that the grains of Vicia angustifolia which M. Ber trand observed can furnish about 0.75 part per thousand of hydrocyanic acid. Accordingly it is not safe to use it for feeding domestic animals.

In order to eliminate the disturbing effect of the evere vibrations set up by the London County Council's electric generating plant at Greenwich upon the adjustment of the transit telescope at the adjacent observatory, an ingenious modification of the device gen erally adopted for such purposes has been evolved. Earth tremors such as are set up by vehicular and rail road traffic are damped; as is well known, by means of a mercury trough with an amalgamated metal bottom. But the vibrations caused by the four engines installed in this station are of a much more serious nature, the image reflected in the mercury trough moving in such a manner as to show that the mercury is being sub jected to forced oscillations, while the period agrees with the impulses due to the inertia of the reciprocat ing masses in the generating engines. Consequently the ordinary means for damping these oscillations are abortive. The tremors formerly arising were more or less intermittent, whereas the present tremors are never wholly absent. Instead of using the sau cer-shaped trough, a receptacle is adopted in which the mercury assumes the form of à thin film lying on an amalgamated metal surface, the curvature of which is so slight that the depth of mercury is less than 0.5 millimeter at the center of a circle 15 millimeters in diameter. By this means a perfectly steady surface is presented, in which the reflection is not disturbed by the heaviest vibrations set up when the four engines at the generating station are running simultaneously The viscosity of the thin film is so great that even these long-period oscillations are completely damped out, and a satisfactory solution enabling observations to be effected by reflection in a mercury surface is as sured. The film though still sufficiently fluid to as sume the form of a horizontal plane participates in the motion of the ground like a rigid body, so that there is no relative displacement of the image with respect to the telescope. The committee of investi gation, comprising the Earl of Rosse, the distinguish ed astronomer, the late Sir Benjamin Baker, and Mr J. A. Ewing, appointed to inquire into the effect of this generating station upon the work of the observatory instruments, while satisfied with the efficiency of the above solution of a difficult problem, were not fully convinced as to whether the vibrations exercise any other injurious influences upon the utilization of the instruments, and suggested that a period of two years should elapse before a definite opinion is expressed, the question as to the extent of obstruction through the chimneys or discharge therefrom being similarly deferred. The committee, however, pointed out that the oscillations might have been reduced to the minimum, had the engines installed at the gen erating station been perfectly balanced, the type of plant adopted being eminently adapted to complete balance; but this precaution had not been adopted, and to rectify this error would be somewhat costly. When the outcry arose as to the work of the observa tory being seriously affected, only one half of the de signed generating plant had been installed, and the committee point out that the second section should comprise turbines, which with their attendant gen erators must be of the perfectly balanced type. The height of the chimneys is also restricted to the maximum of 204 feet above ordnance datum. The discharge of the gases from the chimneys is also to be carefully maintained, and must not materially exceed 250 deg. Fahr., while the capacity of the station is not to be extended beyond the contemplated 20,000 kilo watts of the second portion. In this way the commit tee hoped that the troubles which have arisen, while not entirely eliminated, may at all events be reduced to the minimum; and although they deprecated the fact that the site was ever selected for the generating station, they were of opinion that provided all precautions are observed, the work of the observatory will not be appreciably disturbed.

SIMPLE APPARATUS FOR PRODUCING THE MANO

METRIC FLAME.

BY w. w. wiuls.
The manometric fiame is a very attractive experiment in the study of sound. The apparatus and manipulation of this experiment are generally too difficult for high school pupils, but with some notes may be satisfactorily performed even by pupils of that age. Take four pieces of good mirror glass about 8×10 inches (French plate is preferred) and fit them nicely into horizontal grooves above and below on the four faces of a block of wood of the same dimensions (whitewood is suitable). The four edges of the block where the glass plates meet are now passe-partouted with gold tape, which sets off the apparatus to good effect. In the base of the block is fitted a square plug of wood large enough to prevent it from working loose, and this is glued into place. In the center of this plug the upright end of the whirling machine or an ordinary centrifugal machine of the laboratory is fitted, so that as the block whirls it will do so evenly. This will be found to cover the mirror part of the apparatus. With this preparation the idea is to throw the image of the vibrating fiame into the mirror, so a diaphragm is necessary. Take two pieces of smooth whitewood about 6 inches by 18 inches by 1 inch, and near the top end of them take out a circle of 4 inches in diam eter by $1 / 2$ inch deep, so that when the two are fitted together you will have a space there of 1 inch depth. Between the two now place a very thin piece of dental rubber cloth, usually termed dam rubber. Glue it to the wood around the edges and bring it up rather taut. Now place the pieces of wood together with four suit able screws, and glue the seam up, so the chamber will be hermetically sealed. We will now name these two apartments separated by the rubber the "front" one and the "rear" one as we face the mirror block. The fiame coming from the fiame apparatus should strike the mirrors about midway of their height. Through the front chamber at an angle of 45 deg . with the table to which the apparatus is fastened, run a $3 / 16$-inch hole, into which insert a piece of gas pipe 3 inches long. On this fasten the gas hose from the gas cock. Upward from the front chamber run a 3 inch gas pipe, on which fasten a small piece of rubber tubing in which is fitted tightly a 2 -inch glass tube, one end of which is drawn out to a $1 / 16$-inch hole. Now if the gas is turned on and lighted, its height may be adjusted to strike the middle of the mirrors. The distance separating the two may be varied, depending on what is desired. From the center of the rear chamber backward run another $3 / 16$-inch gas pipe 4 inches in length, on which fasten a rubber tube about 3 inches in length. Now if one person is intended to talk or sing into the chamber, this will be enough; but if two or more persons are to do it, a T is necessary, or if more, a three-way or four-way tube will be needed. Generally, a two-way tube will be found sufficient. Now have the singers take their places and sing into the chamber through the tubes, but ber through the tubes, but
be careful that the necessary be careful that the necessary
jar is communicated to the rubber diaphragm by the air column, and this may be best effected by allowing the singers or speakers to set their teeth against the tube held in the mouth. If this is not done, the necessary jar will not be communicated to the diaphragm, and the fiame will not be made to jar or vibrate, and consequently the flame will not vibrate. Now darken the room so that the fiames may be clearly seen, and slowly turn the mirrored block. Sing into the chamber, and a notched band of light will appear across the mirror's face. The lower the pitch the coarser the notch pitch the coarser the notch
will be, and the reverse. The will be, and the reverse. The
tip of the notches. will bend away from the direction of motion. If two pitches are shown at once, they will be represented on the mirror. As many effects may be shown as figures by the Chladni plates. A little experiment will overcome obstacles.
One of the accompanying illustrations shows the apparatus in use, and the other, reproduced from Ganot's "Physics," shows the vowel E sung in two notes an octave apart.
minimum specific. consumption being taken as unity. The same will be the case with the motor which obtains the maximum power with the least weight; this motor will be given the maximuin number of points (100), the others receiving a number of points proportionately less. All motors will be weighed with their carbureters or atomizers and with their complete ignition outfits, but without mufflers, fuel, oil, or grease.
The motor which receives the maximum nurber of points will be the winner, the others following in the order of points obtained.
Any motor which does not go through all three trials under the conditions given, will not be classed. The consumption tests at half-load and no-load will not serve as a basis of classification, unless several competitors obtain the same number of points. The trials cannot be adjourned and, once begun, must be continuous. Competitors will be allowed one day for suitably mounting the motors on the testing benches, and a second day for any preliminary trials which they wish to make. The third day they must carry out the first test of six

A REMAREABLE OUTCROP OF PURE SILVER

II. The specific cost of consumption in francs per horse-power-hour, corresponding to the maximum power. These two bases of valuation will be used for classification with equal coefficients. The motor which shows the least specific consumption will receive the maximum number of points (100); the others will receive a number of points proportionately less, the
bold an international competition for two-cycle automobile motors next October. These motors must develop 8 horse-power as a minimum and 24 horse-power as a maximum; and each motor must develop its maximum horse-power at a speed of not less than 800 revolutions per minute and not more than 1,500 revolutions per minute. The tests will comprise:
I. A six-hour test of the motors at full load.
II. A three-hour test at half load.
III. A three-hour test at no load, at the same speed at which the motor ran at full load.

NOTCHED BANDS PRODUCED BY SINGING THE VOWEL E.
The fuel consumption will be noted during these three tests. Any suitable liquid fuel may be used. The specific cost of consumption will be figured in francs per horse-power-hour, according to the cost of the various fuels at Paris, exclusive of the duty on said fuels.

The basis of valuation will be:
I. The massique power of the motor under the best conditions of operation, in horse-power per kilogramme.
hours' duration, the fourth day the two tests of three hours, and on the fifth day the motor must be taken away.
Competitors will be given notice of the date of their test fifteen days in advance.
The entrance fee will be twenty dollars per motor.
The expense of mounting the motor on the testing bench and the cost of the fuel used must be borne by the competitors.
The competition will take place in the laboratory of the Automobile Club of France. Applications for entrance of motors in this test must be received before July 31, and must be accompanied with the plans, cross-sections, and descriptions of the motors.

A REMARKABLE OUTCROP OF SILVER.

The accompanying photograph pictures one of the most wonderful outcrops of pure silver that has ever come to our notice. The vein was discovered last May near Cobalt, Ontario. Projecting about nine inches above the bed rock, as will be seen by the foot-rule in the picture, it measures six feet in length, while in width it varies from a maximum of nine inches to about four or five inches. A nugget weighing 500 pounds has already been taken out. For our photograph we are indebted to Mr. J. F. Gillis, of Cobalt, Ontario.

London Fires.
From the official return just issued by the London Fire Brigade, we regret to find that the inexcusably thoughtless practice of dropping matches and other lights was responsible for more than 21 per cent of the 3,843 fires which occurred last year in the County of London. Children playing with fire and matches are far less dangerous members of the community, for their antics resulted in no more than 6 per cent of the total number of outbreaks. Unprotected lights gave rise in one way of another to 257 fires, and oil lamps to 148 outbreaks. The continuance of improperly fixed stoves is again demonstrated by 67 fires, to which we must add 98 due to hot ashes and 235 to sparks from grates, giving fireplaces the unenviable responsibility for no fewer than 300 fires. Escapes of gas aided by the insane habit of searching for leakage with lights were the occasion of 134 fires, and defective electric circuits are debited with 100 outbreaks. That faulty wiring, and especially the use of ineffective casing; constitutes a real danger has been recognized by the revised regulations of the Institution of Electrical Engineers, and we hope that architects will. insist upon the adoption of these in all installations with which they are concerned. The disastrous fire a few days ago in Camden Church, Camberwell, is one of the most recent examples of the danger lurking in apparently harmless electric wires, and which are absolutely harmless if only the necessary safeguards are provided.-The Builder.

A NEW AUTGMOBILE RACE TRACE.

The oval race track shown in the large illustration on this page has \dot{j} st been completed at Weybridge, England, and opened for automobile and aeronautical tests. This is the first race track especially constructed for automobile racing anywhere in the world. It was built by the Brooklands Automobile Racing Club at a total cost of about $\$ 500,000$. The distance around the track is $31 / 4$ miles. The track is constructed of concrete, and so banked at the turns as to be perfectly safe for a car traveling at a speed of 90 miles an hour.
£1 is charged non-subscribers for the privilege of weighing and testing a car.
The opening of this track is an important event in the aeronautical world also, as a cash prize of $\$ 12,500$ has been offered for the first heavier-than-air fiying machine to circle it at a speed of not less than 10 miles an hour and at a height of 40 or 50 feet above it.

The Use of a Double Bath in Electro-Gilding.
Almost any solution which contains gold in any great proportion may be used in electro-plating; but to
be dissolved off; and although this quantity is but small for each object plated, every time a new article is put into the bath, some of its outer surface is dissolved; so that at last the solution contains considerable other material than gold.

But while every electro-plater knows the evil infiuence of copper or silver on the gold coating, and endeavors to get as pure gold as possible to dissolve, so as to be assured of the color, few are careful to have the outer surface of the plated object composed of gold that is without any admixture of the baser metrl

The First Racing Car on the New Track, Making Nearly 100 Miles an Hour.
The Opening or the New Weybridge Automobile Racing Track.

In the construction of this motor race course, no less than 350,000 cubic yards of earth had to be removed or shifted, and 35,000 cubic yards of concrete had to be laid. The width of the track is 90 feet. The track is open for the testing of all cars which do not exceed a weight of 2,700 pounds. Such cars can be tested, upon days when there is no special race meet, at their maximum speed for a distance not to exceed 5 miles. No automobile is allowed to stop upon the track. In the event of a breakdown, the machine must be run to one of the refuges provided at different points along the track, where repairs or adjustments can be made. All cars must enter the track by passing through the weighing court, where their weight is taken. A fee of
get the best color effect requires experience and knowledge. Even the most intelligent workman often has, despite all his care, trouble with his bath. Getting a coating is easy enough; but the color is the thing.
One of the most frequent causes of trouble in gilding is, according to a writer in the Deutsche Metall Industrie Zeitung, the employment of only one bath. Gold being so dear, naturally must be used with care; but exactly for this reason is it better to have two baths, because they give a better riesult than only one.
The principal constituents of a gold bath are gold and a solution of potassium cyanide. If copper, brass, or German silver (which the Germans call "new silver") is introduced therein to be plated, some of them will

Such a result can be attained only by first employing an ordinary bath, which, as it dissolves some of the baser metal from the objects to be plated and redeposits a part thereof with the gold, does not deliver a perfectly pure gold coating. If, however, the articles, after having been plated with an alloy containing an infinitesimal quantity of copper or silver, be then placed in a second bath containing nothing but pure gold, this second solution will be able to dissolve little or none of the copper or silver from the surface of the half-plated article; it will remain much purer than the first, and the coat which it gives will consist of gold so pure that it may be said to be practically free from alloy.

PILE FOUNDATIONS FOR TUNNEL TOBES
In a recent editorial on "Tunnel Tubes in Soft Material," we pointed out the necessity of providing adequate foundations for the railway tunnels which are now being built in New York city under the North and East rivers. The question is not by any means a recent one with engineers, although it is only of late that the public has begun to appreciate its importance, particularly with regard to the Rapid Transit tubes below the East River. In this connection, we are glad to note that the condition of these tubes is to be made the subject of special investigation, both with regard to their strength to resist distortion and the necessity of providing for their vertical stability.
Among others who have carefully studied the problem of tunneling through the soft material of our river bottoms is Mr. J. W. Reno, of this city, whose project for double-deck subway construction has more thafi once formed the subject of illustration in this journal. Mr. Reno is of the opinion that some form of anchorage and support is necessary for any tubes that may be built through the mud and silt of these rivers; and he believes that, since it is desirable to avoid the heavy vertical reactions and horizontal torque, which are inseparable from the driving of iron screw-piles of large diameter, as proposed, better results would be secured by driving ordinary 12 -inch piling in the manner described below.
The screw-piles proposed for the Pennsylvania tunnel tưbes below the Hudson River are 5 feet in diameter at the screw and 27 inches at the shaft, and they are to be spaced 15 feet apart from center to center along the center line of the tunnel. It is proposed to put them down by a machine operated by hydraulic pressure which, at the same time that it rotates the pile, also bears down upon it with enormous pressure. The vertical hydraulic pressure upon the head of the pile must have its corresponding reaction against the roof of the tunnel Moreover, the torsional re action in a horizontal plane, necessary to rotate the pile in screwing it down, will tend to force the tunnel out of line lat erally, just as the vertical reaction would tend to lift the tunnel. This will be the more appreciated, when it is remembered that before the tunnel has been lined with two feet of concrete it has a theoretical tendency to rise because of its buoyancy; for its weight is only about 15,000 pounds per running foot, whereas the semi-fluid material it displaces weighs 43,000 pounds per running foot, which gives a buoyancy in the tunnel itself of 14 tons per foot
In the plan herewith il
lustrated, it is proposed to use 12 -inch wooden piles, three or four abreast, at every 5 feet of the tunnel's length, instead of using a large-diameter, cast-iron pile at every 15 feet. The pressure required to force down a standard wooden pile would probably not exceed 20 tons per pile, as compared with a necessary pressure of 100 tons for the cast-iron screw pilethis last being the pressure determined as necessary in the case of test piles, which were sunk by the company's engineers.

For the driving of the wooden piles, Mr. Reno has designed the compact and effective apparatus shown in the accompanying engraving. The pile driver consists of a steel cylinder, large enough to contain a 12 inch pile. The cylinder is provided with trunnions and a hand wheel, by which it can be moved from the vertical into the horizontal position, as shown in the drawing. When in this position the flrst 20 -foot section of the pile is inserted, and the cylinder is then rotated back to its normal vertical position. A pressure of 375 pounds to the square inch, capable of producing 25 tons total pressure on the head of the pile, is then available on a short piston above the pile, within the cylinder, this pressure being secured by an electric-ally-driven hydraulic pump. When the head of the pile has been sunk to the floor of the tunnel, the second section is spliced on and driven in like manner, on the top of the first pile.
The carriage containing the pile driver is so constructed that the hydraulic cylinder may be moved laterally and three piles driven, side by side, in each bent. It will not be a difficult matter to cut the circular holes for the piles in the thin cast-iron shell forming the floor of the tunnel; and after the piles have been driven, the holes would be securely plugged by the pile and by the concrete capping, 2 feet thick, with which the tunnel is to be lined. In order to
locate the pile driver in the most convenient position, an elevated timber platform is provided along the middle line and on either side of the tunnel, to which are bolted a pair of heavy beams, which serve as tracks for the pile driver carriage. The importance of designing a machine which will rapidly handle a heavy stick of timber, such as a pile, in the limited space found in the interior of a tunnel, will be understood when it is stated that, in this plan, 7,200 piles 40 feet long would be required in the foundation of the two Hudson River tunnels.
An important feature of the side platforms is the space which they provide for a pair of narrow-gage railway tracks, which serve the material cars in such a way, that the pile driver will not interfere with the passing of cars loaded with concreting or other ma terial. By means of this arrangement, a pile founda tion can be constructed simultrneously with the lining of the tunnel with concrete, with the result that there will be a considerable economy of time.
It would, of course, be undesirable that the vertical reaction of the downward pressure of the pile should be concentrated at one point of the tunnel roof; and, in order to distribute this pressure, two heavy I-beams are provided as part of the pile-driving outfit, which extend across the tunnel, and, by engaging the flanges at the points indicated, distribute the pressure over a large area of the roof. One of these beams is pivoted to the carriage, and can be moved out of the way, when the pile cylinder is rotated into a horizontal position.
By the method here described it is practicable to put down nine, or even as many as eighteen, piles, should it be so desired, in lieu of one large screw pile. Mr. J. A. Bensel, Chief Engineer of Docks, has made some valuable tests upon the supporting power of wooden piles, driven in 40 feet of Hudson River silt, which
denct of experiment which every theory ultimately demands. Dr. Heyl's essay is referred to a special committee consisting of Hugo Bilgram, Prof. Arthur W. Goodspeed, of the Department of Physics of the University of Pennsylvania, and Dr. George Flowers Stradling, of the Northeast Manual Training School of Philadelphia. The committee reported unanimously in favor of the essayist who had written under the pseudonym "Algol," the real person being only discovered after the award had been made. The manner in which Dr. Heyl has solved the problem cannot be more briefly and clearly expressed than in the following abstract of the committee's report:
Dr. Heyl succeeded in demonstrating, by experiment, that those of the ultra-violet rays of light for which glass is transparent have the same velocity as the light rays proper. He reasoned that if the velocity of these rays were different they would not arrive from a distant source, at the same time. For his test he selected Algol, a well-known variable star in the constellation Perseus, as the source of light. By means of a diffraction grating he eliminated all but the ultraviolet rays of a known frequency, and by focusing them on a sensitive plate obtained photographs of the star.
For the purpose of identifying the rays so recorded with the visible rays, regarding the time of their emission, he selected for the time of his tests the time during which the light of this star shows the peculiar phenomenon of fading and recovering. The period of this variation is known to be about six hours. During this period he took a number of photographs, one-half hour apart, each exposure being twenty minutes, the remaining ten minutes being employed for making the necessary preparations for the next exposure. He thus obtained a number of exposures of the star on the same sensitive plate, but shifted in position.

After developing the plate the successive images plainly showed a fading and recovering, although the exact location of the minimum brightness could not be absolutely determined, the approximate coincidence of the time of the minimum brightness of the visible and the photographed rays was obvious. These tests were repeated a number of times to eliminate the possibility of error and also to take in a certain range of the ultraviolet rays, and since favorable opportunity for making these tests is not frequent, the investigation extended over a period of two years.
The applicant then reasoned as follows: Assuming that the photographic minimum did not exactly coincide with the observed visual minimum, their difference did certainly not
show that the piles, as here proposed for the Hudson River tunnel, will support a maximum load of 40 tons each. The Pennsylvania Railway Company will hau its trains through the tunnel with an electric engine weighing 105 tons, this weight being concentrated upon a wheel base of aproximately 24 feet. For this distance the proposed plan of using three-pile bents would pro vide twelve piles, and if we assume the maximum sup porting power at 40 tons per pile, as stated by Mr Bensel, there would be a total maximum support of 480 tons under the electric locomotive. It is, of course obvious that piles could be driven under every seg ment of the tunnel lining, instead of under alternate segments, in which case the foundation would have a supporting power of nearly 1,000 tons for a length of 24 feet of tunnel. Finally, it should be noted that the strains upon the tunnel structure incidental to driving the piles is enormously reduced, for it is a fact that a pile can be forced down into the silt by a pressure of 15 to 20 tons, which, after it has stood for a few days, will remain firm under a pressure of from two to three times as great.

The Velocity of the invisible Rays of Light.
The Boyden appropriation of $\$ 1,000$, offered nearly forty years ago by Urian A. Boyden, an eminent mechanical engineer of his day, has at last been awarded by the Franklin Institute to Dr. Paul R. Heyl, of the Central High School of Philadelphia, for determining by experiment whether all rays of light or other physical rays are or are not transmitted with the same velocity. The problem which Dr. Heyl has solved is not to-day a scientific problem of the first importance, and has not been for twenty-two years. That all rays of light are transmitted with the same velocity has been held on the basis of indirect and circumstantial evidence. Dr. Heyl has now supplied that direct evi-
exceed an hour, and since the distance of Algol is no less than forty light years the difference of the velocities of the ultra-violet and the visual rays could not exceed one part in 250,000 . This close approximation established equality to all intents and purposes.

Cody isites for the British Army.

Capt. Cody, whose man-lifting kites have been acquired by the British government, and whose services have been retained by the army balloon department, is at present engaged in experiments with a kite similar in design to those already in operation, but which is propelled by a gasoline motor. For the purposes of his investigations the large balloon shed has been placed at his disposal. During the recent visit of Prince Fushimi and King Edward to Aldershot a series of maneuvers and demonstrations were carried out with the apparatus under cover, which proved eminently successful. On this occasion the apparatus was held in check by slipping tackle to a rope running at 30 deg. from the ground from one end of the building to the other. When the motor was set in operation the kite traveled from end to end of the building steadily and evenly. So far it has been possible to carry out successful flights for a distance of 1,200 feet, the limit of the experimental range of operations, with two trail ropes and loaded with two 56 -pound weights, which approximately coincide with the weight of the average man. During the present summer a number of larger flights over a greater range in the open air are to be carried out.

The foreign trade of the United States for the eleven The foreign trade of the United States for the eleven
months ended May 31 for the first time passed the $\$ 3,000,000,000$ mark in such a period and exceeded by $\$ 320,351,760$ the total for the corresponding months of the prior fiscal year.

(1)dxxempandente.

Guard Rails for Rational Railroad Track

To the Editor of the Scientific American:
Your first article in last week's paper, "Needed, Rational Railroad Track," is sound. Have you ever noticed (in this State anyhow) how the law compels the railroads to guard-rail all railroad bridges? Would it not be a wise plan to compel all railroads to use all worn-out rails to guard-rail the main line, especially at high embankments, and clear through as soon as they can?
Penn Yan, N. Y., May 26, 1907.
Leroy Tobey.

Reformed Sclentific Spelling.

To the Editor of the Scientific American
In several recent articles in your valued paper, in which chemical terms are used, I notice that you adhere to the old spelling of some of these words. Thus you retain the unnecessary e in words ending in ide and ine, such as oxide, chloride, iodine, bromine. The improved method of spelling these words is oxid, chlorid, iodin, bromin. Also ph, instead of f, in such words as sulphur, sulphate, sulphide. (Sulfur, sulfate, sulfid.)
This improved form of spelling chemical terms was introduced years before Mr. Carnegie's "fonetic" spelling was first heard of, and should not be confounded with it. This spelling is now being used by progressive chemists; books in chemical technology have been published in which the improved spelling is used, and it is gradually coming into general use.
In this connection, I cannot do better than to quote the following from the Standard Dictionary:
"The rules for the spelling of words in chemistry, as bromin, chlorid, morphin, sulfid, were adopted in compliance with a resolution passed by the Chemical Section of the American Association for the Advancement of Science, advising that the report of the committee of that association on spelling and pronunciation of chemical terms be followed. This action has received the approbation of many eminent chemists in the United States. Referring to this subject, H. W. Wiley, M.D., Ph.D., chemist of the United States Department of Agriculture and president of the American Chemical Society, has written to the editor: 'I consider the plan a great improvement over the old methods of spelling and pronouncing chemical terms'; and many other recognized authorities have written, strongly commending the reform."
C. B. Rowlingason.

Syracuse, N. Y.

Lubricate the Onter Rall on Curves.

To the Editor of the Scientific American:
As everyone is interested in the safety of railroad travel, it seems to me that it behooves the public in general to give this matter all the thought possible.

Acting upon this idea I have formulated a plan in my mind, which, though simple, will, I think, tend to lessen derailing of trains on curves. In my limited experience with railroads I have found that the wheels rub very hard against the outer rail of a curve, so hard that the rail wears quite rapidly from the friction induced thereby. Your valuable paper gave an article not long ago, also cuts showing the proper elevation for outside rail of curve.
In my opinion these conditions are met with in very few curves, whether because it will tilt the cars too much, or for some other reason, I know not; but the fact remains, as may be readily seen by looking at any curve's outer rail, that it sustains great friction. Now in running a small railroad, used for hauling logs, I found that when it was raining we had very little trouble in the curves, and when dry, with heavy loads on trucks, a great deal. In view of this, my plan is to have pipes so arranged that they would throw a jet of water or cheap oil against the side of the outer rail when the locomotive struck the curve, thereby lubricating same and reducing the tendency the wheels have to climb.
It would be a very simple matter to arrange the feed valves for the control of lubricant so that they would open only when engine struck the curve, closing again when straight track was reached. By a system of this kind, and a practice of bolting the two rails together in curves, so that they could not spread, I think the public would hear less of wrecks in such places.
Morgan City, La.
F. M. O'Brien.
[The suggestions of our correspondent are sound.
The practice of directing a fine stream of water against The practice of directing a fine stream of water against with good results.-ED.]

Sound from a Moving Source
 To the Editor of the Scientific American:

The following is an extract from pages 51 and 52 of "Recreations in Astronomy," by H. W. Warren, D.D., 1879. It is a good explanation of the effect of sound waves on the ear as the distance of the source of the sounds in increased or diminished, and adds to what
has been said in explanation of the experiment of the boys with the bell illustrated in your issue of March 16 "One of the most difficult and delicate problems solved by the spectroscope is the approach or departure of a light-giving body in the line of sight. Stand before a locomotive a mile away; you cannot tell whether it approaches or recedes, yet it will dash by in a minute. How can the movements of the stars be comprehended when they are at such an immeasurable distance?
"It can best be illustrated by music. The note \mathbf{C} of the G clef is made by two hundred and fifty-seven vibrations of air per second. Twice as many vibrations per second would give us the note C an octave above. Sound travels at the rate of three hundred and sixtyfour yards per second. If the source of these two hundred and fifty-seven vibrations could approach us at three hundred and sixty-four yards per second, it is obvious that twice as many waves would be put into a given space, and we should hear the upper C when only waves enough were made for the lower C. The same result would appear if we carried our ear toward the sound fast enough to take up twice as many waves as though we stood still. This is apparent to every observer in a railroad train. The whistle of an approaching locomotive gives one tone; it passes, and we instantly detect another. Let two trains running at a speed of thirty-six yards a second approach each other. Let the whistle of one sound the note E, three hundred and twenty-three vibrations per second. It will be heard on the other as the note G, three hundred and eightyeight vibrations per second; for the speed of each train crowds the vibrations into one-tenth less room, adding $32+$ vibrations per second, making three hundred and eighty-eight in all. The trains pass. The vibrations are put into one-tenth more space by the whistle making them, and the other train allows only nine-tenths of what there are to overtake the ear. Each subtracts $32+$ vibrations from three hundred and twenty-three leaving only two hundred and fifty-eight, which is the note C. Yet the note E was constantly uttered."
Klamath Falls, Oregon.
F. M. Priest.

The Gila Munster.

To the Editor of the Scientific American:
Referring to Dr. Goodfellow's article in the Scientific Ayerican of March 30, concerning the poisonous qualities of the bite of the Gila monster, I desire to call attention to the reputed antagonism existing between the monster and the rattlesnake. A two years' residence in Arizona made me quite familiar with both of these reptiles; for a good part of the time I had one of the former tied to the leg of my office table by a string. In his native habitat the monster is credited with being the enemy of the rattlesnake and is said to kill him. Chancing to have both reptiles on hand at the same time, I put them in a large box together and awaited results. The rattler coiled in one end of the box; the monster would waddle up to him, root under his coils with his nose and finally nip down on a coil near the tail. The rattler would then spring to the other end of the box and recoil. After this had happened a number of times, the monster finally succeeded in seizing the snake by the neck just back of the head and held a firm grip until the snake was choked to death. The monster sickened, vomited, and died a. couple of days afterward. On removing his skin I found two punctured wounds on his back, evidently the result of the snake's having struck him once.

Although the Gila monster shows an undoubted disposition to attack the rattlesnake in captivity, I am unable to understand how it would be possible for the monster to injure the snake in the state of nature. The former is very sluggish and slow in his movements, and if unconfined the snake should have no trouble in avoiding his attack.
ames B. Bullitt, M.D.

$$
\text { Louisville, Ky., May 17, } 1907 .
$$

The Need of an Inventors, Aid Institution.

 To the Editor of the Scientific American:We are marvelously impressed with the rapidity of invention. Work has been transferred from hand to horse-power, and from horse-power to steam and electricity by countless labor-saving devices. And yet the march of human progress is not as fast as it should be. As we read the lives of inventors, we see how wofully they have been hampered by want of means to make experiments. Many of them have fallen by the wayside, and others have been sadly hindered by poverty. Although the patent system is a great stimulus, yet it fails in the most critical place.
Some multi-millionaire should found a great institution to aid the worthy inventor; and this institution should be provided with a competent board of examiners. Then whenever an inventor wishes help, he can appear either personally or in writing before this intelligent board, and set forth his invention so far as he has developed it, and state what course of experiments he would like to try in completing it. Then this board could investigate the matter as fully as
would the examiner in the Patent Office to determine whether he has an invention that will justify him and the institution in perfecting.
If so, it can be reduced to writing and sworn to and subscribed by the inventor. Then a contract can be entered into by the inventor and the institution. The institution can furnish the tools, machinery, materials and mechanics to develop the invention. The inventor can give such mental and mechanical aid as he is able to do. The experimenting can be systematically done, and duly recorded in the archives of the institution, for the benefit of this invention and future ones.
When the invention is perfected, then the inventor can, with the aid of the institution, apply for patents in the various countries. When the patents are obtained, the institution can further aid the inventor who lacks funds and perhaps business ability by advertising and selling or licensing the rights to persons who will manufacture and sell the goods. For these great aids to the inventor, the institution can reserve a certain share of the revenues, and this will generally pay it well for its services.
As many thousand inventors would soon apply for help, the institution should be well equipped with ex. perimental farms, mines, buildings, tools, and machinery. It could lease these until it could become able to buy them. It should have competent officers, examiners, workmen, attorneys, and agents, so that it could furnish the most prompt, efficient, and economical aid possible to the inventive ingenuity of the world.
Many of the inventions would be much more thoroughly perfected in a few months by the institution than they would otherwise be in as many years. Then the institution could exhibit them at the fairs and expositions throughout the world on such a scale as few inventors could do, and that far more economically than could the individuals, because it could ship and show many at the same time. Further, it could soon build up a great reputation for good inventions and fair dealing, that would induce the manufacturer to make and the public to buy. Moreover, the institution with its systematic records and its able attorneys could defend the rights so vigorously that unscrupulous persons would hesitate much to infringe the patents under its control. All of these things would greatly benefit the inventors, the institution, the manufacturers and the public, and wonderfully accelerate human progress.
The institution could protect itself against fakers and unworthy schemes by accepting no invention from any one for development, until it be examined and recommended by a board of examiners competent in that special field of inquiry. Of course, some of the inventions would fail to reward the institution; but the great majority of them would bring in revenues, and some of them would prove so highly remunerative that they would far more than reimburse the institution for all of its outlays. Consequently it could well afford to provide libraries and evening schools for its inventors and workmen, so that they would become more intelligent, do better work, and produce still greater inventions.
Such an institution would make inventing a pleasant and profitable profession for those having inventive genius, for they could then devote themselves to pure invention, and leave the manufacturing and business part to those who are better fitted for such purposes. Then the reward all around would generally be much greater. Of course, such an institution could be started by capitalists for profit. But it would be a temptation for them to take undue advantage of the needy inventors and the public, so that the institution would not be such a grand blessing to the world.

So some wealthy person would render his name immortal and greatly benefit mankind by giving ten millions to establish an institution for aiding poverty stricken inventors in their noble work for humanity. New York, June 5, 1907.
G. W. Wishard.

The Current Supplement.

The modern gold dredge is one of the most important factors in gold mining of to-day. It is rapidly changing conditions in mining districts where the bedrock is soft and the gold finds are easily amalgamated. Mr. George E. Walsh thoroughly describes these new devices in the current Supplement, No. 1644. It is not generally known by amateurs and others who have occasion to use direct current for experimental work that such a current can be easily and conveniently obtained from an alternating current by means of the aluminium cell electrolytic rectifier. Frederick \mathbf{E}. Ward describes how such an electrolytic rectifier can be made at home. Complete drawings accompany his text. Of technological interest are articles on varnish for wicker work and soldering. Harold J. Shepstone writes on the Nile-Red Sea railroad. Mr. H. Henriet contributes a very exhaustive discussion on the atmos phere of cities. Venomous fishes are described by Dr A. Calmet in an article which gives much curious information. A. D. Hall's paper on "Artificial Fertilizers: Their Nature and Functions," is concluded. The usual engineering notes, electrical notes, and trade notes and formulas are published.

NEW RAILROAD CONSTRUCTION IN CANADA AND THE

 NORTHWEST.by day aluen milusy
The Jnited States west of the Mississippi River is the principal field for railway builders, as might be expected. The most important undertaking in the Western States, however, is the extension of the Chicago, Milwaukee \& St. Paul Railway from its present western terminus to the Pacific coast. This is one of the most extensive individual projects ever undertaken in railroad building in the United States, as it represents no less than 1,700 miles of new line. The Western Pacific, which is being completed through California and Nevada, represents 750 miles, and will form the western extension of a system reaching across the continent, since it will form a portion of the Gould lines which now extend from the eastern terminus of
portion of its main line between Winnipeg and Fort William on Lake Superior. This section is termed the "Spout," for the reason that it is the principal route for the bulk of the grain which is shipped east from northwestern Canada and either stored in the elevators at Fort William and Port Arthur for shipment by lake, or sent by rail through Canada to the seaports on the St. Lawrence River for export. The grain traffic has increased to such an extent that a second track has become necessary, and work on this is now in progress. The construction of this additional mileage was begun in September, 1905, and it is expected that all of it will be completed within the next two years. In all, 425 miles of track will be laid. A portion of it will be built through a region in which an immense amount of excavation will be necessary in rock formation. The accompanying photographs give
veys for this route required several years to complete, and the line lies farther north than any east-and-west railroad which has yet been planned in America, much of it traversing a section which at present is an unbroken wilderness. Contracts have been let and a considerable mileage of the Grand Trunk Pacific will be completed during the present year. Another ambitious project is that of the Canadian Northern, which already has built a network of lines in Manitoba and adjacent territory. Its track is finished to the city of Edmonton, and it also reaches Lake Superior at Fort William and Port Arthur. This company expects to utilize Hudson Bay as a route for exporting grain and other products from the Canadian Northwest. From the heart of the wheat belt to the Bay is about 700 miles, and surveys have been completed by the Canadian Northern for a practicable route. Recent investi-

A Deep Rock Cut Near Busteed, Ontario.

A Tunnel for the Second Track Near Kolmar, Ontario.
the Western Pacific as far east as the city of Buffalo, New York. In the Pacific Northwest the Great Northern Railway Company is building an extension from the city of Spokane in eastern Washington by way of the Columbia River Valley to Portland, Ore. By the completion of this work the Great Northern will secure a second seaport on the Pacific Ocean in addition to the one which it now has on Puget Sound.
The work of the railroad builders in northwestern Canada, however, is remarkable for its extent, considering the comparatively small mileage which has been completed in this section. The new road is being built for the purpose of developing the immense territory available for agriculture which is embraced in the province of Manitoba, and the territories of Alberta, Assiniboia, and Saskatchewan. Until recently, one company had a practical monopoly of all the traffic from this section of Canada, but at the present time four large corporations are carrying out plans for railway extension, in addition to the number of what might be called local projects. The Canadian Pacific, which at the present time has the unique distinction of controlling the only railway which extends entirely across America, has found it necessary to let contracts for a number of extensions northwest from Winnipeg to reach the great wheat belt in this section of the Dominion. The longest of these extensions will terminate at Edmonton in the Saskatchewan Valley, 750 miles from Winnipeg. In addition to these projects, the company is expending $\$ 10,000,000$ in enlarging the
an idea of the difficulty of this work. In some places the rock cuts are over 25 feet deep. While steam drills are employed to some extent, much of the drilling is done by hand. A force of 1,600 men is employed on this section alone, which represents about 100 miles of the work.
As far as possible, the steam shovel is employed. On the division east of Winnipeg Mr. W. A. James, the eigineer in charge, has used from ten to twelve power shovels when the weather would permit, the machines being provided with dippers holding $31 / 2$ cubic yards. During the winter season, however, the weather is such that very little work can be done upon the extra track, and most of the construction has to be performed during the six favorable months of the year, and this accounts for the length of time which will be required for its completion.
Another important extension of the Canadian Pa cific, which has been completed in British Columbia, through one of the most mountainous sections of the Northwest, necessitated the building of numerous bridges, as well as much tunnel excavation. As will be noted by the illustrations, the work is of a very substantial character and includes some important viaduct and bridge work.
The enlargement of the Grand Trunk Railway into the Great Trunk Pacific means the completion of another transcontinental line, which will be fully 5,000 miles in length, reaching from Moncton, New Brunswick, to Port Simpson on the Pacific Coast. The sur.
gation has shown that the water of Hudson Strait, which connects the bay with the Atlantic, is free from ice for fully one-third of the year, and it could be kept open fully two-thirds of the year by ice breakers, while there is open water in the bay itself all the year round. A glance at the map shows that this route is considerably the shortest to Europe from the Canadian Northwest, a haul of nearly 1,000 miles over land being avoided. Consequently, grain sent by this northeast gateway across the Atlantic can be transported at a much smaller expense than by any of the present routes through Canada or the United States. This is why the Canadian Northern has determined to build an extension through what is practically an uninhabited country. Several other independent companies have secured charters from the Dominion authorities to build lines northward to the same body of water.
During the present year, work will be in progress on two more systems which will connect the city of Winnipeg with the Pacific coast. When these are completed three lines will traverse Northwestern Canada from eastern Manitoba to the ocean, for in addition to the Grand Trunk Pacific project, James J. Hill has completed arrangements for'a line which will pass through southern Manitoba, Alberta, and British Columbia, terminating at the city of Vancouver. This will form a Canadian division of the Great Northern system and including branches will be 1,300 miles in length. The route surveyed is nearly parallel to the Canadian Pacific, and traverses not only the extensive

Building Snow Sheds Near Glacier Honse, B. C.

Snow sheas on the Cmnadian Pacific, Showing the Hermit Range.
wheat-growing region, but the live stock country of Alberta, and that important section on which irrigation is being carried out on a large scale, as recently noted in the Scientific American.

CHE ECONOMICAL SURFACE MINING OPERATIONS OF CUBA. BY I. B. WARD.

In Cuba the natural mining facilities are such that the processes are extremely simple and free from the many dangers incidental to the usual mining operations. Because of the accessibility of the ore, and ease with which it is mined, Cuba's mines are fast becoming her chief source of wealth, and mining her chief industry. Gold, lead, zinc, and asphalt are known to exist; and copper and manganese are found in sufficient quantities to warrant their profitable exploita-
removed in toto, and never for an instant would the spectator imagine that he was viewing a mine in full operation.
Each broad terrace ledge is laid with narrow-gage tracks, over which the ore is hauled to the regular main track and transported by rail to Santiago Bay, whence it is shipped to various points.
From the mines at Daiquiri $3,536,121$ tons of ore were produced to December 31, 1906. The production for the year of 1906 was 510,500 tons. This ore has all been shipped to the United States, with the exception of 75,000 tons, which went to England, Germany, Belgium, and Cape Breton, Nova Scotia.
There are also several large iron mines on the north coast, in the Mayari Mountains back of Nipe Bay, that are being extensively developed, and a broad-gage railroad is under construction from the mines to the bay

Europe to consumers in this kind of current, though for certain special purposes, a conversion to continuous current is found desirable. As the devices constructed for this purpose are far from being satisfactory, endeavors have been made from time to time to design an electrolytic transformer based on the principle that in an electrolytic trough comprising an aluminium and a lead electrode. The current will be allowed to pass only in case the aluminium forms the cathode or negative electrode, while it is arrested in the opposite case by the layer of aluminium oxide formed by the current. A rather promising apparatus embodying this principle was demonstrated a short time ago by its inventor, 0 . de Faria, before the French Physical Society. The drawbacks inherent in all previous apparatus of the same kind, viz., polarization of the electrodes and excessive heating of the

Canadian Pacific Bridge Across White's Creek, Fraser Canyon.

The Cisco Cantilever Bridge Across the Fraser River. NEW RAILROAD CONSTRUCTION IN CANADA AND THE NORTHWEST.
tion; but iron is most abundant, and the ore is so accessible, that the iron mines are being developed rapidly and are yielding large profits.
The hilly province of Santiago abounds in minerals; and her iron ore deposits are as remarkable in their way as the fabulous mines of the Lake Superior region. Indeed, the ore is even easier of access. There is no shaft sinking, no tunneling (with the exception of an occasional exploration tunnel); in fact there is no underground work at all. Hence the miners are not exposed to the many dangers of the usual mines, such as cave-ins, fioodings, fires, and explosions; nor is the expensive equipment used in the ordinary mines necessary.
The mining is all open-cut work and terracing. At Daiquiri, where the mines are already extensively developed, and new companies are starting operations, the iron ore occurs on the hillsides, and it is obtained by open-cut work and terracing. Viewed from some little distance, one would suppose the hill was being
at Cagimaya, where are two wharves and other necessary equipment for handling the ore economically and shipping it to the United States. It is estimated the shipments from these mines will amount to over $1,000,000$ tons annually.
An American company, operating not far from Daiquiri, shipped its first ore in 1884, since when $5,000,000$ tons hate been produced, and the bulk of this output has been shipped to the United States.
The copper mines of southern Santiago are of high value, and at one time they were worked extensively. During the war of 1898, however, the works were entirely destroyed. For the twenty-three years prior to that date the output of copper was valued at $\$ 50$,000,000.

An Electrolytic Transformer.

Alternating currents are at present used preferably in electric plants both for power and lighting purposes, and electric energy is usually distributed in
electrolyte, are eliminated by a convenient choice of the electrodes and liquid. Furthermore, an automatical circulation of the electrolyte is obtained by means of convection currents in the liquid mass. Sodium phosphate is used as the electrolyte, and pure commercial aluminium and antimony-lead as electrode mass. Owing to the circulation of the liquid, the temperature cannot exceed certain limits, while any polarization is entirely done away with. The efficiency of the apparatus varies between sixty-five and seventy-five per cent in watts. The main uses of the apparatus are the charging of accumulators and operation of induction coils, arc lamps, mercury lamps, continuous-current motors, electroplating plants, etc.

To Remove Oil Paint from Tin Goods.-In the case of fresh paint, rub off with oil of turpentine or petroleum. Otherwise, use hot, saturated solution of potash, hot water afterward. The most powerful means is caustic soda lye.

Thus Mountain of Rich Ore Is Being Mined by the Simple Process of Excavation in Terraces, Upon Which the Tracks Are Laid, and the Cars Loaded for Shipment Direct to the Docks. Butter.
Every householder should know how to distinguish between genuine butter on the one hand and oleomarg. arine and renovated; or "process," butter on the other, and also to distinguish between the two last named; for despite restrictive legislation, the public is often imposed upon. Renovated or "process" butter is often substituted for the genuine article, while oleomargarine is made to take the place of renovated butter. So clever have the manufacturers of these articles become, that in the absence of some tests the differences are difficult of detection.
The real harm begins when the "process" is sold as genuine butter, for they are not the same thing. While the fats in the two are practically the same chemically, the nitrogenous quantities are not. Moreover, since the article known now and for ages past as "butter' is an article the last step in whose manufacture is the churning of the cream, it is evident that the product of an elaborate subsequent process, a process entirely foreign to the manufacture of "butter," should be designated by a distinctive name, and many of the States have enacted laws which require the distinctive labeling or branding of the "process" product. The same requirements safeguard the sale of oleomargarine.

A boiling test has been found most practicable for household purposes in distinguishing between genuine butter and the renovated article. The test consists simply in boiling briskly a small portion of the sample and observing its behavior the while.

The test can be made in the kitchen, and requires only a few minutes' time. Using as the source of heat an ordinary kerosene lamp, turned low and with chimney off, or a gas jet turned low, melt the sample to be tested (a piece the size of a small marble) in an ordinary tablespoon and hasten the process by stirring with a sliver of wood. Then increase the heat and bring to as brisk a boil as possible, and after the boiling has begun, stir the contents of the spoon thoroughly two or three times at intervals during the boiling, always shortly before the boiling ceases.
Renovated or "process" butter boils noisily, sputtering (more or less) like a mixture of grease and water when boiled, and produces no foam, or but very little. Genuine butter boils usually with less noise, and produces an abundance of foam. The difference in regard to foam is very marked as a rule. Rarely is a butter found which yields an uncertain result; such a butter should receive the benefit of the doubt.
To distinguish oleomargarine from renovated and genuine butter, the required utensils are:
A hal'.nint tin "measuring cup," common in kitchen use, marked at the half and quarters, or a plain half pint tin measure, ordinary narrow form; or an ordinary small tin cup, two and three-quarter inches in diameter and two inccies in height, holding about one gill and a half; a common kitchen pan, about nine inches in diameter at the base; a small rod of wood, of convenient length for use in stirring; and a clock or watch. With this simple outfit proceed as follows: Half fill with sweet skimmed milk the half-pint cup or measure, or two-thirds fill the smaller cup men tioned, measuring accurately to the gill of milk when possible; heat nearly to boiling, add a slightly rounded teaspoonful of the fat (butter or butter substitute), stir with the wooden rod, and continue heating until the milk "boils up." Remove it at once from the heat and place in the pan (arranged while the milk and but ter or substitute are heating) containing pieces of ice with a very little ice water, the ice to be mostly in pieces of the size of one or two hen's eggs (not small er , as small fragments melt too rapidly) and suffi cient in quantity to cover two-thirds of the bottom of the pan; the water to be in quantity sufficient, when the cup is first placed in the pan, to reach on the side of the cup to only one-fourth the height of the milk within; any water in cxcess of that amount must be removed. (This is a cooling process, and refers to the condition at the beginning; later, as the ice melts, the water will naturally rise to a higher level.) Stir the contents of the cup rapidly, with a rotary and crosswise motion in turn, continuously throughout the test, excepting during the moment of time required for each stirring of the ice and water in the pan, which must be done thoroughly once every minute by the clock. This is done by moving the cup about, in a circle, following the edge of the pan. Proceed in this manner for ten minutes, unless before that time the fat has gathered or has allowed itself to be easily gathered, in a lump or a soft mass, soon hardening. If it so gathers, the sample is oleomarg arine; if not, it is either genuine or renovated butter The boiling test ("spoon test") enables one to dis tinguish between genuine butter on the one hand and oleomargarine and renovated butter on the other; the test last given enables one to distinguish between oleomargarine and renovated butter; and so, by the use of the two tests, one can determine in every in stance which of the three he has in hand. There are those who are able to recognize oleomargarine, almost
without fail, by taste and smell alone. To those possessed of this power the "spoon test," which is performed with almost no trouble, will serve every needful purpose.

WATER-WALKING SHOES.

Frederick A. Oldfield, of Memphis, Tenn., has invented a pair of water-walking shoes with which he hopes to cross the English Channel some time during the present summer. Each shoe consists of a beech wood box four feet in length, eighteen inches in depth and one foot in width. In order that the shoes may skim easily over the surface, five planes are secured to the bottom of each shoe. The shoes are fastened to the foot by means of clamps such as those used on roller skates, the foot being inserted through a hole in the top of the shoe, and the ordinary leather boo being clamped in place. A covering of rubber around

THE INVENTOR EXPERIMENTING ON THE MISSISSIPPI RIVER.

the opening protects the wearer of the shoe from splashing of water. The shoes weigh five pounds each. Mr. Oldfield has just completed a trip from Cincinnati to New Orleans, which consumed forty-one days, twenty-four more than the time in which he expected to fulfill the task. In the photographs here presented, Mr. Oldfield is pictured in the Mississippi River off

the water shoes, showing the top and bottom. THE FIVE PLANES ON THE BOTTOM ACT AS HYDROPLANES.

Memphis. He has just completed the feat of turning a circle.

The Massachusetts automobile traffic is so heavy that it has caused marked wear on the State highways, and the commission having charge of these roads states in its last annual report that the destructive effect is "extraordinary." Practically all the main roads are thus affected. It has been noticed that the binder is swept from the road, and the stone from $1 / 2$ to $11 / 2$ inch in size has been disturbed, in some cases standing on the surface, and in other cases being left in windrows along the roadside. The effect of wear of this sort is such that the commission is satisfied a material change in the methods of maintaining stone roads must be made. The report indicates that the commission believes some kind of treatment with tar will probably be successful.

Plant Lice Preventive.-Boil 250 parts by weight of quassia wood chips in 5,000 parts by weight of soft water and strain. 1,000 parts by weight of common soft soap dissolved in 5,000 parts of hot water. Mix both solutions, add 40,000 parts of water, and use it for washing leaves and stems.

GANTOS DUMONT'S COMBINED AEROPLANE AND AIRSHIP

by the paris oorregondent of the bcientific amerioan.

Aeronautic affairs have continued to be very active in and about Paris during the last three or four weeks, though the rainy weather which prevailed during the spring prevented the trials of aeroplanes and other fliers which are now constructed. Most active in the fleld of aeroplane work are MM. Santos Dumont, Bleriot, Vuia, and Delagrange, and we have already given an account of some of the newest fliers and the experiments which have been made with them. It will be remembered that Santos Dumont made several trials with an aeroplane which he built at St. Cyr, in the neighborhood of Paris, but up to the present he has not been very successful with it, and found that it would need to be remodeled according to the results of the tests he carried out. He expects eventually, however, to perfect it sufficiently to make long flights with it.
While waiting to do so, however, he decided to carry out some experiments which he had in view in regard to the stability of aeroplanes. For this purpose he set about constructing a new flier which differs from anything built up to the present in this line, since it is a combination of a balloon body with a couple of aeroplanes suspended beneath it. The whole machine is, however, heavier than air; and, should it succeed in flying, it will do so largely on the aeroplane principle. It is one of the smallest fliers which has yet been constructed, the balloon body having a capacity of but 99 cubic meters (3,496 cubic feet). The "Santos Dumont No. 16," as it is known, is merely an experimental apparatus, and as yet it has not made an actual flight, having had an accident which was not serious, and the damage resulting from whick will soon be repaired. The balloon consists of a fusiform envelope having a length of but 21 meters (68.89 feet) and largest diameter of but 3 meters (9.84 feet). It has a long pointed shape, as can be seen from the diagram and photograph. The surface of the ballopn is 151 square meters (1,620 square feet). As the total weight of the balloon body and the lower framework exceeds the lifting capacity by 120 kilogrammes ($2641 / 2$ pounds), the apparatus acts upon the "heavier than air" principle, and is of interest as a combination of a balloon body and an aeroplane. Inside the balloon is a small ballonet, B, of canvas, which measures 2 meters (6.56 feet) in diameter.
Instead of using suspension wires to hold the frame work to the balloon, the frame is hung from a long bamboo pole attached directly to the bottom of the envelope by two overlapping flaps of canvas. The frame is very simple in character, consisting as it does of a series of steel tubes. The main piece forming the bottom of the frame is attached at either end to the bamboo pole and runs down to a point under the middle of the balloon, giving space for the two movable planes, the motor, and the aeronaut's seat. In the middle and widest part is mounted the motor with its propeller placed directly on the end of the crankshaft, and the frame gives just sufficient clearance to allow the propeller to revolve inside of it without touching the under side of the balloon. The frame of tubing is braced by steel wires.
The motor, M, is an Antoinette 50 horse-power of the light-weight, eight-cylinder type, and is held somewhat above the center of the frame upon a light steel rod support. Directly against the motor and in frout of it is fixed the paddle-shaped propeller, H, which measures 2.05 meters (6.72 feet) in diameter, and has a pitch of 1.70 meters (5.57 feet). At the rear of the motor is the radiator, which consists of two sets of long flat copper tubes placed at a slight angle and extending upward on each side of the motor. The aeronaut's seat is a simple motor-cycle saddle, S, fixed upon the lower part of the steel frame.
As to the aeroplane part of the apparatus, this is formed of two flat canvas-covered frames of same size mounted at either end of the main frame. These will be noticed at P and R. Both the frames can be inclined at the proper angle by means of wires within reach of the aeronaut. The frame P, in the front part, measures 3 meters (9.84 feet) in length across the bal loon and 0.50 meter (1.64 feet) in width, having a surface of 1.5 square meters (16.14 square feet), while the second plane, R, measures 4 meters (13.12 feet) by 1.20 meters (3.93 feet) with a surface of 4.8 square meters (51.66 square feet). Mounted in the rear of the main frame and under the balloon is the rudder G. It is of hexagonal form and covered with canvas in the usual way, the diameter being 2 meters (6.56 feet) It can be worked from the aeronaut's seat by a set of wires.

The whole apparatus is arranged to run upon the ground, and to enable it to do this, it is mounted upon a pair of bicycle wheels about two feet in diameter, so that the lower point of the frame nearly touches the ground.

This very curious flier has not as yet shown what it can do, inasmuch as the first experiment, which was made in the Bois de Boulogne on the 7th of June.
resulted in an accident which put the apparatus hors de combat, and it will take some time to make the repairs. Far from being discouraged, however, Santos Dumont expects to be soon in the field again. In this experiment the propeller was started up and the flier ran along the ground on its wheels at a moderate rate. The rear end was held by a mechanic, who let go after about a hun dred feet. But owing to an accident, the flier did not rise as was expected, but ran head down upon the ground. The propeller struck the balloon and tore it, letting out the gas It also struck the ground and was consequently some what injured. The upper bamboo pole broke, and the frame in general was damaged. Santos Dumon did not suffer from th fall. He explained the probable reason of the mishap, stating that he was not aware that the flier had been held in the rear, and in consequence thought it was free at the start. Thus he did not handle it properly, and it was owing to improper management of the planes that the machine acted as it did. On the other hand, it is thought that the accident was due to the fact that the column of air driven by the propeller was directed against the rear plane frame and also against the under side of the balloon in the rear, and that this caused the back end of the balloon to rise, tilting the front end downward. It will no doubt take a number of trials to find out the best conditions for running the machine, since there are severa new conditions involved. The repairs are being made a the new shed which Santos Dumont recently erected on the same grounds as before, at Neuilly, near the Bois de Boulogne. At the same time his aeroplane No. 14 has been brought there and is being overhauled and strengthened after the last accident.
M. Louis Bleriot, some of whose experiments we have already illustrated, is at present engaged in building a new flier, and has practically completed it. This apparatus is quite different from the one which he used in his last trial at Paris, constructed as it is according to the principles of the Langley flier, with some modifications of this type. It has two pairs of planes mounted in tandem. The total supporting sur ace is about 18 square meters (194 square feet). Upon the frame is mounted an Antoinette eight-cylinder motor of the 24 -horse-power type. M. Bleriot expects to commence work with the new apparatus very shortly Somewhat of a sensation has been caused by the visit of Messrs. Wilbur and Orville Wright to Europe. It ap pears likely that they are carrying out negotiations both in Germany and France with the expectation of dis posing of the rights for their aeroplane. They decline, however, to give any information about what they are doing, and the matter is more or less of a secret. It appears, nevertheless, that Mr. Wilbur Wright made the trip to Paris with Mr. Hart O. Berg, who is well known in automobile circles, in order to complete, if possible negotiations begun in France as far back as 1905 . It was known that they had made some propositions to the War Department in this connection, and it seems that they asked the sum of $\$ 200,000$ for the rights to use their system, should its success be demonstrated upon actual trial, upon a flight of a certain length and

Santos Dumont's New Dirigible Balloon Fitted With Aeroplane.
nent in political circles, notably Senator Henri Deutsch whose interest in arontic work is well known and who has been liberal in founding prizes ant otherwise aiding the experiments of aeronauts. Me may agree to furnish at least a part of the amount which is asked by the inventors for the rights in France. M. Henri Deutsch presented the matter be-

The 50 H. P., 8-Cylinder Motor, Showing Propeller and Radiator.
fore the Minister of the Marine, to whose department the apparatus will belong in case it succeeds. But the Wright brothers will not grant the exclusive rights of their system for Europe, and this will not prevent them from making negotiations with other governments. It is not known what is the result of their trip to Germany.
duration. At present the affair seems to be making progress, although it is being kept very quiet and but little definite information is to be had about it. We may say, however; that the inventors have been making arrangements with several persons who are promi-

Comparative Emelency of Varfous Eleotric Lights. Comparative tests have been made between Moore tubes, Nernst lamps, and the usual type of incandescent electric lamps, says the Electrical World. The Moore tube used was 179 feet long and $13 / 4$ inches in diameter It was located 17 inches below the ceiling, which latter was 10 feet 11 inches from the floor. There were seven six-glower Nernst lamps, with opalescent globes of a bluish tint. The incandescents were 113 in number, 88 being of 8 candle power each, and 25 of 16 candle power. All were wired to molding on the ceiling, excepting 20 of the larger ones, which were used with opaque reflectors and had very little effect on the ultimate results. Measurements of illumination were made by means of a Weber photometer located successively at seven different points throughout the large room, and uniformly 34 inches above the floor.
The unit of illumination used was the lux, which is the illumination produced on a plane surface by a source of 1 candle power at a distance of one meter, the rays striking the surface perpendicularly. The periodicity of the current was 60 cycles. The average voltage during the test was 243 for the Moore tubes, 244 for the Nernst lamps and 117 for the incandescents. The illuminants were located above the plane of illumination at different distances, being 6 feet 8 inches for the Moore, 6 feet for the Nernst, and 7 feet 10 inches for the incandescents. The current consumption in kilowatts was 3.15 for the Moore, 3.92 for the Nernst and 4.13 for the incandescents. The average intensity of horizontal illumination was 63 for the Moore, 44 for the Nernst and 15 for the incandescents. This made, per unit of power, an average of 20 luces for the Moore, 11.2 for the Nernst and 3.6 for the incandescents. To bring the illumination from the two latter up to the standard of the former, without altering the heights of the illuminants, would have required an output of 7 kilowatts for the Nernst lamps and 23 for the incandescents, as compared with 3.15 for the Moore. Placing all illuminants at the elevation of the Moore tube, and obtaining equivalent illumination from all, the required output would be 3.15 kilowatts for the Moore, 8.65 for the Nernst, and 16.65 for the incandescents.

In a paper read before the Society of Arts by Mr Herbert Wright on "Rubber Cultivation," the author said that Ceylon alone had already planted land suff cent to supply London with about 7,000 tons of rubber per year in place of the 70 tons she sent in 1905 Land was being applied for and purchased at very high prices, and very soon a prominent and permanent position would be established. When one considered what had recently happened in Ceylon, the Federated Malay States, and India, it was obvious that the ex port in a few years would be as suddenly increase as had the planted acreage in these places, and for this we must be prepared.

Tin Varnish.-Asphalt 10 parts by weight, rosin 5 parts, linseed oil varnish 20 parts, oil of turpentine 8 parts.

View Showing the Aeronaut's Seat, Foot Rests, Control Wheel and Levers.

The Rear of the Motor. The Radiator Tubes Form a Letter V at the Back. a Combined dirigible balloon and aeroplane.

RECENTLY PATENTED INVENTIONS.

ertalning to App

HEAD FOR HAT-PINS AND THE LIKE.W. J. Kitelel, Jersey City, N. J. The purpose of the inventor is to provide a method of ornamenting and constructing the heads of hat pins and like articles, also decorating and constructing buttons and similar articles, whereby to economize in the manufacture and to render the decorations or coloring sparkling luminous and at the same with little liability of damage.
NECKTIE DEVICE.-C. I. Hoople, Anaheim, Cal. One purpose in this case is to proa bow, four-in-hand, or other styles of tying, a bow, four-in-hand, or other styles of will enable a necktie to be easily tied and also enable the expeditious adjustment of the tie relatively to the front collar button, even when the closest type of turn-down collar is worn.

of Interest to Farmers

Plow.-J. Rivara, Natchez, Miss. The object of the improvement is to provide a plow
for turning a furrow, breaking up the sod, for turning a furrow, breaking up the sod,
harrowing and pulverizing it and uprooting harrowing and pulverizing it and uprooting and destroying grass and weeds and grinding
them into bits and bringing the land into order them into bits and bringing the land into order
for planting, with much less labor than is for planting, wit
usually employed.

SWEEP-RAKE.-F. Nelson, Driscoll, N. D Of the intentions of this inventor, one is to the team is backed to discharge a load a swee bar will be automatically drawn over the teeth to impart the initial movement to the load, and wherein further the moment the team is started forward or commences to pull the sweep bar will be automatically restor
normal position close to a rake head.

Of General Interest.

Kiln.-G. Wiegmann and C. Dörr, Berlin, Germany. The invention relates to the con-
struction of kilns for heating, burning or melting metals, metal alloys, combustible and non-combustible materials, as also for roasting and reducing ores, and is especially adapted for ouse-refuse and similar waste-materials. The combustion is complete, no ash is formed, the for various uses and only occupy a small per centage of the volume of the refuse.
EMULSIONING AND SOLIDIFICATION OF GYDROCARBONS.-W. Van Der Heyden, 21 Boulevard du Midi, Nanterre, Seine, near Paris,
France. The deficiencies in this inventor' France. The deficiencies in this inventor's provement by the addition of different substances to the emulsion, that is an addition in order to prevent the loss of weight of which
product $3-4$ per cent are sufficient. The addiproduct 3-4 per cent are sufficient. The addi-
tion of salts of organic acids (tartaric, oxalic, tion of salts of organic acids (tartaric, oxalic, and citric) effects a smokeless burning of the
solidified blocks. The whole process secures a solidified blocks. The whole process secures perfect emulsion and no constit
from it after the shaking ceases.
SCALE.-M. M. Schwartz, North Bergen N. J. One object of the inventor is to provide to be reversed and used interchangeably with each other, and so arranged as to be adapted to be held in complete contact with a drawing and give a proper angle of vision, to protect and give a proper angle of vision, to protect
the divided surfaces of the members from friction with a drawing and the wear consequent thereto, and to avoid the necessity of raising
the edges of the scale from a drawing, thereby the edges of the scale from a drawing, thereby obviating the unsteadiness due to lack of
contact.

Hardware.

SAW-TOOL-W. Bryson, Fifield, Wis. In the present patent the invention relates to improvements in tools employed in filing, the object is to provide a device for this pur pose by the aid of which the several opera
tions on a saw may be quickly performed
,
LOCK.-C. Calicchio, New York, N. Y. A
key engages the sleeve bar and rotates it in key engages the sleeve bar and rotates it in
the casing, the outer portion of the key ward bearing against a fiange elge formed on th
tumbler, which raises the latter's free end t release a lug from the back notches and per mit the bolt to be shot in the casing. by the end of the ward striking against the recess
wall of the bolt's shank which projects the latter's arms partially through the casing rim bringing a lip of the bolt shank close with the key to enable the end of the ward on sec
ond rotation of key to bear against the lip ond rotation of key to bear against the lip
and project a bolt through the casing rim and project a bolt through the casing rim
Said bolts are retracted by reverse rotation.

Household Utilities.

ironing-Table.-W. H. Tichborne, Ne Cistle, Pa . In the present patent the inven tion has for its purpose the provision of a ironing board simple in construction, effective
in operation and durable in use, and adapted in operation and durable in use, and adapted
to be attachable to tables of various heights,
to be removed therefrom, to be removed therefrom, and folde
veniently for storing when not in use.
SLEEPING-BAG.-H. W. Wilson, Spring field, S. D. The invention is more especially designed for children, combined with means for retaining the. bag in place. on the mattress
and holding the child in the bag in proper
position. Two straps extend downward from
a yoke's back and front, meeting at depth a yoke's back and front, meeting at depth of
crotch, on the thigh, continuing as a single crotch, on the thigh, continuing as a single
strap, avoiding entanglement of legs in the strap. The strap from thigh to foot of be turning at will. The strap is detachably con nected. Straps holding the bag to the bed ar fitted with a safety buckle, to enable them be taut or loose as needed.

Machines and Mechanical Devices.

 STICK-FEEDER.-W. H. WALDRON, New Brunswick, N. J. The invention relates t facture of wall paper and the like. The obfect is to provide a feeder, arranged to insure a positive and accurate feeding of the stick onto an endless carrier which delivers thesticks to the drying machine for receiving and supporting the freshly printed or coated pape other webbing.
POLE-CLIMBING SHOE.-C. F. Young quist and C. G. Youngeuist, San Francisco
Cal. The object of the invention is the pro Cal. The object of the invention is the pro-
duction of a safe device which will require n particular skill to manipulate in the use intended and will positively grip a pole and become engaged at each -step, enabling the
climber to ascend and descend with greater facility and less exertion than with device now of this kind in use.
ADJUSTABLE DRILL-SUPPORT. - A Mohrbaches, Cripple Creek, Col. It is sough in this case to provide in connection with an adjustable or extensible crop bar, a suppor for the stopping bar of an air drill for in
stance as the Iler, Ingersoll, Jap, Murphy Hartsock, Shaw Eclipse, and similar machines bars, the machine being operated by apping pressed air.

SPEED-REGULATOR FOR PUMPS.-W. W. Satterthwaite, Washington, N. C. In operation, when the pressure in the cylinder or reservoir becomes sufficient to overcome the collars at a spring arranged lower portion of a stem, the latter is elevated and through its connection with a valve stem the valve is partially closed, thus slowing the exhaust, and as a conse quence slowing the pump. Further increase ther the pressure in the cylinaer tends to fu the speed of the pump by the pressure in the cylinder.

Prime Movers and Their Accessories. Valve.-H. S. Rankin, Cripple Creek, Col use as a throttle valve in a pipe line adjacen or leading to a rock drill or the like, employing fiuid pressure such as compressed air or steam But it is not limited to such use, as it may be employed in various places, in fact, any where an angle valve is used, especially on
lines transmitting considerable pressure. To its functions as a valve, it combines therewit function of a lubricator
CIRCUIT-BREAKER FOR GAS-ENGINES.F. B. Pacewood, Lincoln, Neb. The invention relates to novel and peculiar circuit-breaking means, for use in the ignition circuit of ex-
plosive engines, and consists of an automatically operated device, adapted upon reverse motion of the engine, to automatically break the primary or secondary ignition current, thus preventing continued reverse motion of the ngine.
INTERNAL-COMBUSTION ENGINE. - W. Morey, Jr., New York, N. Y. The invention pertains to certain improvements in internal combustion engines, and more particularly to a new type of engine having all the advantages of the four-cycle engine, including the complete scavenging, and at the same time having all
the advantages of the two-cycle engine, namely, an advantages of the two-cycle engine, namely,
an impulse for every revolution of the drive haft.
hydraulic motor. - W. R. Tottle, more especially to hydraulic motors of the kind actuated by the force of the current of a body or stream of water, upon the surface of which the motor is located, when anchored in position or effective operation. One of the principal bjects is to provide a motor, of an embodiment o overcome numerous disadvantages and objections found in the use of many other motors

Design.

DESIGN FOR A SPOON.-Llld G. Blasier Williamsburg, Iowa. This ornamental design or a spoon bears on the inner edges of the
owl the inscription Rebekah Degree I. O. U. F., Bloomfield, Iowa, Dec. 2, 1868. A linked chain, a flower, a dove, a crescent, seven stars,
and a beehive are pictured on the handle. In and a beehive are pictured on the handle. In
the center of the bowl is delineated the scene of Rebecca at the well. The designer has patented another design for a spoon of some bears the words Pythian Sisters, and in the arrow part of the handle, Onward and Up ward. A maltese cross with flowers, the holding three stars constitute a very exquisit design.
Note.-Copies of any of these patents will Please state the Munn \& Co. for ten cents each the invention, and date of this paper.

HINTS TO CORRESPONDENTS
Names and Address must accompany all letters or
no attention will be paid thereto. This is for
our information and Information and Dot for publication.
nose to former articles or answers should give
 repeated; correspondents wa little research, and,
oome answers require not a
tobugh we endeavor to reppy too all elther by
letter or in this department, each must take bis turn
Buyors wisbing to purchase any article not adver.
tised our collumns will be furnilised with
addresses of houses manufacturing or carrying

 price.
Minerals sent for examination should be distinctly
marked or labeled.
(10585) E. C. T. says: I want to per orm before our Sunday school an experimen then the redeeming power. I know of such an experiment having been performed, and would
like to know just what solutions to use. I prefer to start with a clear solution, and then bet a bright and attractive color, then by to set a bright and attractive color, then by add
ing more of the same or another solution to gradually darken it until it becomes black, then want to add something that will bring it back to its original clearness. If you can
suggest the solutions you will confer a grea favor upon me. A. There are many ways of obtaining a dark precipitate from two colorless solutions, but none of these are easily or quick
is cleared to a colorless state again. They o not answer your purpose as an illustration of sin and forgiveness. But why use a dark or
black color at all? Scarlet or crimson are the colors given in Scripture (Isaiah i: 18) These can be produced and cleared off very phenolphthalein, and a strong solution of sodic gydrate in water. Add the first solution to the second slowly with shaking. At first as bright and delicate a rosy color as you may wish can be obtained. As the strength increases, the color deepens to any degree of darkness, deep enough for the verse referred to. Then add
hydrochloric acid, and the red will immediately disappear. This would seem to meet your you can obtain a dark brown muddy deposit and dissolve it quickly. Take the phenol phthalein and sodium hydrate solutions a then add to the bright red solution a few drops of solution of iron chloride, more or less to pro-
duce a thick muddy brown mixture. A solid is precipitated from the solution. It is hy drate of iron. To clear this away, add hy
drochloric acid. This leaves a yellow drochloric acid. This leaves a yellow liquid or clear. Some practice may be needed to obtain the desired strength of solution, bu when the solutions are right, the effect is sur prising to those inexperienced in chemica manipulation.
(10586) A. C. says: We have a well 184 feet deep that we wish to force water out of to a tank 65 feet above ground. The water
stands 16 feet from the top of ground, but we do not know how low it will go when pumpis 8 inches. The suction pipe and discharge pipe is 5 inches. It goes down in the well 163 feet. The air pipe is $8 / 4$ inch and goes down 157 feet. The air pressure is 100 pounds. The question is, how far can the water lower and still allow the pumping to go on successfully? In other words, how far must the air
pipe be down in proportion to the amount of pipe be down in proportion to the amount of
elevation of water? A. One hundred pounds air pressure will lift a column of water 230 feet high, neglecting friction. The amount of the friction is 30 per cent, the 100 pounds air pressure will lift a column of water 161 fee high, or from 96 feet
tank 65 feet above it.

INDEX OF INVENTIONS
For which Letters Patent of the
United States were Issued
for the Week Ending
June 25, 1907.
ND EACHEEARINGTHATDATE ISee note at end of list about copies of these patents.] Acid. methylene citryl salicylic, Berendes
Acid, saltsen of methylene citryi \ldots salicylic,

Have Earned their Present Popularity by Consistent and Satisfactory Performance in the hands of National owners

Motors

SPRINGFIELD

MOTOMETER

Made Right " "Proved Right" " Stays Right " " Price Right
es not wabble on roug
$\begin{aligned} & 5 \text { years' rep } \\ & \text { manufactu } \end{aligned}$
50-Mile Size, \$45
-
ting
积 for Booklet "Fa
R. H. SMITH MF

Torpedo Swimming Jacket

Won-a borbent vegetable
fibre, overede with special
waterproor material Will not water-log. Willfloat 400
pundsive weight. Sample CHICAGO FLAG Q DECORATING CO.

Cushman

ELECTRICITY

 bustion, H. J. \& T. E. Podlesak.........
Motors, means Por automaticaly timing tion
spark for producing ignition in esplosion,
A.

 Nesting and brooding hox, J. W. Bradford.
Newspaper bolder, J. Dettwyler
Nickel contained in basic nickel precipitate

Rock crusher, E. A. Hofil
Roces dirll, J. B. Marsball
Roors, gutter and valley

mix

SKIDOO!

The 2-Cycle-Engine-Sensation of the Year
Entirely new and improved design, perfected in every detailexcels all others in neatness, compactness, simplicity and strength, and challenges the most critical comparison with any other engine of its class in actual operation under the most trying conditions.

COMPLETE ENGINE
With Fresh Water Boat Fittings, . . \$39.90 With Salt Water Boat Fittings,

The swiftest, most powerful, efficient and reliable engine of its size on earth. Makes a speedy little Launch from an ordinary Canoe or Rowboat. Drives 14 to 20 ft . Launch, with load, 6 to io miles an hour. Ample power for use as an auxiliary in 35 ft . Sailer. Easy to install and operate. Reversible-runs either way. Perfect speed control-unfailing endurance powers-economical and safe-runs smoothly, steadily and quietly-never skips or backfires-starts without cranking. Runs on Gasoline, Distillate, Kerosene or Alcohol without change in equipment. Strong and durable-sold under 5 years guarantee.

Complete Catalog illustrating and describing our full line of single and
engines, sent FreE to any address on application
BELLE ISLE MOTOR C0., Dept. 18, . = DETROIT, MICH.

A simply-worded, clear description of the construction of the hull of a hydroplane gliding motor-boat is published in Scientific American Supplement 164r. Working drawings giving full dimensions accompany the description.

The boat is easily built and wonderfully fast. Price of SUPPL,EMENT 164I ten cents by mail.

MUNN \& COMPANY,
361 Broadway, New York

Instuctive
 Vounne
 Scientific American Reference Book

Home Mechanics for Amateurs

TWENTY－THIRD EDITION
Experimental Science

A Complete Electrical Library

The New Agriculture By T．BYARD COLLINS
\qquad Thisnew and valuale work sets forth the changes
which have taken place in American ariculturalme
thods which are transforming farm life，formerly so hard，into the most independent peaceful，and argree
able existence．Farc life to－day onfers more induce
nent able existence．Furm life to－day offrers more induce－
mentsthanatany
and it

 MUN Special circular of contents of thesevolumes sentfree．
MUN CO．， 361 Broadway，New York

${ }^{6}$
 858,120
857,925
858291

857,693
858,282

 があも

Toilet chair，folding，F．C．Weber
Tool cacper

\qquad Trammel for animal
Trap，K．R．Marks
Trap．L．H．Pleins
Trolley catcher

Trousers，stand， J, E ．L．Lep Fixler.....
Trousers stretcher，L．．Plam
Truck，brick，Ge，Barney
Truck，car，c．G．Harrington

\bar{S}^{1}IMPLICITY of construction，accessibility of parts and the attainment of smooth and easy running qualities are the basic principles of construction in the Peerless Car．The study and care towards the refinement of each part and de－ sign of the car satisfies the most exacting taste， either for social uses or steady touring．

The new Model 15 is equipped to carry seven passengers and is driven by a forty－five horsepower Peerless engine．The ease and comfort enjoyed in this machine makes touring a real pleasure．The two extra seats may either be folded against the side or removed entirely when they are not required．

A new illustrated book P，fully describing the
Peerless Models，will be sent upon request．

The Peerless Motor Car Company 2447 Oakdale Street．Cleveland，Ohio

Classified Advertisements than four nor more than ten lines accepted. Count
seven words to the line. All orders must be accompanied by a remittance. Further information sent on request.

BUSINESS OPPORTUNITIES. LOOK BEFORE YOU LEAA.-I have complete plant nical industrial propositions. Get my opinion before
and after inesting and secure the ractin the case.
It may save you money. Bighest references. Write
It mate J. Archibald, Manabhan. Advisory Engineer, 1901-190r
Park Avenue, New Yort.

Nix hundred 16 inch blocks per day. Same machine makes bricks. all different kiads, sizes designs blocks.
manted: Reliabio party place, machine on market:
References. A. Fairfax, 62 Alabama st., Bristol, Tena.
 market, will hear of an opportunity to manufacture
and market same by addressing Shot Gun, O. O. Box
773 , New York.
AGEN'FS WANTED to sell best kettles in . World for
cooking, steaming straining food of all kinds. No more
burned or scaldedhands, no more food wasted bured or scalded hands, no more food wasted Sample
free. For orticulars rite American Specialty Stamp-
ing Co., Jonnstown, Pa.
PATTEERN LETTERS AND FIGURES (White Metal
and Brass) for use on patterns for castingsi Large val
riety prompt shipments.

ADVICE on all practical methods pertaining to me-
chanics, EXpert in patent cuses machine, tool, die
desigand manufacture and steeltreatment. Have jou
 INCORPORATE YOUR BUSINESS. OVer sixteen hundred charters procured for my cinents. Write for
corporation raws blanks ree, to former Asst Sec'y of
State, Philip N. Lawrence, Dept. 16 , Huron, So. Dakota. PATENTS SOLD ON COMM1SSION.-If you wish
$\begin{aligned} & \text { to buy or sel.a patent mrite for particularso } \\ & \text { Perkins, } \\ & \text { sively. }\end{aligned}$ Broad Street, Boston. Patent Sales Exclu-

I SELL PATENTS.-TO buy or havingone to sell, write
Chas. A. Scott, Granite Building, Rechester, N. Y.
RODMAN ${ }^{2}$ OO ${ }^{\text {BRIDGE }}$ BUD ST. AND 5th AVE. CAM propositions Where large capital is required in the U.s.
orCanadat Mo Mey loaneed on securities. Mining, elec-
tric and steam rairoads. Manufacturing plants.

HELP WANTED. MEN AND BOYS TO LEARN PLLUMBING, Brick-
laying, Plastering and Electrical Trades. Poifitons se.
cured. Free catalogue. Cuyne Trade Schools, New York, cured. Free catalogue Coyne Trade Schools, New Yo
San Francisco and Chicago. Mention SCI. AMER. AGENTS-Our Wonderful Cork-puller, not a screw,
everybody needs. beeause no hard pulini is necessary;
ont

AGENTS WANTED.

GREAT MONEY NAKER FOR AGENT, Men and

PATENTS FOR SALE
FOR SALE patent Number 837.747 for newand nseful improvements in washing machines For further
information ant and partichlars, address Joseph Stauder,
ing Center Street. Mount Vernon, N. Y.

PHOTOGRAPHY PHOTOGRAPRERS, we want to tet ty ou in the habit of reading the American Photographer and Camera

 AMATEURS EVERYWHERE ATTENTION! Good

MOTION PICTURES.

THE MOVING PICTURE WORLID, weekly, 10 cents

AUTO ACCESSORIES. EQUIP YOUR CAR WITH "HERCULES" Non-Skid, Torld; agents wanted everywhere. Republic Rubbe
 at pricesthat no other house can com pete with. Cata
lopue free on request Reference any commerial
Rep logue rree on request. Reference any commercial
agency or any Buado. bank. Centaur Motor Co., 51
Franki in st reet, Buffalo, N. Y .
SUPPLEMENTARY SPIRAL SPRINGS SAVE your

 case coenvenient for traveling; can be secured at
ridiculousl. low price by adressing Postal, Box 773 ,
New York.

MACHINERY

MOTORS AND GENERA'TORS.-Also refrigerating machiners and ie plants (no ammonia ubed. Seud for
estimaters or boklet ot information
Co., 133 S. Clinton St., Chicago, III., U. S. A. Awell Electric

SEASICKNESS.

Technical Literature
a large 64 -page illustrated journal giving its readers. in
more or less condensed form. the BEST literary material of general inserest appearing in the current rectnical pubbiea-
tions of America and Europe. as well as much valuable information foond in daily papers, trade pamphlets. society
proceedings, speectes and lectures, etc. The "Index to Articles in Current Technical Periodicals" gives a classisied descriptive lising of all the articles of im-
porance apparing in the current tectrical press. brought
down to the first of the monte of issue. down to the first of the month of issue.

```
# An indispensable publication for engi
l
```

$\underset{\text { Year. }}{\text { SUBSCRIPTION }}$ RATES
$\$ 20$ Cents
 a trial subscription we will send you TECHNICAL LIT-
ERATURE for twe months for 25 CENTS with a low rate
in combination with a special Premium Book Offer for the in combination with a special Premium Book Offer for
certinuance of the subscripion.
Send your quarter to tray and get the current numbers. technical literature, 19 S, 220 Broadway, New York
Perthaps You Want To Know

bak from the thich
chase you make tro
for
MONTGOMERY \& CO 105 Fulton St., N. Y. City
rade Mark
Designs Cop DRIGHTS \&
Anyoue sending a sketch and descriptionmay

Scientific American.

H^{1}
ERE'S a July message that is of such profitable furnace-cheer that it will interest those now searching for the cool spots. How would YOU like to save big money every year on your coal bills? If you are building or contemplating a new heating equipment for your home r properties, there is ONE furnace that will add greatest value to them,

Peck-Williamson Underfeed Furnace Saves 1-2 to $\mathbf{2 - 3}$ on Coal Bills

We estimate on anything you want made to order. We publish "The Silent Partner," a brainy litue

MODELS $\underset{\text { inventions deveioped. Special Machinery }}{\text { w }}$ EXPERI

MODELS \&ears Deriment Moil MACHINERV.

Telegraphy

MILLS FOR ALLMATERIALS.

GYMNASTIC AND ATHLETIC GOODS

Professor and Lecturer Wanted. Applications accompanied by eight printed or type-
writiten coples of testimonials, addressed to the under-
signed at the
 or "application for lecture-ship." as the case may be,
will be recelved up to July 10 . 1067 , for the following
positions in the University positions in the University of Manitoba: Professor for
the Chair of Civil E. Wineering, salary \&2,501 per annum
with permission to engake in such private (with permission to engage in such privatepractice as
will not interfere with his duties to the Unlversity).
 Mathematies, salary $81,5(1)$ per annum, duties to com
mence October 1, 1907.
\qquad
ELECTRO MOTOR. SIMPLE, HOW TO
 ing amateurs to duake a motor which might be driven
whth advatage by curnenderived fom a batery, and
which would bave sufficient power to operate a foot

STRONG \& DURABLE

The New York Standard
CHRONOGRAPH

is the only

"Stop-Watch" Watch
made in America and is unequaled for Laboratorial and Experimental Work, Photographic Purposes, Electric and Telephone Uses. For Refiners and Compounders of Oils, etc. For Physicians, Surgeons, Nurses, and for the exact timing of all athletic events. All Jewelers Sell Them
New York Standard Watch Co., 401 Communipaw Ave., Jersey City, N. J.

Rubber Pump Valves

For Cold and Hot Water, Oils, Acids, High Pressure Mine Service and for every pumping requirement. * *t * Mechanical Rubber Goods of every description of unsurpassed qualities, including BELTING, HOSE PACKINGS, Gaskets, Mats and Matting, Tubings, Springs, Interlocking
Tiling, Emery Wheels and MOULDED and Tiling, Emery Wheels and MOULDED and
CUT SPECIA LTIES for any mechanical CUT SPECIALTIES for any mechanical
and commercial device. $\& * \pm \& \pm \pm *$ NEW YORK BELTING \& PACKING COMPANY, Ltd. 91 \& 93 Chambers Street, New York

We Will Make You

 ProsperousIf you are honest and ambitions write us
todany No mater where
tyour oceupativen, wor what
whill teach you the Your occupation, we wiII teach you the
Keal Estate buanness by nail; appont
you special Representante of out

 Nelo national co-opera tive realty co.

OLDS
ENGINES
"Best by Every Test"
Our new Hopper Jacket

 OLDS GAS POWER CO., 958 Seazer St., Lansing, Mich.

Bausch \& Lomb-Zeiss Stereo Field Glasses

 Build with Concrete Blocks

 rience unuecessary. A
Pettyjohn
and equaniment ${ }^{\text {and eadipment tor or on }} \mathbf{\$ 3 3 . 5}$ Fivery machine guaranteed

Details Make The Car In The Model 24

Tamblevo

in every feature that makes mechanical excellence and general attractiveness.

Constructive Details
Motor-four-cylinder vertical, $4 \frac{1}{2}$ inch bore, $4 \frac{1}{2}$ inch stroke that gives
full $25-30$ horse power at the road wheels.
Transmission-sliding gear of a special type in which all trouble in
shifting gears is absolutely avoided.
inal drive-propeller shaft and bevel gears with floating type rear
axle fitted with ball and roller bearings throughout axle fitted with ball and roller bearings throughout. . Wheel base
All accessories such as mecharical sight feed tub
accessories, such as mechanical sight feed lubricator, circulating
pump, ignition timer, etc., are of the latest and most approved types.
Equipment includes full cape top, five lamps, horn, tools, storage
battery, etc.
Price, as below, $\$ 2,000$.
Our catalogue, describing this and five other models- $\$ 950$ to $\$ 2500$ -is at your service
Main Office and Factory, Kenosha, Wisconsin Branches:

Thomas B. Jeffery \& Company

THERIGHTSPARK Hyajo "HOW TO REMEMBER"

Gasolene Storage for Autoists

"Star of the First Magnitude." FACT Number 10-The Underwood Escapement is The Skilled Mechanic says: "It The Skilled Mechanic says: "It
will last a hundred years." UNDERWOOD TYPEWRITER COMPANY,
New YOFK Or AZYWhere.

FACT Number 10 the
\qquad

