and cold, cannot be frozen by winter temperature even on mountain tops, and the chemicals
are not poisonous. The general chemical acare not poisonous. The general chemical ac-
tion is that the ammonic chloride acts upen tion is that the ammonic chloride acts upene
the zinc chloride. The hydrogen goes to the manganese dioxide and forms water with its oxygen. This is only general, since other sub-
stances may be used and other and more complicated reactions take place.
(10363) A. H. H. writes problem in SCIENTIFIC AMERICAN of December
22, Query 10271 , can be solved by arithmetic in the following manner: $\quad 20: 1.34:: x: 10$
$20 \times 10=200.200 \div 1.34=149.253+$ rods $=$ $20 \times 10=200.200 \div 1.34=149.253+$ rods
one side of field. And $149.253+\times 149.253+$
 Explanation: Assume a field 20 rods square It would of course equal a field of 400 square
rods. $1 / 4$ being plowed away, leaving 300 square rods, each side of which is $17.32+$ rods. Fron
 $1.34+$ rods, which is $1 / 2$ of assumed field
plowed. Then by proportion: If by plowplowed. Then y proportion: If by plow-
ing $1.34+$ rods from a field of 20 rods square, $1 / /$ of the field is plowed, how many
acres in a field if an outside strip 10 rods wide is $1 / 4$ of it? A. Although no letters are used
in the solution above, the genius of it is alge braic as much as if all the quantities were represented by letters. Algebra is a branch ol
mathematics in which the relations of the quantities are assumed, and upon these assumed quantities, usually letters, the operations ar
performed till the proper values in number are discovered, or till the relations of the let simplest manner possible in the case. In this problem the number 20 is used as if it were a letter, and operations are performed upon 20
till its relation to the correct number appears till its relation to the correct number appears.
Thus it is seen that the solution is algebraic in essential character, although no letters are
cmployed. Our algebraic solution was simpler employed. Our algebraic solution was
than this so-called arithmetical solution.
(10364) G. H. H. asks: 1. Where lay the path of totality of the total eclipse of
1868 or 1869 , which was visible, I think, in Iowa, etc.? Duration of eclipse? Width, of
path? A. We have not the path of the eclipse path? A. We have not the path of the eclipse
of 1868 or 1869 in Iowa at hand. You may be able to get it from the U. S. Naval Observa
tory, Washington, $\mathbf{~ P . ~ C . ~}$
2. How must I under stand the magnitude of stars given in Standard Dictionary, where Sirius is given as 1.4 an
Arcturus 0.3 , when Sirius is said to be the brightest fixed star? A. The magnitudes of
stars are now given in magnitudes and tenths, based upon the fact that a first-magnitude star sixth magnitude. Each magnitude is there fore as many times as bright as the one next
below it, as starting with 1 and multiplying by the same number will give 100 after five of 100 , first-magnitude star is of the. brightness of
Aldebaran and Altair. The Pole star is of the second magnitude. Stars brighter than the first-magnitude stars must be expressed by a
number indicating that fact. Sirius is -1.4 number indicating that fact. Sirius is -1.4
magnitude. See Young's "Elements of Astronmagnitude. See Young's "Ele
omy," which we send for $\$ 2$.
(10365) C. B. asks: 1. Can stains on the finger nails caused by pyrogallic acid
in a photographic developer be removed, and how? A. Cyanide of potassium will remove most stains produced by photographic chemi-
cals. It should be used with extreme care. als. It should be used with extreme care
It is better to have the stain than to be pois films which will nou give me a contain bromide of potassium? A. There is no developer which will not stain, and none in
use at present which do not require bromide o potassium as a restrainer. 3. Can a 110 -volt alternating current be transformed to a 10
volt direct current without using a rotary transformer, and how? A. It is necessary to use a rotary transformer to convert an alter-
nating current into a direct current. 4. How much water should be added to c. p. sulphuric actute sulphuric acid is a somewhat indefinite term. When a concentrated acid shows 1.84
on the hydrometer, it will show 1.07 hydrometer if made a 10 per cent solution, and 1.14
hydrometer if made a 20 per cent solution. Both these percentages are used, and are called dilute acid.
(10366) S. A. W. asks: An article on standard time on page 124 of Todd's "New As-
tronomy" contains the following. "The whole tronomy" contains the following: "The whole
country is divided into four sections or meridian belts, approximately 15 deg. of longitude in width, so that each varies from those
adjacent to it by exactly an hour. The time adjacent to it by exactly an hour. The time
in the whole 'Fastern' section is that of the i5th meridian from Greenwich, making it five hours slower than Greenwich time. This stanthe local time of Utica and Philadelphia and extends to Buffalo." One would infer from the above that Buffalo or the 79 th meridian was
the western boundary of the eastern standare or 75 th mertidian time belt. If each section or belt is 15 deg. wide and the 75th meridian is
at the center of the 'Eastern' section, I cannot at the center of the 'Tastern' section, I cannot
see why the western boundary of this section should not be $71 / 2$ deg. west of the 75 th merid ian or $1 / 2$ degree west of the $82 d$ meridian,
which would be at a line drawn from Por

Huron, Mich., to Tampa, Fla., which is as far west of Buffalo as buffalo is west of te
meridian. Will you kindly explain this through he columns of your paper? A. The statement quoted from Todd's "New Astronomy" is cor-
rect. The inference made from the statement is not correct. The places at which the change shall be made from the time of one section to that of the next westerly section depends largeypon the convenience of the railroads and not
and pon the longitude. The system of standard
time in America was adopted for the benefit of the traveling public and the railroads, and not to satisfy any sentiments of astronomers practical and not a scientific arrangement. So practical and not a scientinc arrangement. So
the roads centering in Buffalo make the change from Eastern to Central Meridian time at Buffalo, since the roads of several companies end at Buffalo. The change is made at Pittsburg for the Pennsylvania system. A comparison of the maps of the roads giving the
points at which the changes of time are made will show some strange departures from the ongitudinal belt of 15 degrees in width. At
one place in the Southwest Pacific time meets Central time so that the Mountain division is uite eliminated at that point.
(10367) C. M. T. asks

1. What air, and how it is generated? A. Air is a
mixture of nitrogen 4 parts, oxygen 1 part, with traces of some other gases. To these are added minute quantities of carbon dioxide and
other products of animal life as impurities. Water vapor is also always present in the at mosphere. 2. Did it exist from the very birth of the earth or some time after? A. The
atmosphere has been on the earth from the urst, although its composition has changed as he earth has cooled. Once all the water of the here till the temperature fell below the boiling point of water. The water then came down in be destroyed or burnt out by fire? If it it not destroyed, you mean to say that the air which we breathe to-day is the same that was on the earth millions of years ago? A. The nitrogen of the atmosphere cannot be destroyed by any ordinary means. It is a most inert
substance chemically. The oxygen is readily passed into combination with carbon by combustion, and with many other substances by chemical combinations as oxides. The most
familiar example of this perhaps is iron rust amiliar example of this perhaps is iron rust-
ing in the air. Plants and animals all live from the oxygen of the air. The animal world takes oxygen from the air to breathe and gives it out as carbon dioxide, which the plant takes up and separates for its food, giving off
the oxygen again into the air. Thus oxygen is continually passing out of the air and back gain into the air. In a sense the air we breathe to-day is the same as animals breathed
at the first. But since that time it has been subject to numberless chemical changes, and many times.
(10368) V. P. H. and others: We are receiving many uueries regarding cannon, guns,
balls, etc, shot from moving trains in every balls, etc, shot from moving trains in every
variety of ways which ingenuity can devise and describe. A recent correspondent states even different propositions, all different con not time or space to take up this matter. We have heard it discussed for a long lifetime, and apparently it will not down. The answer Newton's Laws of Motion: "A given force pr uces the same effect whether it acts upon a body at rest or in motion; whether it acts
alone or together with other forces." This has een accepted universally forlytiries, and case in question it is only necessary to say hat the discharge of the powder produces the same effect upon the ball under all circumstances. It is also necessary to say that the motion of the train produces the same effect upon the ball as if the powder had not been exploded. The ball is at any time just where
the two motions will together carry it. Calhe two motions will together carry
culate this and you have the answer. We do
ot desire communications upon this subject Let our esteemed correspondents find something
new to write about.
(10369) J. E. B. writes: In your issue of December 22, 1906, question 10271, a
farmer having plowed a strip ten rods wide round a square field finds he has finished one forth of the field. How many acres? You say that this is not an arithmetical problem, ears ago a country school teacher in Iowa used oo tell us that all problems could be solved by
arithmetic. Perhaps he was right. solution No. 2. Divide a square by diagonals into four riangles. Divide one triangle into two right-
ngle triangles by a perpendicular from the ngle triangles by a perpendicular from the
center of the square. Assume that the base of ne of these triangles is any length, four rods equal, the area is one-balf of the sware of the base, viz., eight square rods. One-fourth of this triangle having been plowed, the base and perpendicular of the remaining similar triangle would be the square root of twelve, vin, 3.464 .
This subtracted from 4 leaves 0.536 , the width of the plowed strip. Then, by proportion,
$0.536: 4: 10: 74.6$. But the base of the triangle is one-half of the side of the square, viz., 149.2 rods, your answer by algebra. A. Your
sollution of the problem regarding the plowed
with a "base of any length, four rods long."
Then from this you calculate the parts on the Then from this you calculate the parts on the
conditions of the original problem, and at last arrive at the proportion between your assumed figure and the figure given in the problem, from which the length of the side of the square fiel is not arithmetical, but algebraic. It is easier to use a letter to represent the side of the
square and proceed with the calculation till the numerical value of the assumed letter is found than to do it as you did. To use only numbers does not make a process arithmetical. In an
arithmetical process the numbers given in the arithmetical process the numbers given in the
problem are taken and the calculation is based problem ase taken and and coalculut on the the an wer is found. In an algebraic solution the
answer is assumed, usually as a letter or els some quantity so related to the answer that the value of the answer can be computed from the assumed quantity, and the calculations are This is what you did in solving the problem Arithmetic has its place and uses. So has algebra. Many of the older arithmetics con-
tained problems which were solved by assumtained problems which were solved by assum rendered the solution algebraic. It was by such processes that your old teacher justar metic.
(10370) L. W. asks: In the year 1833, in the month of November (do not re eight on 2d of March) I witnessed just at daybreak in the morning that great and notable shower. It was a magnificent sight, and vivid to my mental sight as at the time. It takes, but disappeared it was large snow Why I was out of my trundebed at that tim and looking out of the window, I do not recall. My parents or no one saw it but myself, as I
was frightened and went back to bed. This was in Centreville, Allegany County, New York From that time on I have never seen the like,
neither any one who has. But I have talked neither any one who has. But I have talked
with those who saw them at that time. Now they are said to be periodic, about the Nuw November. Now what I wish to know is,
where are they perceived-in what localities and why not universal? Are shooting stars
classed as meteors? What is the cause classed as meteors? What is the cause of
meteors? A. The meteoric shower which you meteors. A. The meteoric shower which you
so vividly remember occurs once in about $331 / 4$
years, on the nimht years, on the night of November 14. If it oc
curs when the sun is above the horizon of a curs when the sun is above the horizon of
place it is not seen at all. It occurs here in New York in the early morning hours. There were showers in $1833,1866,1898$, and in 1901 as that of 1833. The earth crosses brinant of the meteors each November 14, but the meteors are at the same place at the same time
as the earth only once in $331 / 4$ years.
(10371) W. B. C. says: Why is it that when water freezes bubbles are formed in the ice? I once left a tumbler of water outside morning, I found the water rrozen half way
down the glass in a series of domes.
Between the bottom of the ice and the unfrozen water was bubbe of air as big as a pea. I have there, as so far as I know the glass was abso lutely undisturbed while the water was freez-
ing. The solution of this problem would interest me very much. A. Bubbles of air ap
pear in ice because the air was dissolved to the water before it was frozen. Upon freezing, the air separates from the water. Water in would be tasteless and fish could not live in it. grow warm, the air separates from the wate in a similar manner and appears as bubbles on
the sides of the glass the sides of the glass.
(10372) S. M. D. asks: Is there any limit to the distance that a certain amount of weak battery send electricity that is, will strong battery? A. There is a limit of distance to which a small amount of electric
current can affect an instrument so that it can be perceived. This is at a less distance than
strong current can affect the same instrument. In this sease a weak current canno wave as far as a strong one over a wire through a mile of wire as a strong battery we might still detect the weak current much farther than we can at present. It is not so nuch the defect of the cur
traments for observing it.
(10373) G. H. says: I would like to get or make a cold solution, say a few degrees
above the freezing point, in small quantities. Could you advise me where I can obtain such
thing or what chemicals are needed to duce it? A. You may obtain a low temperature by the addition of hydrochloric acid to crystals of sodium sulphate. By using strong acid low freezing can be had. Different proportions of aci and water will cause different tempera tures. We have no tables giving the parts of
each to be used, and you can determine by experiment the parts of each to be taken for alone poured upon the crystals will produc

NEW BOORS, ETC

vorganic Qualitative Chemical Anal-
ysis. By William Stole worth, M.Sc. Easton, Pa.: The Chemical Publishing Company, 1906.
Pp. 153. Price, 1.50. This book provides a manual holding an inermediate position between an elaborate treatse and a skeleton or tline of the subject. The work is concise but clear throughout; it is
hardly a a ailable for the elementary student, as a certain familiarity with general chemistry will be found necessary. The appends, list ins a full and useful list data, which will be found useful for supple. menting the information contained in the body of the volume.
Business Organization. By Samuel E. Sparling, Ph.D. New York: The Mac${ }_{374}$ m. Price, $\$ 1.25$ net.
This volume is an outgrowth of a course of ectures on Business Organization and Management, delivered at the University of Wisconsin in connection with the courses in Commerce.
The growth of the literature of commercial ac ne growth of the literature of commercial ac fested in the systematic study of business institutions and corporations. But as there have been few books fully covering modern business
from the viewpoint of organization, Dr. Sparling's contribution will fill a decided want in overs the subject thoroughly, woll withten and that the plan of treatment was necessarily

Taschenbuch der Kriegsfletten. Vili. Jahrgang, 1907. By B. Weyer, Ka-
pitänleutnant a.D. Munich: J. F. Lehmann's Verlag, 1907. 12mo.; pp. 403.

Capt. Weyer's Annual may be considered a ofy compact and accurate review of the state irst of December, 1906. Following the plan which has been adopted in previous issues, he has endeavored to present a photograph of and plan views, in which the armor and gun ositions are clearly indicated. Constant use of tify us in assuring for this book a well-deserved uccess.
Technolegical and Scientific DictrenARY. Edited by G. F. Goodchild and
C. F. Tweney. Philadelphia: J. B. Lippincott Company, 1906. Large 8vo.; pp. 875. Price, $\$ 6$.
The title of this useful book explains fully but nevertheless of sufficient length to be of value in almost every case. Chemical formulas are freely given. Illustrations are provided, supplementing the explanations of certain of
the terms defined. Various important subjects are discussed at great length.
nternal Energy. By John V. V. Booraem, M.E. New York: McGraw Pub-
lishing Company, 1906. 12 mo ; lishing Company, 1906. 12mo., pp. The author has undertaken a task in this ook which at first glance would appear posi-
tively staggering. This is to suggest a simple vorkng hypothesis whereby the amount of all chemical energy stored within a body may be
estimated. The work is based upon familiar ines of experimental data, the idea originating orves mathematical study of the periodic points. The hypothesis is based upon a mathematical method, and provides for expressing
the relations of heat to mass through great eres of temperature
e Canal de Suez.
Seven Volumes. Voisin Bey. In
Paris: H. Dunod Seven Volumes. Paris: H. Dunod
et E. Pinat, Editeurs, 1906. econd Report of the Wellcome ReSearch Laboratories at the Gorden
Memorial College, Khartoum. By Andrew Balfour, M.D., B.Sc., F.R.C.P. Edin., D.P.H. Camb. Khartoum:

INDEX OF INVENTIONS For which Letters Patent of the United States were Issued for the Week Ending January 22, 1907.

andeach bearing that date

