RECENTLY PATENTED INVENTIONS. Of Interest marmer
GRAIN TRANSFERRING DEVICE.-B. B. Stauffer, Wichita, Kan. The improvement relates to self-feeders for threshing-machines The object is to provide a transferring device
or power-pitcher for carrying grain in the straw from a stack or the like to the selffeeder of the threshing-machine in such man ner that the grain passes in even
layer to the self-feeder to insure a continuous and proper feeding of the grain without the aid of manual labor.
CUSHION FOR BALL-AND-SOCKET oinss.-C. E. Pinceney, Brunswick, Ga. In in cushions for ball-and-socket joints, and is especially designed for use in mowing-machines and harvesters, having for an object the avoid ance of the extreme wear ordinarily ex
ienced in the use of ball-and-socket joints.

Of General Interest.
OIL-SHELL-C. A. Glever, Bellport, N. Y The shell is adapted to contain oil and to be fired from a cannon or mortar over a body of
water to distribute oil thereupon at a point water to distribute oil thereupon at a point
distant from the shore and is so constructed that during the major portion of its flight the outlet for the oil will be closed but automati cally opened at or about the time the shel strikes the water, thereby permitting the oil to spread upon the rough element and quiet it.
pole-splicing device.-F. N. Drane, Corsicana, Texas. The device is for use in splicing telegraph or other poles vided by which the main pole may be firmly secured to a new butt, replacing the original butt that may have become rotted in the
ground, thus obviating the expense of a nəw ground, thus obviating the expense of a new new poles too short but otherwise good may e spliced to useful lengths.
CALCULATOR.-K. H. J. Marcimordt, to calculators, such as shown and described in the application for Letters Patescribed United States formerly filed by Mr. Marck wordt. The object of the present invention is to provide a calculator designed for quickly
and accurately carrying out a large number of arithmetical calculations, such as calculat ing wages, volumes, multiplication, degrees of alcohol, lumber measurements,
sugar pulverization, and the like.
ugar pulverization, and the like
FOLDING SHAVING-ERUSH.-H. M. Rynehart, New York, N. Y. The purpose of the invention is to provide a construction of shav ing-brush wherein while the handle remains
attached to the body of the brush at all times the handle may be closed around the body the brush when the brush is not in use to the brush when the brush is not in use to
shorten the brush and protect the bristles. hORSESHOE.-J. F. Robinson, Rockaway, struction of horseshoe of rubber having a metal skeleton core of horseshoe-shape, the ends of the core being connected by a bar member, so as to strengthen the shoe at its
heel-section, the core being made of malleable or soft iron, so that after the rubber is cast upon the iron the shoe may be contracted or
expanded to neatly fit the shape of the foot to which it is to be applied.
INSECT-TRAP.-Q. R. Tenes, Yosemite, Ky. This invention pertains to improvements
in devices adapted to attract and destroy in in devices adapted to attract and destroy in-
sects-such as mosquitos, moths, and the like the object being to provide a device of this character which will be simple in construction, and convenient for use in sleeping-ro
the like. It can be readily cleaned.

Hardware.

Hinge.-S. N. Stevens, North Chelmsford,
and E. P. Flanders, Lowell, Mass. The invention is particularly applicable to those used for the support of blinds or shutters. Its principal object is to provide a hinge embodying means for securing the blind at various
angles. The improvement renders it difficult to angles. The improvement renders it
raise or open the blind from outside.

Heating and Lighting.

Air-heater.-E. T. Slaughter, Kansas City, Mo. The invention is an improvement In air-heaters in which cold or relatively cool
air is passed over or through a drum or other form of casing heated by a gas or other burner, the air escaping in a heated condition into the room in which the heater is located or into a pipe leading therefrom to anothe
room. Greater efficiency in the utilization of heat and economy of construction of the heater are obtained.

Machines and Mechanical Devices.

GAS-GENERATING RETORT.
stewart, Oakland, Cal. The device is espe-
cially adapted for use in connection with cially adapted for use in connection with gasengines, heating, lighting, or other uses for
which gas may be applied. When use to produce gas for use in gas-engines, the heat in the waste gases drawn off through the exhaustpipe may be used to convert the gasoline, distillate, crude or other hydrocarbon oils into gas for such use and for
for which gas is desired.
boat-propelling mechanism. - R. Rutherferd, Montaville, Ore. An operator
seated on the stern-sheets of a boat or, if de-
sired, two operators, one seated on the stern
sheets and one on the after-thwart, may, through means of a transverse handle and its rotary movement to crank-shaft and to propelling-shaft, coupled thereto. In this
ner the propeller may be rapidly driven
Sawing-machine. -B. E. Harreld, Eldon, Iowa. In this instance the invention is an
improvement in machines in which the saw is reciprocated horizontally by cranks and mea re provided for raising and lowering the saw to allow the insertion of a log or stick be ion thereon.
MACHINE FOR MAKING FENCE-POSTS. R. L. Dennison, Kansas City, Mo. In the in machines for making concrete articles, and is especially designed for the artes, an fence-posts from shale and other plastic material. The interiors of the mold-boxes are end to end.

Prime Movers and Their Accessories ROTARY ENGINE, -F NELSen Driscoll, . Dak. The construction of this rotary engine comprises two cylinders communicating
with each other, in which two rotators are mounted. These rotators are formed with teeth which intermesh so that the rotators
rotate in opposite directions. Each rotator is rotate in opposite directions. Each rotator is
formed with projecting piston heads at diformed with projecting piston heads at di-
ametrically opposed points on its face, also ametrically opposed points on its face, also
midway between these heads with grooves adapted to receive the piston heads of its
fellow rotator. Steam may be admitted either above or below the point of engagement of the rotators, thus governing their direction of rotation. Spring-pressed packing plates are pro-
vided between the ends of the cylinder and the vided betw
rotators.
CURRENT-motor.-J. W. Laurent, Spokane, wash. The invention refers to improvements in motors operated by the water of flowing streams, the motor being especially adapted
for elevating water for irrigating purposes, the object being to provide a current-motor that the water and that may be operated by a comthe water and that may
paratively light current.

Railways and Their Accessories.
RAIL-JOINT.-Anna E. Beman, Fargo,
D. In the present patent the invention N. D. In the present patent the invention has reference to railways; and its object is to pro-
vide a rail-joint arranged to allow ready exvide a rail-joint arranged to allow ready ex-
pansion and contraction of the adjacent rails and to prevent the undesirable clicking when the car-wheels pass over the joint. The joint is practically sufficiently flexible to accomm date the usual movement of the rails. AUTOMATIC AIR-BRAKE FOR CARS. W. J. Dankel, Pittsburg, Kan. The inventor he piston-rod which actuates the brake-leve carries a piston, which plays between two air chambers one on one side containing com-
pressed air, which in expanding applies the pressed air, which in expanding applies the
brake, and the one on tue other side of the brake, and the one on the other side of the
piston being connect-d through a valve with the train-pipe, so th t when the pressure with in the latter is reduced by the engineer, the pressure within the communicating air-chamber ing pressure in the chamber on the other side to expand and by advancing the piston apply the brakes.

Pertaining to Recreation.

MERRY-GO-ROUND. - G. B. McKinney, Barry, Ill. In this instance the object of the invention is the provision of a new and imor more of the passengers to readily propel the merry-go-round without requiring undue physiartificial bait.-L. P. Gibsen, Little Rock, Ark. In the present invention the im-
provement has reference to fishing; and its object is to provide a new and improved artificial bait arranged to readily spin or revolve
around the hook whenever the device is drawn through the water as in ordinary fly-casting.

Pertaining to Vehicles.

TRACTION DEVICE FOR VEHICLE wheels. - H. S. Weaver, Butler, Pa hough applicable to vehicle-wheels generally this invention has reference more especially wheels for automobiles and the like, in tires; and one of the principal or phects of the invention is of the principal objects of th slipping of the wheel when the vehicle or machine is being propelled over soft or muddy

Designs.

DESIGN FOR A HAMMOCK-VALANCE.. W. Shөyer, New York, N. Y. This de-
igner has produced a ruffe for a hammock and on the cotton-corded material are woven abiliments. A fringe is added to the valance and it gives a graceful finish to the design.
Note--Copies of any of these patents will be furnished by Munn \& Co. for ten cents each. the invention, and date of thls paper.

Business and Personal Clamts. READ MHIS CoLUMN CAREFULLY. You will

 Moniry No. 8588.-We

 of nuiry No. 8562.
Inguiry
Unn
Nanvas.

 maniry No. 8568-Wanted mantacturers

 Inaniry No. B $^{5711-\text { Wanted, manufacturers of }}$

 Notes
 and Queries.

HINTS TO CORRESPONDENTS.

.

and Address must accompany all letters o
attention will be paid thereto. This is fo
information and not dates to former articles or answers should give
date or paper and page or namber of question.
 his turn
hyers wishing to purchase any article not adver
tised in our columns will be furnished with
addresse tiss wishing to purchase any article not adver-
tisded in our columns will be furnisised with
the sames. of houses manufacturing or carrying
tane.
 price.
$\begin{gathered}\text { Minerals } \\ \text { marked }\end{gathered}$
(10357) A. M. asks: 1. I have made otor described in SUPPLEMENT No. 641 and it any current when driven as a dynamo. It is series wound. Please let me know the remedy
A. Small motors very often are not wound so that they will excite their own fields and they cannot be used as dynamos, except by discon necting the field and using a battery to excite
the field. 2 . Would there be any practical way
2. to run it on 110 -volt alternating lighting cir
(10358) H. M. W writes: We under stand there is an easily prepared paper which and be used for the finding of the negative
and positive poles of an electric wire. Will you kindly inform us how to make this paper nd whether it will keep? We only wish for a small quantity. A. We give below two
methods for this purpose, both of which a eass. First method: Dissolve sodium sulphate,
a teaspoonful, in a half pint of water, in which a teaspoonful, in a half pint of water, in which
also dissolve about the same quantity of potassium iodide and of starch. To dissolve the starch the water must be heated. Soak white blotting paper in this solution and dry
Cut it into strips of any convenient size half inch by two inches is suitable. Keep the paper in a dry place such as a tin box or a
glass bottle. To use, moisten a strip and place the two poles upon it, nearer together or farther part, according to the voltage of
the current. A dark spot will appear at the positive pole. Second method: Dissolve 15 grains of phenol-phthalein in a half ounce of
common alcohol. Dissolve also 20 grains of sodium sulphate in 4 ounces of water. Soak off the superfluous liquid. Then soak it in the second solution and dry it. Afterward treat a red spot appears at the negative pole.
(10359) B. S. writes: Our church eeple of Hillcrest is about 160 feet high, sists of a sheet iron ornament the top consists of a sheet iron ornament some 12 or
15 feet; the church is of brick. The steeple
has been struck and badly damaged by iight-
ing within 3 years, although it stood for 20 ning within 3 years, although it stood for 20
odd years before it was first struck. It is thought by some that the large number of overhead telephone wires that go right by the church and the telephone station just across
atre street tend to attract lightning, which trikes the steeple first, it being a considerably higher point. Some contend that proper lighting rods would prevent damage, while others claim that lightning rods are incapable of ing such a bolt of lightning. A. 1. We should not dare to have a building with an iron top disconnected with the earth metallically, as is visit of the lightning. The lofty Washington Monument, in Washington, was struck and damaged till its metal tip was grounded by a lightning rod, since which it has been repeat-
dly struck, but without damage. Suitable edly struck, but without damage. Suitable
lightning rods certainly are of service in prolightning rods certainly are of service in pro-
tecting a building. We should suppose that tecting a building. We should suppose that
the telephone wires were a partial protection the telephone wires were a partial protection
to a neighborhood. 2 . Is it a fact that no height than $331 / 2$ feet before entering the pump, or in other words, before passing hrough the valves? If water can be raised a greater height by such a pump before it passes
through the pump valves can you tell what through the pump valves can you tell what istance it can be drawn and what causes the
limit if there is any? A. A lifting, or as it limit if there is any? A. A lifting, or as it
is sometimes called, a suction pump, can raise sometimes called, a suction pump, can raise
water no more than 28 to 30 feet. Theoretially 34 fee is the limit to which the pressure of the atmosphere can push water up a tube
with a vacuum above the water. No pump an exhaust the air above the water perfectly, ence no pump can get water 34 feet above the air off the water in the pipe; the air outside the pipe pushes on the water in the well and pushes it up into the partial vacuum in the pipe
below the valve of the pump. For this see any text-book of physics under pumps in pneu(10360) C. E. T. asks: 1. I am thinking of making a small direct-current dynamo,
and would like to know the formula and meaning of the symbols for wrapping and determining the size of wire to be used in order to
get a given voltage and current. A. Perhaps
the simplest the simplest book for calculating the parts of
a dynamo is given in "Practical Electricity," price $\$ 2$ by mail. There is, road to designing dynamos and motors. The best way for the amateur to go about the building of a dynamo is to select the size
of machine he requires and buy plans all worked out. Many such designs have been published in the Scientific American and other periodicals and in books. We have frequent occasion to recommend such to our
correspondents. They can be had very cheap. . I would also like to know the name of a articles of steel or iron so they will stand a good deal of handling and to be kept in a damp place so as they will not rust. A. A
good lacquer for rough ironwork is made with 6 parts asphaltum dissolved in turpentine, 1 part shellac dissolved in wood alcohol; mix and thin with turpentine or wood alcohol. For bright steel or iron, a shellac and mastic mastic dissolved in wood alcohol. Color with mastic dissolved in wood alcohol. Color with (10361) G. P. M. asks: What are the rue primary colors? A. Primary colors are the colors into which white light is separated by
the dispersion of a prism. Those named by the dispersion of a prism. Those named by
Newton are red, orange, yellow, green, blue, indigo, and violet. Artists reduce these to three, and violet. Artists reduce these to
thellow, and blue. Scientists generally consider red, green, and blue to represent the primary color sensations, and in one theory there are supposed to be three sets to these three cols, The idea of three primary colors is that from the combination of these three all hues may be produced which (10362) E. A. writes: Please give me an explanation of the following phenomenon:
During a rainstorm a click or brief ring of During a rainstorm a click or brief ring of
the telephone bell is frequently audible. It is evidently due to the lightning being coincident with it. But how does the lightning produce seen shooting from five to twenty feet from the 'phone? Is it harmful? Please answer the following questions: What chemicals are used in the makeup of a Mesce dry battery cell? Please explain the chemical action.
Is the cell affected by heat or cold? Are the chemicals injurious to the body if handled? A. The clicking of electrical apparatus during hunderstorms is due to action of the lightning flashes upon the lines. When they
are struck there will frequently be a flash from the wires, even though the be a flash from the wires, even do their work properly. The lightning
rester produces the effect because it is an electric discharge, the same a he usual current, only to handle electrical apparatus during a thunderstorm, when the wires are strung upon poles, though the lightning arresters usually protect the instruments. We have not the
formula for the composition of the Mesco formula for the composition of the Mesco
dry cell. It probably contains the same madry cell. It probably contains the same ma-
terials as the Leclanche cell, since all dry cells are modifications of this form of cell.
and cold, cannot be frozen by winter temperature even on mountain tops, and the chemicals
are not poisonous. The general chemical acare not poisonous. The general chemical ac
tion is that the ammonic chloride acts upen the zinc chloride. The hydrogen goes to the manganese dioxide and forms water with its oxygen. This is only general, since other subplicated reactions take place
(10363) A. H. H. writes: A. C.'s land problem in Scievtific American of December
22, Query 10271 , can be solved by arithmetic in the following manner: $20: 1.34:: x: 10$ one side of field. And $149.253+\times 149.253+$ $222276.458+$ square rods in field. Now
$22276.458+$ divided by $160=139.222$ acres Explanation: Assume a field 20 rods square It would of course equal a field of 400 square rods. $1 /$ being plowed away, leaving 300 suuare
rods, each side of which is $17.32+$ rods. From center of this unplowed plat to its edge equals
$1 / 1 /$ of $17.32+8=8.66+$ rods. Now 10 rods.
hall $1.34+$ rods, which is $1 / 2$ of assumed field
plowed. Then by proportion: If by plowplowed. Then proportion: If by plow-
ing $1.34+$ rods from a field of 20 rods square, $1 / 4$ of the field is plowed; how many
acres in a field if an outside strip 10 rods wide is $1 / 4$ of it? A. Although no letters are used
in the solution above, the genius of it is alge braic as much as if all the quantities wer represented by letters. Algebra is a branch of
mathematics in which the relations of the quantities are assumed, and upon these assumed quantities, usually letters, the operations ar are discovered, or till the relations of the letsimplest manner possible in the case. In this problem the number 20 is used as if it were
a letter, and operations are performed upon 20 till its relation to the correct number appears Thus it is seen that the solution is algebraic employed. Our algebraic solution was simple than this so-called arithmetical solution.
(10364) G. H. H. asks: 1. Where lay the path of totality of the total eclipse o
1868 or 1869 , which was visible, I think, in Iowa, etc.? Duration of eclipse? Width of
path? A. We have not the path of the eclips path? A. We have not the path of the eclipse
of 1868 or 1869 in Iowa at hand. You may be able to get it from the U. S. Naval Observa stand the magnitude of stars given in Standar Dictionary, where Sirius is given as 1.4 and
Arcturus 0.3 , when Sirius is said to be the Arcturus 0.3 , when Sirius is said to be the
brightest fixed star? A. The magnitudes o stars are now given in magnitudes and tenths,
based upon the fact that a first-magnitude star based upon the fact that a first-magnitude sta
is about 100 times as bright as one of the sixth magnitude. Each magnitude is there
fore as many times as bright as the one next below it, as starting with 1 and multiplying by the same number will give 100 after fiv of 100 , or 2.512 . Upon this basis an average first-magnitude star is of the. brightness of
Aldebaran and Altair. The Pole star is of the second magnitude. Stars brighter than the first-magnitude stars must be expressed by
number indicating that fact. Sirius is number indicating that fact. Sirius is -1.4
magnitude. See Young's 'Elements of Astronmagnitude. See Young's "Ele
omy," which we send for $\$ 2$.
(10365) C. B. asks: 1. Can stains on the finger nails caused by pyrogallic acid
in a photographic developer be removed, and how? A. Cyanide of potassium will remove most stains produced by photographic chemi-
cals. It should be used with extreme care. It is better to have the stain than to be pois films which will not stain fingers and does no developer which will not stain, and none in use at present which do not require bromide of potassium as a restrainer. 3. Can a 110 -volt
alternating current be transformed to a 10 volt direct current without using a rotar transformer, and how? A. It is necessary to
use a rotary transformer to convert an alter nating current into a direct current. 4. How acid to make the so-called $\mathrm{H}_{2} \mathrm{SO}_{4}$ dilute? A Dilute sulphuric acid is a somewhat indefinite term. When a concentrated acid shows 1.84
on the hydrometer, it will show 1.07 hydro meter if made a 10 per cent solution, and 1.14
hydrometer if made a 20 per cent solution. Both these percentages are used, and are calle dilute acid.
(10366) S. A. W. asks: An article on standard time on page 124 of Todd's "New As tronomy" contains the following: "The whole country is divided into four sections or
meridian belts, approximately 15 deg. of longiude in width, so that each varies from those adjacent to it by exactly an hour. The time in the whole 'Gastern' section is that of the hours slower than Greenwich time. This stanthe local time of Utica and Philadelphia and extends to Buffalo." One would infer from the above that Buffalo or the 79th meridian wa the western boundary of the eastern standar or 75 th meridian time belt. If each section or
belt is 15 deg. wide and the 75 th meridian is belt is 15 deg. wide and the 75th. meridian is
at the center of the 'Eastern' section, I cannot see why the western boundary of this section should not be $71 / 2$ deg. west of the 75 th merid-
ian or $1 / 2$ degree west of the 82 d meridian,

Huron, Mich., to Tampa, Fla., which is as fa west of Buffalo as Buffalo is west of the the columns of your paper? A. The statement quoted from Todd's "New Astronomy" is corect. The inference made from the statement s not correct. The places at which the change that of the next westerly section depends largey upon the convenience of the railroads and not upon the longitude. The system of standard
ime in America was adopted for the benefit time in America was adopted for the benefit
of the traveling public and the railroads, and of the traveling public and the railroads, and
not to satisfy any sentiments of astronomers not to satisfy any sentiments of astronomers
as to scientific fitness of things. It was a practical and not a scientific arrangement. So the roads centering in Buffalo make the change Suffalo, since the roads of several companies nd at Buffalo. The change is made at Pittsburg for the Pennsylvania system. A comparison of the maps of the roads giving the wints at which the changes of time are made ongitudinal belt of 15 degrees in width. At ne place in the Southwest Pacific time meets uite eliminate at that point
(10367) C. M. T. asks

What is air, and how it is generated? A. Air is a
misture of nitrogen 4 parts, oxygen 1 part, with traces of some other gases. To these are other products of animal life as impurities. Water vapor is also always present in the at mosphere. 2. Did it exist from the very birth of earth or some time after? A. The
tmosphere has been on the earth from the irst, although its composition has changed as he earth has cooled. Once all the water of the here till the temperature fell below the boiling point of water. The water then came down in it be destroyed or burnt out by fire? not destroyed, you mean to say that the air which we breathe to-day is the same that was on the earth millions of years ago? A. The nitrogen of the atmosphere cannot be destroyed by any ordinary means. It is a most inert passed into combination with carbon by combustion, and with many other substances by chemical combinations as oxides. The most familiar example of this perhaps is iron rust-
ing in the air. Plants and animals all live from the oxygen of the air. The animal world takes oxygen from the air to breathe and gives it out as carbon dioxide, which the plant takes up and separates for its food, giving off ontinually passing out of the air and back gain into the air. In a sense the air w breathe to-day is the same as animals breathed
at the first. But since that time it has been ubject to numberless chemical changes, and many times.
(10368) V. P. H. and others: We are eceiving many ueries regarding cannon, guns, balls, etc., shot from moving trains in every
variety of ways which ingenuity can devise and describe. A recent correspondent states seven different propositions, all different conceptions of one and the same thing. We have not time or space to take up this matter. We
have heard it discussed for a long lifetime, and apparently it will not down. The answer to all these conundrums is in the Second of
Newton's Laws of Motion: "A given force proNewton's Laws of Motion: "A given force pro-
duces the same effect whether it acts upon a body at rest or in motion; whether it acts lone or together with other forces." This has an established fact. To apply this law to the ase in question it is only necessary to say ame discharge of the powder produces the stances. It is also necessary to say that the motion of the train produces the same effect pon the ball as if the powder had not been xploded. The ball is at any time just where he two motions will together carry
culate this and you have the answer. We do
not desire communications upon this subject. Let our esteemed correspondents find something
(10369) J. E. B. writes: In your issue of December 22, 1906, question 10271, a armer having plowed a strip ten rods wide fourth of the field. How many acres? You ay that this is not an arithmetical problem, say that this is not an arithmetical problem, ago a country school teacher in Iowa used rithmetic. Perhaps he was right. Solution No. 2. Divide a square by diagonals into four
riangles. Divide one triangle into two rightngle triangles by a perpendicular from the ne of these triangles is any that the base of ne of these triangles is any length, four rods
ong. Then, as base and perpendicular are equal, the area is one-half of the square of the base, viz., eight square rods. One-fourth of this riangle having been plowed, the base and perpendicular of the remaining similar triangle would be the square root of twelve, vil., 3.464 .
This subtracted from 4 leaves 0.536 , the width of the plowed strip. Then, by proportion,
$0.536: 4:: 10: 74.6$. But the base of the tri$0.536: 4:: 10: 74.6$. But the base of the tri-
ngle is one-half of the side of the square, viz 149.2 rods, your answer by algebra. A. Your solution of the problem regarding the plowed
field is uite correct. You assume a figure
with a "base of any length, four rods long."
Then from this you calculate the parts on the Then from this you calculate the parts on the arrive at the proportion between your assumed figure and the figure given in the problem, from is found length of the side of the square fiel is not arithmetical, but algebraic. It is easier to use a letter to represent the side of the
square and proceed with the calculation till the numerical value of the assumed letter is found than to do it as you did. To use only numbers
does not make a process arithmetical. In an does not make a process arithmetical. In an
arithmetical process the numbers given in the problem are taken and the calculation is based upon those numbers and continued till the an answer is assumed, In an algebraic solution the some quantity so related to the answer that the value of the answer can be computed from the assumed quantity, and the calculations are This is what you did in solving the problem. Arithmetic has its place and uses. So has
algebra. Many of the older arithmetics conalgebra. Many of the older arithmetics con-
tained problems which were solved by assuming a quantity and working with it. This such processes that your old teacher justified his say
metic.
(10370) L. W. asks: In the year 833, in the month of November (do not re call the day of the month; I would have been
eight on 2 d of March) I witnessed just at day eight on the morning that great and notable event of the falling of the stars, or meteoric shower. It was a magnificent sight, and a resembled and I thought it was large snow fiakes, but disappeared as fast as they fell
Why I was out of my trundlebed at that time Why I was out of my trundlebed at that time and looking out of the window, I do not recall.
My parents or no one saw it but myself, as I was frightened and went back to bed. This as in Centreville, Allegany County, New York From that time on I have never seen the like with those who saw them at that time. Now they are said to be periodic, about the 14th November. Now what I wish to know is
where are they perceived-in what localities? and why not universal? Are shooting stars classed as meteors? What is the cause of
meteors? A. The meteoric shower which you meteors? A. The meteoric shower which you
so vividly remember occurs once in about $331 / 4$ curs, when the sun is above the horizon of place it is not seen at all. It occurs here in New York in the early morning hours. Ther None of these later showers were as brillian as that of 1833 . The earth crosses the orbit
of the meteors each November 14, but the meteors are at the same place at the same time
(10371) W. B. C. says: Why is it that when water freezes bubbles are formed in the ice? I once left a tumbler of water outside
on a cold night, and on finding it the next morning, I found the water rrozen half wa the bottom of the ice and the unfrozen water Wa there, as so farious to know how that air got
the glass was abso utely undisturbed while the water was freez ing. The solution of this problem would in terest me very much. A. m ice because the air was dissolved in the water before it was frozen. Upon freezing, natural condition always contains air, else it would be tasteless and fish could not live in it grow warm, the air separates from the wate in a similar manner and
the sides of the glass.
(10372) S. M. D. asks: Is there any imit to the distance that a certain amount of weak battery send electricity as far, as a strong battery? A. There is a limit of dis tance to which a small amount of electric
current can affect an instrument so that it can be perceived. This is at a less distance than ment. In this sense a weak current cannot A weak battery cannot produce the same effect through a mile of wire as a strong battery
can.; but if we had more delicate instrument we might still detect the weak current much farther than we can at present. It is not so much the defect of the curr
traments for observing it.
(10373) G. H. says: I would like to get or make a cold solution, say a few degrees
above the freezing point, in small quantities. Could you advise me where I can obtain such duce it? A. You may obtain a low temperature by the addition of hydrochloric acid to crystal of sodium sulphate. By using strong acid a low freezing can be had. Different proportions of acid and water will cause different tempera tures. We have no tables giving the parts of
each to be used, and you can determine by experiment the parts of each to be taken for alone poured upon the crystals will produc

NEW BOOKS, ETC

vorganic Qualitative Chemical Analworth, M.Sc. Easton, Pa.: The Chemical Publishing Company, 1906.
Pp. 153. Price, 1.50 . This book provides a manual holding an inermediate position between an elaborate treatse and a skeleton ortline of the subject. The work is concise but clear throughout; it is
hardly available for the elementary student, as a certain familiarity with general chemistry ill be foun and useful list of reagents, a list f suitable apparatus, and other convenient data, which will be found useful for supplementing the information contained in the body of the volume.
Business Organizatien. By Samuel E.
Sparling, Ph.D. New York: The Mac-
millan Company, 1906. 12mo.; pp.
374. Price, $\$ 1.25$ net.
ctures on Business Organization and ment, delivered at the University of Wisconsin in connection with the courses in Commerce.
The growth of the literature of commercial acThe growth of the literature of commercial activity indicates the increasing interest manifested in the systematic study of business in-
stitutions and corporations. But as there have been few books fully covering modern business om the viewpoint of organization, Dr. Spar ng's contribution will fill a decided want in covers the subject thoroughly, notwithstanding that the plan of treatment was necessarily somewhat arbitrary.
Taschenbuch der Kriegsflotten. VIII. Jahrgang, 1907. By B. Weyer, KaLehmann's Verlag, 1907. 12mo.; pp. 403.
capt. Weyer's Annual may be considered ery compact and accurate review of the state of naval affairs in all countries down to the
irst of December, 1906. Following the plan which has been adopted in previous issues, he as endeavored to present a photograph of and plan views, in which the armor and gun positions are clearly indicated. Constant use of tify us in assuring for this book a well-deserved success.

Technelegical and Scientific DictrenEdited by G. F. Goodchild and
Tweney. Philadelphia: J. B Lippincott Company, 1906. Large 8vo.; pp. 875 . Price, $\$ 6$.
The title of this useful book explains fully its object. The definitions are concise, brief, value in almost every case. Chemical formulas are freely given. Illustrations are provided, supplementing the explanations of certain of
the terms defined. Various important subjects re discussed at great length.
nternal Energy. By John V. V. Booraem, M.E. New York: McGraw Pub-
lishing Company, 1906. 12mo.; pp. 144.

The author has undertaken a task in this ook which at first glance would appear posi-
tively staggering. This is to suggest a simple orking hypothesis whereby the amount hemical energy stored within a body may be
estimated. The work is base upon familiar ines of experimental data, the idea originating from a mathematical study of the periodic curves of the atomic volumes and melting points. The hypothesis is based upon a mathehe relations of heat to mass through great e Canal de Suez. By Voisin Bey. In Seven Volumes. Paris: H. Dunod
et E. Pinat, Editeurs, 1906. econd Report of the Wellcome ReSearch Labөratөries at the Gerden
Mem@rial Cellege, Kharteum. By Andrew Balfour, M.D., B.Sc., F.R.C.P. Edin., D.P.H. Camb. Khartoum:
Department of Education, Sudan

INDEX OF INVENTIONS For which Letters Patent of the United States were Issued for the Week Ending January 22, 1907.

and each bearing that date

