RECENTLY PATENTED INVENTIONS.

Pertaining to Apparel.

CHiLD'S CAP.-Lena Steinthal, New York,
v. Y. The purpose of the invention is to proN. Y. The purpose of the invention is to pro vide a construction of child's cap and one
wherein the parts of the cap are permanently connected and are capable of being laid flat ing and wherein, further, the parts may be secured to form the front and back sections of a child's cap, the two sections beine needed for the cap's formation.

Of Interest to Farmers.

Milking-machine.-L. B. Stevens, Lo-
gansport, Ind. A person on the stool by movgansport, Ind. A person on the stool by mov
ing a lever downward will cause a downwar movement of a piston, and as the valves carried
thereby will be closed the milk will be drawn from the udder, and then upon an upward
movement of the piston the valve opens movement of the piston the
mitting the milk to pass to
the piston, and then by a subsequent downward the piston, and then by a subsequent downwara
movement the milk underneath the piston will be forced through a pipe and at the same time a fresh supply of milk will be drawn.
JOINTER FOR STUBBLE-PLOWS.-D. H invention is to provide an adjustable rolling jointer for stubble-plows which is economic in row, turn all material from the plow-beam, and effectually prevent material clogging on
the beam back of the moldboard, and which the beam back of the moldboard, and which
will also turn all stubble, weeds, and grass will also turn all stubble,
cleanly under the furrow.

Of General Interest.

bUILDING-BLOCK.-J. Aitken, New York, N. Y. The object of the inventor is to pro
vide a building-block for the construction of walls arranged to insure the formation of ligh and air-tight joints and to reduce the weight
to a minimum and still render the block ex ceedingly strong and durable and to provide ceedingly strong a block with air-spaces to prevent the pene
the ble wall.
Safety-elevator.-J. Hart, New Or has reference to elevators or lifts; and the purpose of the improvement is the provision
of a safety device which will operate automatically to prevent the cage or car from falling in case of any breakage of the suspending
cable. burial-vadlt.-a. h. Havard, Urbana, ill One of the emboniments of the invention con-
sists of a box-like structure built of concrete and having brace-bars imbedded therein, the combined with means for lowering this part of the vault after it is dry and hard into the of the box-like structure and is placed thereon after the casket is placed in position. There-
after the metal top is covered with green concrete, which knits to the lower portion of the vault and forms a hermetically-sealed case.
SCOOP.-F. C. Howe, El Paso, Texas. The object of this inventor is to produce a scoop
provided with means for weighing the conprovided with means for weighing the con-
tents of the scoop, the general purpose being o do away with the necessity of placing the substance within the scoop in a scale for weighplaces in selling products, such as flour, sugar etc. Mr. Howe has invented another scoop such as used as above; and the object of the imhaving a handle or bail attached thereto, with means for determining the weight of the con-
DRAFT APPARATUS.-T. W. HUckle,
standish, Mich. The apparatus comprises a Standish, Mich. The apparatus comprises a
body to which power is applied, and is arbody to which power is applied, and is ar-
ranged to roll or climb along a holding element, this body having adjustably attached
thereto means for connecting it with the weight, so that as the body is moved along the holding element power is applied to the weight. body with the weight the power of the appaatus may be increased or diminished.
frocess of Making terpin hyprate. produced can be used as a basis for the manufacture of other turpentine derivatives and that by the use of this new process an impor-
tant industry can be developed in the United tant industry can be developed in the United and waste products can be employed which have heretofore had to be refined and imported. SAFETY-RAZOR. - W. Schmachtenberg, ew York, N. Y. The object here is to provide posed of tut few parts, not liable to easily
get out of order, and arranged to permit minute adjustment of the blade to bring the cutting edge thereof in proper relation to the guard, and to hold the blade positively against rearwar motion to main
FASTENING FOR HANDLES OF BAGS, SATCHELS, PURSES, ETC.-H. B. Welch, West Hoboken, N. J. Heretofore handles of
bags, satchels, etc., especially of fastenings which involve the use of a bearing fastenings which involve the use of a bearing having a
swivel connection for attaching a handle, have
been attached by inserting the ends thereof in sockets, the ends being held in the sockets each tive, as the pins pull their way out through the handle ends. Mr. Welch produces a fasten-
ing by means of which the handle may be quickly means of which the
PACKAGE-HANDLING DEVICE. - \quad w. \quad. Dennis, Denver, Col. By moving a sleeve
downward on a staff the jaws will spread apart downward on a staff the jaws will spread apart
so that they may be engaged with a box, package, or the may be engage with a box, pack-
Then upon releasing the sleeve the springs will move the jaws toward each other to engage with a box, package, 'etc
In shifting paper or pasteboard boxes, it is not In shifting paper or pasteboard boxes, it is not against the same while the box is resting on
the hangers. To provide for this, the sleeve the hangers. To provide for this, the sleeve
may be rotated so that the cam mechanism will
lock the jaws at a suitable distance apart.

Heating and Lighting.

COMBINED HEATING AND COOKING STOVE.-J. I. Hamaker, College Park, Va. By
means of the present invention the improved tove is so constructed that it may be produced at a small cost. It practically contains an
oven, a water-heater, a steam-cooker, and a arming-chamber, all arranged with a view to of fuel.

Household etilities.

Stirrer.-I. W. Greenwald, Frederick, Md. The invention refers to stirring or agifating attachment for cooking-kettles, and has may be simple in construction and applicable to all open kettles commonly employed for cooking apple-butter or general purposes where
the fluid or material should be stirred or agi-

DUSTLESS broom.-J. r. Price, Fond du Lac, Wis. The object of the invention is to
construct the device in such a way that it will prevent the raising of dust when in use. an a further object is to construct so as to enamle brush and also to construct the body of the brush in such a way as to enable the straws when worn.

Machines and Mechanical Devices. heating device for Spinning-LATHES.-R. Thiel, Lubeck, Germany. The devices for spinning-lathes whereby it is renproper and uniform distance from the blank while the latter is being spun-that is to say,
during the reduction or increasing of the diduring the reduction or increasing of the di-
ameter of the respective part of the blank-so ameter of the respective part of the blank-so
that the metal is at all times heated up to the right temperature and cannot become brittle
ROAD-GRADER.-E. Fahrney, Deep River,
Iowa. A purpose here is to proviide chine that will plow and grade a road at the same time, in which a series of spades have
rotary co-operative action relatively to plow, cross-cutting the furrow as turned up by the plow, which spades when they reach a certain point at rear of machine under action
of trip devices consecutively throw the dirt inward with such a quick motion that they scatter dirt in direction of the middle of the
road, thus making it smooth, the spades acting equall
Pile-fabric loom.-H. Sarafian, Yonkers, N. Y. Mr. Sarafian's object is to provide
a loom for weaving pile fabrics-such, for in stance, as are shown and described in the
Letters Patent of the United States formerly granted to him and bearing Nos. 752,712 and 782,178 . In order to produce the weave, it
is necessary to manipulate three warp-threads of each set in a peculiar manner and relative to each other, and for this purpose a special thread on the bobbin of the shuttle unwinds to form a weft-thread at the time the shuttle the loom to the other, and when the shuttle returns the same thread on the shuttle-bobbin forms a certain weft-thread.
SAWING-MACHINE.-S. J. Gray and
Horning, Oakland, Cal. This machine is ea ily transported from place to place and is supported directly by the object to be sawed,
thus dispensing with considerable weight. It may be positioned to cut at an angle upwar plates when sawing close to the roots of the tree. Any suitable means may be used for im
parting motion to the driving-pulley. preferred form of endless saw may be use ith the machine.
LOADING-MaChine.-F. K. Holmested Claremont. W. Va. The machine transfers any class of loose material from the ground or a produce a device expeditious and efficient in operation. The invention consists, broadly a revolving wheel or platform adapted to r
ceive the loose material and discharge it upo a conveyer. The platform is set at a sligh combines with a side plate and conveyer-belt VARIABLes upper face of said plate. Enterprise, Ore. The invention pertains to
variable-speed gears, and is especially useful
in connection with machines for shearing sheep and the like. The object is to provide
transmission-gear, which permits the speed the operating parts to be varied within wid limits and which allows the mechanism to be stopped or started by a simple motion of the perator
HAND-POWER PROPELLER.-N. Johnson, Chicago, Ill. In this case the invention has reference to hand-power propellers, and has for its object the provision of means for propeling small boats upon park-lakes and similar
places without the use of oars, and thereby paces without the use of oars, and thereby
enable such boats $ヶ$ move about freely, without interfering with each other.
CIGAR CUTTER AND LIGHTER.-F. A is to provide a form of cutter and lighter wherein a tension-controlled fountain for liquid fuel, such as gasoline, is provided with a wick
for ignition and pivotally mounted upon the base for movement to and from the sparking device in an electric circuit tie batteries wherea spark at the exposed portion of the wick as the fountain is swung outward to light a moment of passage of the fountain to and from contact with the sparking device.
ball-bearing.-J. F. Springer, Girard, a bearing arranged to insure a true rolling motion of the balls, unaccompanied by sliding motween balls and bearings, to bear heavy strains, and to allow convenient adjustment
with a view to taking up wear, and more with a view to taking up wear, and more
especially designed for use on journal-bearings and the like, in which he main portion of the strain is approximately perpendicular to the
axis of the shaft. La beling-machine.-A. Marcus, Shreve port, La. In operation a bottle or package is
placed on a seat. A label is then taken off the pile and is passed over an exposed surface of the pasting-roller from left to right to uniformly with paste or glue is by continuation of the same movement quickly slipped onto the bottle in about the same plane, thus getting the label on the bottle immediately after past ing it and before it has time to curl up. Lo-
cation of labels on bottles is uniformly the same by the indication afforded by the marker AUTOMATIC WEIGHER.-A. Mcleod and J. H. Mcleod, Marietta, Kan. The grain is
eceive into a stationary hopper and disreceived into a stationary hopper and dis-
charged therefrom into a movable weighinghopper which is so connected with weighing
and other mechanism that when filled it tilts automatically and the weight is duly recorded or registered, the hopper being then autopon it receives another charge of grain an tilts and discharges as before. It is an improvement upon the weigher for which the
inventors formerly received Letters Patent.

Prime Movers and Their Accessories

STUFFiNG-bOX.-M. Berecky, New York, . Y. The object of the invention is to pro-
a box which will present a metallic packing and absorbent or vegetable packing and in the lubricating fluid to the vegetable packing.
It relates to stuffing-boxes such as used for It relates to stuffing-boxes such as used fo
pistons, tail rods, and similar moving parts.
METALLIC PISTON PACKING. - N Pflaum, Pittsburg, Pa. The invention pertains to metallic piston-packings, such as shown
and described in Letters Patent of the United States formerly granted to Mr. Pflaum. The
object of the present invention is to provide a packing composed of comparatively few parts the cylinder from one side of the piston to the other and to compensate for all wear of the interior contacting surfaces of the ensine-cyl. inder and the piston-pack.
reboring of the cylinder.

Railways and Their Accessories.
SAFETY APPLIANCE FOR AIR-BRAKES. t. H. Winks, Baltimore, Md. In this case
the improvement relates to safety applinces for air-brakes, and has for its object to provide means whereby the brakes on a locomotive and train of cars will be quickly applied when a
switch is open or a danger-signal set should the engineer from any cause fail to note the open switch or danger-signal.
RAIL-BRACE.-W. M. Jenkins, Guthrie, Oklahoma Ter. The brace securely fastens rails to the cross-ties. The brace has an
anchorage underneath the tie. There are many advantages. Each tie is firmly anchored a cach end to the two rails, so that the rail is
immovable against all strains. There is mmovable against all strains. There is great at any point their longevity is greatly increased. Stability of the track also increases and property. Tension of rail-joints is maintained which deadens seund and avoids all
initial looseness. The brace will allow the nitial looseness. The brace will allow the
height of the rail to be increased without danser of the rail turning.
RAILWAY-tie.-E. A. Rasmussen, Hot Springs, S. D. In this patent the invention
has reference to improvements in metallic ties and rail-fastenings for railways, the object
being the provision of a metal tie that will be
comparatively light, yet strong and serviceable, and having novel means for securing the rails. ine tie is inserted in the road-bed and the
inter filed or packed with dirt, cement, or the like.
COMBINED TIE AND RAIL-FASTENER.E. P. Beligman, Concordia, Kan. The improvemeans for securing the track-rails. The object ad in view is to provide a tie and rail-fasten means mear shing means for the rails and prolonged use of the
tie over all similar ties and rail-fastening me over all similar ties and rail-fastening
means. METALLIC TRUCK FOR RAILROAD-CARS. -F. Gebhardt, Alliance, Ohio. The invention described in the application for Letters Patent Gebhardt. The object of the he by Mr. tion is to provide a truck for cars which is to provide a solid bed for the car-body to rest on and to readily accommodate the draw-bar

Designs.

design for a frame.-G. H. Rice, New York, N. Y. In this ornamental design the inentor produces a form of almost a true circle
n the interior of the frame. Exteriorly the rame presents an almost square appearance secured by the four corners being extended and
apped with scrolls. Mr. Rice has also de. capped with scrolls. Mr. Rice has also de-
igned another frame with nearly identical signed another frame with nearly identical
ines and scrolls (the latter six in number), xcepting that the frame adopts an oval inerior and an oblong outer form.
Note.-Copies of any of these patents will Please state tie name of the patentee, title of title of

hints te correspendents.

Names and Address must accompany all letters or
no attention will be paid thereto. This is for
our information and pat for

(10331) A. C. L. asks: Is it possible to convey a current of electricity from a bat-
tery, stored in a locomotive, to the rail, through the axle and wheel? Does not the tion? A. We presume it is possible to convey .current of electricity from the locomotive to the rail through the axles and wheels, though
we never tried the experiment. We think so, because the current from the overhead trolleys goes through the motor and the axles to the rail and r.
that way onls.
(10332) W. J. C. wishes to know how to remove indelible ink marking from clothing. A. Indelible inks are of such variable charac ter that it is quite impossible to reply. Many of these inks have nitrate of silver as a basis, in this case, a solution of hyposulphite of soda
might help. Some other inks might possibly might help. Some other inks might possibly muriatic acid ; this can be used only on white goods, as most dyes would be destroyed. Pos-
sibly also a solution of sulphurous acid might (10333) G. B. D. asks: Can you tell me how to construct a lamp or light that will burn under water (outside of an electri
device). Any hints how to proceed will be appreciated. A. Any lamp will burn under water if protected from the water and supwh ar. We do not know any other tric light does not need air, a fact which renders it easier to have light under water by you. The metal potassium will burn unde izing the fact f illumination. It utitoo great for such a use.
(10334) K. T. asks: 1. Is it possible to synchronize a dynamo and a motor, the latter
run by the former, with reliability as to small variations of speed? A. The single-phase motor must closely synchronize with the dynamo which furnishes the current. Direct-current motors need not do so. 2. If so, will you give
directions for building a simple and inex pensive model to illustrate the fact? For my purpose the minimum speed would be about
G00 revolutions a minute and the maximum
2,400 . The sensitivity ought to be such that The sensitivity ought to be such that
any small variation of speed in the dynamo \mid several tons with the current named above, pro- bath a minute or so longer than it appears
is transmitted to the motor with reasonable
vided the armature were in contact with the when the desired tone is reached. An olive accuracy. A. The simplest model you can poles of the magnet; but to draw articles from have to illustrate this is two similar machines, by it as a motor. 3. Can a 110 -volt direct ent matter. It would require an enormous alternating oí any frequency, and how, with the lease expense? A. A direct-current 110-
volt is readily transformed into an current of 52 volts pressure by a rotary con-
verter such as is used in stations for this purpose. 4. Can a 100 -volt direct current be
used for heating metals by immersing in water, and how? A. A 110 -volt direct current is not of a pressure high enough to heat
metals quickly in water, as in the water pail forge; 220 volts are needed. Salt water is put into a pail in which a lead plate forms
the electrode, while the iron attached to the pole is inserted into
stantly made red hot.
(10335) W. A. B. asks for a formula for glaze or glazing used in the manufacture water to a point just before it will pull out
stringy between the fingers. Dip in this solution.
(10336) C. R. says: If I were to take a cannon 3 inches in diameter and 1 inch bore
and fit a screw cap firmly on the mouth of and and a screw cap firmly on the mouth of ode a piece of guncotton with-
in, while the cap is screwed on the cannon burst? A. Plugging up a cannon
charged with guncotton is a dangerous ex periment. The charge would burst the cannon or blow out at the vent. 2. After cooling it
would there be any explosion upon unscrew ing the cap? A. There will be no danger in opening the cannon after explosion if it did
not open itself. 3. Do you think the heat not open itself. 3. Do you think the heat
generated within the cannon would be sufficient to melt an iron or brass screw $1 / 4$ inch
or $1 / 8$ inch in diameter? A. The heat of the explosion is too quick to melt the screw.
(10337) W. M. C. says: I have a brass coil boiler, in which there is a great deal of
sediment and scale and which is steaming poorly; please advise me what preparation I can clean it out thoroughly with. A. You can
clear the sediment and incrustation in your boiler by injecting a strong solution of caustic soda, say 10 per cent of the contents of the
boiler, using it for the day; then blow out boiler, using it for the day; then blow out
while steam is up, and repeat for a few days. (10338) C. G. asks: How can I re move nitric acid stains from a blue cloth coat and bring it back to its. former color? The pressed with a smoothi g iron. causing the part of the cloth where the acid dropped and
was pressed to turn yellow. A. The stain caused by nitric acid on blue cloth can be re
moved by the immediatc use of ammonia, in case the acid was weak. Strong acid will usually give a permanent stain. With an ol
staln from nitric acid nothing can be done (10339) J. L. B. asks: 1. What bat tery shall I use, and how many cells: of the
same, to light two 8 candle power lamps of 8 volts and 2 amperes? A. Five cells of the volt 2 -ampere lamps. The battery is described in Scientific american Surplement No. 792 permanent? A. The magnet in a telephone is orce which causes the current in the trans mitter to vary with the vibrations of the dia phragm. An electro-magnet would be more
expensive and difficult to maintain.
3. What is the difference in construction of a direct A. is direct-current motor has a commutator, an alternating-current motor has rings to re-
ceive the current. The windings of the al-ternating-current motor are designed for the forms of current, as single or muse some forms there is only one set of windings. To learn all the points of differ-
ence you should study the books on the sub-
(10340) C. T. M. asks: What is meant by a twenty per cent grade? A. A twenty
per cent grade rises or falls 20 feet for every 100 feet measured horizontally and not on the slope. In other words, the grade is measured
by the tangent of the angle of inclination and not by its sine, so that a 100 per cent grade not to an inclination of 90 deg. A slope, of so many to 1 ; for instance, the usual slope of earthwork is $11 / 2$ to 1 . meaning $11 / 2$ hori-
zontal to 1 vertical. But. conversely, the srade of a road is sometimes given as of 1
in so many, meaning a rise or fall of 1 foot vertically for so many feet measured hori-
zontally; for instance, a grade of 1 in 20 zontally; for instance, a grade of 1 in 20
would be a 5 per cent grade and of 1 in 5
would be a 20 per cent grade. You will find such matters explained in Trautwine's "Civil (10341) F. W. H. asks: I wish to make an electro-magnet with the greatest lift-
ing power possible to be furnished current from ing power possible to be furnished current from
a 110 -volt 75 -ampere plating dynamo. What size and how much wire should I use, and what
size and length of core? Do you think such ? magnet could be so insulated as to be used nder solution for raising iron articles from which will lift any weight from nothing up to
them up in the old-fashioned way. (10342) G. M. T. asks: In still air ill two spheres of the same size, one of
luminium and one of lead, fall from a given height in the same time? A. Since the ve
locity of a freely falling body is dependent only pon the mass of the earth, it follows that all velocity, viz., 32.16 feet at the end of the first second of fall; and since the air will resist
two spheres of the same size equally, because they displace the same weight of air, it follows
that the two spheres of the same size will fall that the two spheres of the same size will fall
with the same velocity under the action of gravity in the vair, and therefore will fall

(10343) J. H. R writes: I desire to

 purchase books which would thoroughly informme upon the followi g case: A buildirg is ighted with 23 incandescent lamps arranged in parallel. The current is supplied through a
transformer which reduces the voltage from 200 to 110 . A man takes hold of the socket
one of the lamps and is killed. of one of the lamps and is killed. I want to
be able to inform myself on the following aues tions: First, the precautions necessary in handling high-tension currents and where the danger points are. 2. The liability of transformers to leak, break down, etc., thus delivering the full voltage to the wire leading from
it, etc. 3. What is the cause of death? it, etc. 3. What is the cause of death? Is
it wattage, voltage, amperage, and what is the sual amount necessary to kill a person? Would the current coming from a transformer
cutting it down to 110 volts and necessary supply 24 incandescent lamps be sufficient? ufficient? sons in Electricity," price $\$ 1.40$ by mail, contains as much as is given in any one book upon he topics concerning which you inquire. Rub-
ber necessary for handling wires carrying current above 110 volts. This pressure may have in-
ficted severe injury or even death in extreme flicted severe injury or even death in extreme
cases, but we do not recollect any instance of death from it. In the case cited it would seem as if there must have been a connection with
the primary of the transiormer. Death is by the disintegration of the vital tissues from its continued action of the vital tissues from
ine amperes are the agent of electrolysis: the volts determine the amount of amperes which can flow through a circt it in proportion to its resist the human-body is a variable quantity, from few hundred to perhaps five thousand ohms. What current a man can get is not a question
of the supply of one lamp or any number of lamps. It is a matter of the voltage of the (10344) H. S. L. asks: 1. About an ink which can be used with a drawing pen
upon zinc and which when dry or burned in will be acid-proof. A. Ink for Zinc Labels:
Take 1 drachm verdigris, 1 drachm sal-ammoniac powder and $1 / 2$ drachm lamp black, and mix them with 10 drachms water. This will form an indelible ink for writing on zinc. 2. A means for an amateur to impart a polish
(high) to chestnut boards. A. Fill the wood with any good filler, let it dry, then apply a
good varnish, two or three successive coats. good varnish, two or three successive coats.
Rub it down with powdered pumice stone, then with rotten stone, and finally finish with whit ing, all in water. Apply with a felt or flannel
(10345) A. P. F. asks: 1. What would be the effect on a corrugated iron roof if
lightning should strike it? Is it dangerous to the inmates of a house to use such material for a roof? A. If your corrugated iron roof is
connected with water or moist earth at several points by heavy telegraph wire or small iron to protect the premises from being struck. If not connected to the earth, we think it is a source of peril. 2 . Of what cheap material
can we make a belt about 8 feet in length for can we make a belt about 8 feet in length for
light service. width $11 / 2$ inches? A. Belts are eit her made of leather or webbing. They must be inelastic, so as not to stretch in service.
We do not know of any cheap substitute for egular belting.
(10346) A. B. D. asks: In applying ; gold leaf to sign work, what would be the siz-
ing used? A. In wood signs use gold size, (10347) E. A. B. writes: I would be pleased to know by what chemicals or solutions
blue prints may be changed from their original color (blue) to colors heretofore discovered A. Blue Prints, to Change to Brown: Borax, $21 / 2$ ounces; hot water, 38 ounces. When cool
add sulphuric acid in small quantities until blue litmus paper turns slightly red, then add
few drops of ammonia until the alkaline re action appears and red litmus paper turns blue Then add to the solution 154 grains of red crinde gum catechu. Allow it to dissolve with
ccasional stirring. The solution will kee indefinitely. After the print has been washed
out in the usual way, immerse it in the above
brown or a blackish brown is the result. To
Make Blue Prints Green: Make four solutions as follows: Solution A. Water 8 ounces and crystal of nitrate of silver as big as a pea
Solution B. Hydrochloric acid 1 ounce and water 8 ounces. Solution C. Pour a solution of iodide of potassium (iodide of potassium 1
ounce and water 8 ounces) into a saturated solution of bichloride of mercury until the red
precipitate is just dissolved, and then add four mes as much water as the resulting solution. Solution D. Water 16 ounces and iodide of po-
tassium 1 drachm. Then take the blue print tassium 1 drachm. Then take the blue print
and bleach it with solution A, when the image will become pale slate color or sometimes a
pale yellow. Then wash thoroughly and immerse the print in solution B, when the image will again become blue. Then, without washimage will become green but the "whites" will be of a yellow tint. Then put the print in
solution B again, without washing. Then wask and pour solution over the print to purify the whites and to give the green image a bluer too long, as it has a tendency to make the print blue again.
(10348) C. S. asks: Please anewer the following questions. I do not know wieticer selenium, a metal, changes its resistance to electricity when light strikes it. Kindly inform me about the price, the resistance it
offers per square meter of surface, and whether the supposition that it increases its resistance
when light strikes it is correct; also how sensitive it is. A. Selenium is not a metal, but an elementary substance which in its ordinary
condition is a brittle solid of a glassy luster and fracture and a brown color. It melts at deg., and burns with a blue fiame, giving out an odor resembling that of putrid horseradish. having an electrical resistance $37,500,000,000$ times that of copper. When annealed for sev eral hours at a temperature just below its
melting point, with subsequent slow cooling, it iorms a crystalline substance with a lower re sistance. It is now sensitive to light. Its
resistance is reduced, not increased, in proporresistance is reduced, not increased, in propor and also the effect is greater with a high elec strips of annealed selenium are formed between the edges of broad plates of metal, so that the cross section is considerable, and thus the re
sistance is reduced while the area exposed to light is considerable. This is a "selenium cell." When the light strikes it, its resistance may be reduced as much as one-half. A cell
whose resistance in the dark was 300 ohms dropped to 150 ohms in the light. Such a cell ight.
(10349) A. L. V. asks: 1. Will you kindly explain the action of the inductor alternator, of the type not having a large
cylinder at one end? A. The toothed projections upon the moving portion are called
the inductors. The surrounding frame has projections of the same shape and size, which constitute the cores of the armature coils. site each other, the magnetic reluctance is at the minimum and the magnetic flux through the armature coils is at the maximum. Simi-
larly, when the inductors are in the intermediate position, the flux is at a minimum Thus the current is produced without moving
wire, or collecting devices, with their attend ant risk of chafing and loss of energy by fric Machines," Sheldon's Alternating curren ithat, although the current from. Why is naction coil is alternating, the discharge A. The secondary current in an induction coil
is not alternating s not alternating when the discharge points are drawn out so far that the spark passes
only when the primary circuit is broken. The current then is a succession of impulses al in the same direction, the current produced by
the making of primary current is suppressed, the making of primary current is suppressed,
rot being able to leap the gap. The X-ray tubes used with direct current in the primary coil are all energized in this manner. Their
urrent is unidirectional and discontinuous and not alter ating. 3. In the 110 -volt alter nating-current system of incandescent light ways complete through the primaries of the ways complete through the primaries of the
transformers, more power is required when more lamps are put in use on the sceondary
circuit? A. In any system of incandescent lighting by multiple arc, or parallel arrange such that only the current required for that amp can tlow; when two lamps are turned on, and twice as much current flows. More power is therefore required of the generator. If no be called upon for any current, and it would run frce. offering no resistance to motion ex
cept the friction of its armature shaft. This
true of all dynamos. alternating or direct.
(10350) I. L. asks how to metalize in ects so as to render them capable of coating
y the galvanoplastic process. I have tried by the galvanoplastic process. I have tried
phosphorus and bisulphide of carbon, but find
it very dangerous, as it is liable to burst into
flames instantly. A. Dissolve phorus in 1 pound of bisulphuret of carbon by frequent agitation. Add to this solution pound. Dissolve beesax and mutton tallow 1-3 pound. Dissolve by gentle heat and guard
against fire, as the mixture is very inflammable. against fire, as the mixture is very inflammable.
To this add 1 pint of spirits of turpentine and 2 ounces of pure unvulcanized rubber dis
olved with 1 pound of asphaltum in bisulphate of carbon. When the solution is combhich can be applied to insects, flowers, etc. nitrate of silver or chloride of gold. In few minutes the articles are covered with a
thin film of metal. They can be plated in the usual way.
(10351) E. H. writes: I have need of resistance of 25 ohms in the form of a strip of German silver $3 / 8$ inch wide, 24 inches long.
How thick must it be. or what gage? If I should use it $1 / 2$ inch wide, 24 inches long.
what gage must I use? A. To get 25 ohms esistance with a strip of German silver $1 / 2$ inch wide and 24 inches long will require that it
be five millionths of an inch thick. If it be $3 / 8$ of an inch wide, it may be a thought
thicker. German silver has 13 times the resist. ance of copper. Hince a copper wire rer the ance of copper. Hince a copper wire for the
same size might be 26×2 feet or 26 feet long. And if 26 feet have 25 ohms, one ohm will be wire as having 1.20 feet per ohm, which is near enough. Hence a German silver wire of
the same size would have 25 ohms for a length of 2 feet. The problem then is to find the thickness of a plate whose sectional area is as
great as a No. 39 wire, and whose width is reat as a No. 39 wire, and whose width is half inch. The diameter of the wire is
0.00353 inch. Its area is 0.00001 square inch. One half of this is 0.000005 inch
(10352) R. R. S. asks: Why cannot he high-voltage alternating currents induced
in the secondary of an induction coil be shanged to direct currents and used the same ats other currents of high voltage? A. The
induction of an alternating e. m. f. is a necesinduction of an alternating e. m. f. is a neces-
sity of the action of an interrupted direct the induced current in the secondary is in nduced it, since that is the proper effect of of the winding; when the primary the turns broken, the opposite effect is produced, and the induced current is in the same direction as that of the current which induced it. The ity. Now, as to the transformation a necesan alternating current into a direct curent When a condenser is employed with an induc tion coil, the induced e. m. upon making the primary circuit is much weaker than that which is set up by breaking the circuit. Because of this fact, when the spark terminals of an induction coil are separated so far that ircuit cannot throw a making the primary etween them, the spark passes only upon the reaking of the primary circuit, and the inuced current is a direct current, acting by
mpulses, there being as many impulses per mpulses, there being as many impulses per
second as there are interruptions of the primary current at the vibrator or interrupter. his is the method in which induction coils
re ordinarily used for experiments. If one ould see the spark at making the primary circuit, he can produce it by bringing the spark terminals nearer together, till a spark is produced upon making the primary circuit. This spark is from positive negative in the pposite direction from the spark upon breakdiscovered for using such an arrangement as a ource of power or for lighting lamps, so that ynamo, compete with the alternating-curent high enough for all practical purposes. Any ransformer is operated at some loss, and the induction coil, throwing a spark through a
wide gap of air, is not an economical trans(10353) G. C. W. asks: An electric company charges for current 10 cents per quired to run ten 110 -volt 16 candle power lamps 10 hours? Also, how many for a 5 -
horse-power motor, 110 volts, and a 220 -volt motor for the same time? A. A 16 candle take one-half an ampere and the watts per hour. Ten lamps will use 550 watts, and in 10 hours will use 5,500 watts, or 5.5 kilowatt hours, which at 10 cents per kilo-
watt hour will cost 55 cents. An electrical horse-power is 746 watts, 5 horse-power for will use 37,300 watts, or 37.3 kilowatt hours. This at ten cents per kilowatt hour will cost
$\$ 3.73$. It is common to reckon $11-3$ horsekilowatt hour If reckoned thus, the bill would be $\$ 3.75$. The voltage dees were supplied at 220 volts, the amperes would nd the bill calculated would be the same The real bill as found from a meter might be very different from this. The motor does not run at best efficiency unless it runs at full ad it is not using 5 horse-power. It akse more than the proportionate part of :
horer to drive it ; how much, it is not possible to say in general terms.
(10354) E. A. asks: During a rainstorm a click, and sometimes a very brief
ring of a telephone bell is frequeutly audible, ring of a telephone bell is trequevuly audible,
and is always coincident with a hcavy stroke
and of lightning. It seems very evident that the click of the bell is due to the lightning being
coincident with it, but how does the lightcoincident with it, but how does the light-
ning cause the bell to click? A. The ringing ning cause the bell to click? A. The ringing
of the telephone bell when a discharge of lightof the telephone bell when a discharge of light
ning occurs in its vicinity is explaine by in duction. The electric discharge affects the Wire in the same manner as the discharge of a battery current through the wire would do
The magnet attracts the armature, and the bell rings. It is a frequent occurrence with both telegraph and telephone lines.
(10355) J. D. A. writes: On several occasions I have read in the answers to ques-
tions of your valuable paper, that lightning is tlons of your valuable paper, that lightning is
due to atmospheric disturbances. I have also due to atmospheric disturbances. I have also
noticed that this theory is advanced in most hands. Though it is undeniable that there must be some disturbance, yet such theory it is open to the question, What is the nature of such disturbance: I am of the opinion
(and the more I study the subject the more I adhere to it) that lightning is caused by the heat thrown off in the sudden condensation
of the water vapors suspended in the atmosof the water vapors suspended in the atmos atmospheric pressure, and taking place when expansive force of said vapors. Is not this
possible? I would like to know your opinion on this theory, either through the columns of your paper or otherwise. A. While the con densation of water vapor in the air may be concerned in the production of electrification of the water drops in the air, it is not easy to
see how the pressure of the air can be any see how the pressure of the air can be any
different from the pressure of the vapor of water in the same place in the air, unless the law of Newton is untrue, that action a lion are equal. The production of a flash
action of lightning is not yet accounted for by any theory, and we shall have to wait for more
knowledge than we have to explain this pheknowledge than we have to explain this phe(10356) C. R. McM. writes: I desire to maintain a heat of about 105 degs. to 110
degs. in a box containing about 8 cubic feet degs. in a box containing about 8 cubic feet
of air. Can I do it by sending a current from a smal battery through wires? How many
cells and what kind? How much wire and what kind? A. We cannot advise the heating of air by electricity if expense is an object.
It will cost many times as much as an oil lamp, and be as difficult of regulation as that. It can be donc, however, by a coil of No. 14
or No. 16 iron wire with three or four cells or No. 16 iron wire with three or four cells
of battery. The bichromate cell will give the of battery. The bichromate cell will give the
heat quickest. The Edison-Lelande cell also heat quickest. The Edison-Lelande cell also
may be used. It will work slower and last longer. A bichromate cell will need to be be perhaps fifty feet. We cannot give definite figures, since there are so many circumstances to affect the result. If you get too much
heat reduce the battery, if too little add more heat re
cells.

NEW BOOKS, ETC.

Consumption and Civilization. By Dr John Bessner Huber, New York.
Philadelphia: J. B. Lippincott Com-
pany. Profusely illustrated. 536
pages; large 8vo. Cloth, $\$ 3$ net. In this book of over 500 pages Dr. Huber has
produced a masterly and exhaustive treatise on the subject of Consumption. Every phase of the disease-including cause, prevention, and
cure-is described in such an interesting and instructive manner that it cannot fail to prove attractive to physicians, invalids, and all per
sons who are interested in the prevention and cure of this disease, which is the cause of and seventh of all deaths which occur in this and many other countries. Over 130 fine engravings are used to illustrate sanitariums, cottage and tent life, and many other subjects. In
valids and others will find much in this book which will assist them in the work of restoring their health.
Producer Gas. By J. Emerson Dowson and A. T. Larter. London: Long
mans, Green \& Co., 1906. 8 vo. $\underset{295 .}{\operatorname{mans},}$ Greth. $\underset{\text { Price, }}{\&}$ Co., 1906
Within the last three decades the subject of producer gas and its application has come to
lake a most important position in engineering science. The authors of this book have been closely associated with the development of pro-
ducer gas during all hese years, and are ex ducer gas during all hese years, and are ex
ceptionally well qualified to produce a work of ceptionally well qualified to produce a work of
this kind. The subject is treated briefly and concisely, and the ilhstratins excellently sup-
plement the text. The recognized position of producer gas in practical work to-day is such the near future. This being the case, mere rule of thumb is no longer amminable. and the as practically. While there are numerous hooks on the theory and practice of the gas
engine, there is probably no complete work available at present on producer gas alone, and for this reason the volume in question is
an acceptable addition to the literature of the an acceptable addition to the literature of the
subject.

Tie Chemistry of Hat Maythacturive: By Watson Smith, F.C.S. London: By Watson Smith, F.C.S. London Scott, Greenwood \& Son, 190 pp. 124. Cloth. Price, $\$ 3$.

Mr. Shonk has very ably revised and place before the public Mr. Watson Smith's interest ing series of lectures on the Chemistry of Ha before the Manufacturcrs' Association in the years 1887 and 1888, an notwithstanding that considerable period has clapsed since their inception, hey have had such influence in the remarkable progress of the British hat industry that their republication at the present
time was desirable. The book should be of great value to those interested in work of this
character, on account of its thorough and excharacter, on account of its thorough and ex The Science Year Book. By Major B. F. S. Baden-Powell. London: King,
Sell \& Olding, Ltd., 1907. This year there are but ${ }^{*}$ few changes in the Science Year Book, and few were necessary,
as those familiar with this excellent work will nderstand. Or course, the usual revision, during the past twelve months, has been made and the summaries of science have been com bined in one general article-an arrangement hich is probably mce convenient than the prior one of separate headings. Those requirng a diary of large size, combined with a scientific summary, almanac, etc., should not
fail to obtain a copy of the present volume. Modern Practical Carpentry. By George
W. Ellis. New York: Industrial
Publication Company, 1906. 4to.; pp. 390. Cloth. Price, $\$ 5$.

This is probably one of the most a mbitious books which has ever been written about cara manner as is possible within the limits of one book, and the text is accompanied by nearly leven hundred excellent cngravings, which The book is intended for the use of workmen, builders, architects, and engineers, and describes methods of constructing and erecting
coofs, floors, partitions, scaffolding, shoring roofs, floors, partitions, scaffolding, shoring,
centering, stands, stages, coffer dams, found tions, bridges, gates, tunnels, excavations, and gives various structural details. It further-
more includes the necessary calculations in carpentry, and simple methods for finding the bevels in roofs and the similar problems encou
tered. The treatise upon timber, notes on the woods used in carpentry, and the tables and a carpentry will be found extremely valuable The chapter on the uses of the steel square is vinaly good.
entors at Work. By. George Iles.
New York: Doubleday, Page \& Co 1906. pp. 503 . Price, $\$ 2.75$ by mail Inventors at Work" is one of the most in eresting and meritorious books of this character which it has been our pleasure to review
for a long time. Mr. Iles has been most sucessful in his compilation of important invenwho have the work of the foremost inventons of civilization. The book is well illustrated, and is arranged in subdivisions covering various classes of inventions and innovations in
different industries. It should prove of the greatest interest to the layman as well as the scientist and the inventor.
A Grain Chart. By R. G. Becker. Pitts-
burg. Price, \$2. torcerm manner various statistics concerning the grain production of the world, which will be found of value by all those interested in the
subject. It includes the production of grains, including wheat, barley, rye, oats, and corn
in the United States up to 1906 ; the wheat in the United States up to 1906; the wheat
crop by States, the world's wheat crop, average ields per acre in the United States, Russia, United Kingdra-Hungary, France, and the statistics.
Reinforced Concrete. By Albert W. Buel, C.E., and Charles S. Hill. New
York: The Engineering News Publishing Company, 1906. 8 vo :: pp. 499. Cloth. Price, $\$ 5$.
The American practice and the prevailing conditions governing the subject in question
are followed in this treatise, which is intended primarily for designing and constructing engineers. The first editic 1 of this excellent book has made it familiar to many interested in this phase of engineering industry, and it needs
little recommendation in this column. The secittle recommendation in this column. The
ond edition includes, in the appendices, tests beams and columns made by Prof. Talbot, of
the University of Illinois, and by the United tates government at the Watertown Arsenal. fuch of this valuable matter has not as yet contents of the book rill unquestionably enhance the value to its ruaders. The authors of
his work are among the leading exponents of he American practice.
lternating Current Motors. By A.
S. McAllister, Ph.D. New York: Mc-
Graw Publishing Company, 1906 .

8vo.; pp. 278. Cloth. Price, $\$ 3$.
Dr. McAllister's excellent work on the alerinmer in electrical science. It has been assumed that the reader is familiar with the
fundamental facts of electricity and magnet-
ism, and that he las sone knowledge of the lower branches of mathematics. The author
deals frecly with graphical diagrams and the examination of facts upon which they are subject is limited as far as possible throughout. The diagrammatical illustrations are very

Gold Mining Machinery. By W. H. TinCompany, 1906. 8vo.; pp. 308. Cloth. Price, $\$ 5$.
As the title indicates, this work deals is naching with the principal fratures of the machines employed in gold mining; their sizes, governing their use. The descriptions are brief and concise, but still sufficient to describe fully the machinery in question. The notes on meth ds of erection and other matters will be of engineers. This work will be found a practical handbook for use by practical men.
Text-Boois on the Strength of Ma-
terials. By S. E. Slocum, B.E., and
E. L. Hancock, M.S. Boston: Ginn
\& Co. 8vo.; pp. 314. Cloth. Price, $\$ 2.25$.
While this book is thoroughly representative of the best modern theory and practice, it is for student use in technical and engineering schools. The text has been so prepared that the student's knowledge of the subject shall accurate as well as practical, thus reducing the liabilities of errors from an incomplete con-
ception of the foundations upon which the subject is based. Each important point is illus trated by practical applications. Graphica
methods are used for calculating centers of methods are used for calculating centers of ment of inertia is define as the shape factor in the mechanics of materials. Other impor
tant featurcs are the use of the core section application of the principle of least work, comparison of column formulas, with graphical il lustrations of thrir relation, and accurate
formulas for the torsion of shafts of various formulas for

INDEX OF INVENTIONS For which Letters Patent of the United States were Issued for the Week Ending

January 15, 1907.

AND EACH BEARINOTHATDATE
ANDEACH BEARINOTHATDATE
[See note atend of list about cobies of these patents.

Anticorrosive compositiol , J. A. Ryan.
Automatice switch, A. Underdal
Axle box, H. E. Lerd.
Bag frame corner fixture, E. vom Eige
 , artificial, H. H. Passage

