rous sulphate 4 per cent. 2. Common salt 60 per cent, sal-ammoniac 60 per cent, sodium
bicarbonate 80 per cent.
3. S'al-ammoriac 100 per cent, sodium sulphat
(10558) J. H. writes: Will you please inform me who manufactures the gas ignition pellet for sale? Also what the ingredients are,
and in what proportion they are mixed, and how fastened to the mantles which rende
them self-igniting mantles? A. There is only one substance within our knowledge which can be heated by a stream of gas striking it, so spongy platinum. It is used in the Döbereine lamp, where a stream of hydrogen impinges
on a platinum sponge. Platinum in this form is capable of absorbing 800 times its volume of oxygen, which does not enter into combina-
tion with it, but is simply condensed into its pores, and is available for combination with ther bodies.
(10559) M. H. N. asks: If a raceway measures 2 feet 6 inches deep and 5 feet 8
inches wide, and water flows at the rate of 60 feet per minute, what is the flow per hour,
and what is the probable amount of horsepower obtainable from a head of 18 feet? A
A flow of water 2 feet 6 inches A flow of water 2 feet 6 inches deep by 5 feet
8 inches wide at the rate of 60 feet per min8 inches wide at the rate of 60 feet per min
ute, at a head of 18 feet, is, theoretically equal to 28.9 horse-power. by a turbine, if the flow utized commerciall remain constant.
(10560) J. N. R. says: You will do me quite a favor if you will solve the follow-
ing problem for me: Supposing we have a vessel with a hole in the bottom into which
fits a hollow tube closed at both ends and six inches long. We will say this tube fits the hole so that no water could leak through, yet works with perfect ease. Now say we should put into this vessel four inches of water; what would the result be if the tube weighed one
fifth the weight of the water? Would the tube rise, or would it go through, or would it
remain stationary? Have submitted this problem to several very "learne"" men in this city but none of them seem to "have time" to work
it. They all say they could do it if they just it. They all say they could do it if they just
had time. By solving the above for me and had time. By solving the above for me an A. If the hole in the bottom of your vessel i
round and smooth, and the hollow tube fits it perfectly and without friction, as you say, the
tube will fall through the hole, whether there is water in the vessel or not, and it will take
just the same force to hold it up when the vessel is full of water as when it is empty The reason for this is that water exerts a
buoyant effect on bodies which are immersed in it, causing an upwar pressure on the bot the of them. If your tube is so protected by water connet that buoyant effect. If you fill your vessel suff ciently full of water to have the water cover a downward pressure on the top of the tube which should be added to the weight of the
tube, in order to get the total force with which tube, in order to get the total force
it tends to slide through the hole.
(10561) J. W. H. says: Will you kindly tome years to Some years ago we had a cockroach powder and a little coloring matter. We think this will answer your purpose.
(10562) W. F. N. writes: I wish to elevate 125 miner's inches of water 18 feet, wide, 12 inches of water deep, running 20 feet in 4 seconds. What is the best way to do this? There is no fall at end of flume, and Would it be best to put in an undershot whee with lifting buckets in each side, or an under shot wheel and work a centrifugal pump or
any other kind of pump that is best adapted any other kind of pump that is best adapted
to the work? A. The flow of waste water in your flume, at the rate of 20 feet in four seconds, corresponds to only about $3-100$ of one
horse-power. This would lift only about $8-10$ feet per minute, if it could all be utilized The amount of power available is so small that we do not consider it at all practicable centrifugal pump would probably be your mo feasible plan.
(10563) J. N. P. says: Please answer the following questions: How is the horse power of a river estimated, when the depth,
breadth, and fall per mile are known? A. The horse-power of a river is estimated by first flow per minute when the river is at its lowest This may be obtained by multiplying by the average velocity of the water per minute. This
relocity may be determined approximately by velocity may be determined approximately by
timing rods loaded at one end as they float down stream. It is next necessary to asce tain what head or fall is available fo
waterwheel, in case the river is dammed canals built. The horse-power equals the 62.4, multiplied by the available fall in feet and this product divided by 33,000 . 2. How
the size of the pipe and the quantity of water delivered per minute are known? A. The
horse-power of the pipe- is estimate by multi horse-power of the pipe is estimated by multi-
plying the number of cubic feet of water per plying the number of cubic feet of water per
minute in the pipe by 62.4 , multiplying this by the head
by 33,000 .
(10564) A. P. says: Will you kindly inform me which is the best way to can sweet as the canning factories do? A. Among fruits, etc., green corn is one of the most difficult to
preserve by canning preserve by canning. The following is the
method in use by many of the large canning establishments: The corn, after removing from the cob, is filled into the clean cans so as to leave no air spaces. These are placed in a
large oven or other air-tight vessel, and sublarge oven or other air-tight vessel, and sub-
jected to hot steam under pressure. The harder the corn, the longer the exposure required to cure it; it is said that in some
cases as much as eight hours is requisite, but usually much less than this. A large vessel
of boiling water, in which the cans are immersed, may be used instead of the steam
ven, but is not so effective. On removal rom the oven or water bath, as the case may we, each can (they must be filled to the cover
with fruit) has the cap with a very small hole with fruit) has the cap with a very small hole
tapped in its center immediately soldered on. As soon thereafter as the can stops blowing, as the escape of steam and air through the
vent is termed, the hole is quickly soldered. This must be done before the air begins to
enter. Other fruit is cured and canned in like manner; tomatoes rarely require longer than fifteen to twenty minutes steam curing. Where
the pits are left in fruit, a longer time is equisite to completely destroy all fermenta-
ve germs.
(10565) A. V. B. says: 1. Theoretic lly what are the most favorable conditions team engines? A. Theoretically, the highest efficiency with a compound steam engine can
be obtained with the highest possible boiler ressure and the most perfect vacuum attainable, and the cut-off in both cylinders arranged
so that the steam in each case expands down that the steam in each case expands down
to the back pressure line. Practical consideradons, however, and the influence of the conterially alter the last half of this statement in practice, and the steam is seldom expanded more than from two to three or three and a of the compound of the compound engine. 2. For given stroke,
what should be proportionate diameter of cylinders? A. There is no fixed rule governing
the proportioning of the diameters of the cylinders of either simple or compound engines. widely on this point. You can get a good dea of the proportions that are used in comthe leading power journals and noting the comparative sizes of the cylinders given for
the different engines that are described. By making a calculation of such figures from them, you obtain the best rule for cylinder proportions which it is possible to formulate
with the present state of our knowledge. Is there any rule for proportioning stroke and peed. A. The piston speed rate of piston speed. A. The piston speed does not ma-
terially influence the cylinder proportions other things being equal, and high piston speed is favorable to good economy, and the best ngines have a piston speed varying according minute to 700 or 750 per minute 4. Which do you consider the best type of compound
engine now operating on the different railways? A. The experience with compound ocomotives has been too short for engineers
decide definitely which is the best o decide definitely which is the best type.
Vith stationary engines, the cross compound Corliss engine is conceded to be the most Cornss engine is conceded to be the most
conomical. 5. What are the difficulties to be overcome in adapting the compound engine to the locomotive? Thiese answers to be base on the performance of a two-cylinder compound or one high and one low pressure cylinder. Any information along these lines not covered by questions asked will be appreciated. and compound engines, same power working ormance formance, consumption of fuel, etc. A. The
diffculties that have to be overcome with the First, the difficulty Second, equalizing the work on the two sides
of the engine under all conditions of load Third, the balancing of the reciprocating parts Fourth, the difficulty of simultaneously varying the cut-off in the two cylinders in such a way as to get the same effect as is obtaine
by shortening the cut-off in the simple cylinder. Fifth, the increased danger of break and the difficulty of getting engineers who can intelligently operate and care for the compoun engine. With stationary engines a gain of nearly 40 to 50 per cent may be obtained b fuel consumption is not quite so great, 35 per cent being perhaps an average figure.
(10566) H. E. C. writes: I am seeking information concerning wagons. I feel quite sure that some experiments have been
made relative to the size of wheels, size of axle skein proper, location of load, etc., but am unable to fla such matter in published
form. I need the information in preparation farm wagons. Can you help me out in any way? A. Theoretically, the larger the wheel and the smaller the axle the less the friction Practical considerations of strength and convenience therefore govern the determining of
the sizes of wheels and axles used. As a rule, larger wheels are used on the rear axles of wagons. Therefore, a load can be drawn
more easily if it is placed near or over the more easily if it is placed near or over the
rear axles. The wagon also steers more readily if the load on the front axle is small. These are the only points governing the loca
tion of the load. In Vol. XIV., page 1014, the Transactions of the American Society by Thomas H. Brige , you will find an articl which may interest you.

NEW BOOKS, ETC

The Food and Drugs Act. June 30, 1906 A Study with Text of the Act, Anno the Enforcement of the Act, Food In spection Decisions, and Official Food Standards. By Arthur P. Greeley.
Washington, D. C.: John Byrne \& Co. 8vo.; cloth; 176 pages. Price, $\$ 1.50$ act has had such a far-reaching effect the "Food and Drugs Act," and of no othe This volume fills the need for a work embody ing a discussion of the law and a description of its provisions. Chapter I contains a treat ment of the "General Purposes and Scope of
the Act"; Chapter II. "Procedure under th Act," and Chapter III. "Articles to which th Act Applies." Chapter IV. deals with "Adul teration," and Chapter V. with "Mishandling," different phases. The last chapter, Chapte VII., consists of miscellaneous notes on the and similar subjects. The Appendix gives the Standards of Purity for Food Products, as
well as much valuable information. The styl the book is clear and the arrangement topics convenient.

Handy World Atlas and Gazetteer New York: Frederick Warne Co Price, 45 cents postpaid
small and convenient atlas consisting of collection of remarkably clear maps, and an alphabetical list of geographical names with their locations.
The Design of Walls, Bins, and Grain Elevators. By Milo S. Ketchum. Publishing Company. 8vo.; cloth 393 pages, 260 illustrations in the
text, and two folding plates. Price, $\$ 4$ text, and two folding plates. Price, $\$ 4$ With the improved methods of handling grain necessary to design bins on economical lines While the problem of bin design differs from the design of retaining walls in many ways,
a thorough knowledge of the theory of the re taining wall is necessary to a correct underwith which the civil evoked so much discussion as the design of alving walls. One class of writers ha nother class has approached the subject from the empirical side. Many of the mathematical onditions of the wall and filling; while most of the "rule of thumb" writers show an entire ack of knowledge of the fundamental theories ject. Mr. Ketchum has based his discussion "Rankine's Theory" in which the filling i somogeneous, consist of an incompressible in which the particles are held together by friction. Although by no means perfect, this
theory gives a working basis on which a systheory gives a working basis on which a sysscientific as most of those followed in engin eering. The discussion is given in three parts Part I. The Design of Retaining Walls. Part
II. The Design of Coal Bins, Ore Bins, etc.

tors.

The Engineering Index for 1906. Com piled from The Engineering Index published monthly in the Engineer The Engineering Magazine, 1907 8vo.; pp. 395. Price, $\$ 2$.
The present volume follows closely upon the these columns, and practically brings the Index down one year closer to date, as it con tains entries which appeared in the monthly installment published in the Engineering Magazine down to the beginning of 1907. This "Annual" retains the classification used in the desires to the benent of the specialist sub desires to see current literature on this sub-
ject assembled in a limited space. While the annual issue does not, of necessity, preclud the publication five years hence of any quin others, it is hoped by the publishers that it may prove to be a more serviceable arrange
ment to the majority of readers. Further, its ment to the majority of readers. Further, it prompt appearance year by year, while the
literature it records is still fresh and timely,
may make it superior to the larger volume in of the publishers of the technical journals in dexed. The Index covers 250 technical and ngineering journals in six different languages about one-quarter of the periodicals indexed very case a brief other than Englishowing the scope and purport of the article, and in many instances this is sufficient for the purpose of the investigator without further
reference.

Birdcraft. A Field Book of Two Hundred Song, Game, and Water Birds. By Mabel Osgood Wright. With 80 full-page plates by Louis Agassiz
Fuertes. New York: The Macmillan Fuertes. New York: The Macmillan
Company. 12mo.; cloth; 317 pages. Company.
The study of birds is a charming amusement which is within the possibility of everyone, live where he may. Scarcely a spot is
to be found in which there is no bird life, or which is not within easy distance of a locality with their parks and museums, afford quite as great opportunities as the country for car"Birdcraft"" contains the very information that all but the most technical students desire. presents in very attractive form the habits of all the birds of this region, as well, of
course, as their names and descriptions. The volume is attractively bound and conveniently assembled.
Outlines of Industrial Chemistry. A Text-book for Students. By Frank Revised and Enlarged and Including a Chapter on Metallurgy by Charles Macmillan Company, 1907. 12mo.; 602 pages, 116 cuts; cloth, $\$ 3.75$.
This book furnishes an elementary course in roundwork for an extended study of the subject. It describes the more important chemical processes, but with somewhat less detail than we number of excellent works on metallurgy he number of excellent works on metallurgy
already in existence, this subject has been iven a place, owing to the needs of certain colleges and technical schools. The subject of he coal-tar colors, however, has been conincluded in courses on organic chemistry The treatment of the various subjects is clear and concise and the ground covered very exindustries are carried on can be gained from this book, even by the layman.

INDEX OF INVENTIONS For which Letters Patent of the

United States were Issued
for the Week Ending
June 4, 1907.
AND EACH BEARINGTHAT DATE

