some ncighboring telegraph line. The alter
nating current hum is from some line, it may nating current hum is from some line, it may
be farther off: It is doubtful if you hear be farther off. It is doubtful if you hear
wireless telegraph signals, although it is poswireless telegraph signals, although it is pos-
sible that you do so. The remedy is to put in a metalic return on your telephone linc. All these sounds will then cease. 4. Does the
covering of the high potential electric lighting wires completely prote insulation? 4. The dnsulation of a wire is supposed to protec any one from the current which it is carrying.
If the covering is in good condition, it will be sufficient to insulate the current.
(10544) I. C. D. asks: I should like to ask upon what do mosquitoes feed
other than human blood? What aitracts them to a residence? Are vaults favorable breeding places? A. Mosquitoes fecd on blood
in the imago state. They bite other animals besides man, as you may see by watching
them. They fly about and into houses in them. They fly about and into houses in
search of food. Stagnant water is their usual breeding ground. They like cisterns of rain
water near houses. They emerge from the water near houses. They emerge from the
water in the afternoon, dry themselves, and are ready to ily at wind receptace with water standing in it will be used for bringing
up a family of mosquitocs, even old cans for up a fomily of mosquitoses, even old cans for
tomatocs and vegetables. All such things tomatocs and vegetables. An such things
should be carcfully picked up and put bottom upward where they will not get water into
them, if onc would be rid of the pest and them, if one would
danger of mosquitoes.
(10545) J. S. J. asks: I wish to ask you a probably very simple question in your
estimation, thus: Will an elcectric light meter register the same at the end of a month
the when 4 C. P. lamps are uscd as it would
had 16 or 32 C. P. Iights been used, voltrge being the same in both cases? A. An
clectric meter usually registers watts, or tip product of volts and amperes. A 4 C . P.
1 mp . cannot take as many watts as a $16 \mathrm{C} . \mathrm{P}$. lamp, and a 16 C. P. lamp will use only about
half as many watts as a 32 C . P. lamp. The meter only registers the watts which are used. amps of 16 and 32 C . P. . use 3 to 4 watts se
cande when the lamp is in good condition This quantity the meter should show.
(10546) J. C. R. asks: Will you explain the following experiment? I set the
front whecl of a biccele in motion and then front whecl of a bicycle in motion and then
I placed one end of the axle on my first finger. The result : While it revolves on its axie it
also tends to revolve in an orbit around me. If yon revolve it with the axle vertical, it
tends to revolve in an orbit as before. Λ. Th bicycle wheel in your experiments is a form of gyroscope and revolves as this instrument does.
You will find it explained in Hopkins' "Experi mental Science," where many forms of th
(10547) L. C. asks: 1. I have made a siderostat. The rather substantial mirror
mount is attached to the shaft of a bicycle foremount is attached to the shaft of a bicycle fore-
wheel bearing. From a 4 -inch pulley on this wheel bearing. From a 4 -inch pulley on this
shaft a belt runs to an inch pulley on the shaft a belt runs to an inch pulley on th
hour sleeve of an ordinary clock. Could you suggest any wrinkles for reasonably accurate
adjustment? It is intended for projection work in latitude $\mathrm{N}:=45$ deg. 30 min . 24 sec. siderostat should rotate in altitude 47 deg. the amount by which the altitude of the sun
varics in a year. In December the sun will at noon be 21 deg. above your southern horizon, and
in June it will be 68 deg. above your southern horizon. A gear and a rack will be as simple a
method of adjusting the mirror as any. The rod an enter the room through an opening and give you the ability of adjusting the beam at any time. What is the longitude of the places
in the different time zoncs whose local mean time is taken for the standard time for the
whole zonc? taken as the standards for the time zones in
the Western Hemisphere are: 60 deg. west, Colonial time ; 75 deg. west, eastern time; 90
cole dog. west, central time; $10 \overline{0}$ deg. west, moun-
tain time; 120 deg. west, Pacific time. This system is independent of the location of places
or cities. Fastern time happens to differ less than four minutes from local time at New York. Chicalo is about ten minutes from the
90 th meridian. The central lines of the time sections are
Greenwich.
(10548) R. L. H. asks: Kindly pub lish in the columns of your paper whether not the magnetism in a watch can be detected
with an ordinary compass. If not, what is the proper method? A. To determine whether watch is magnetized, place it on the face of a
compass in a fiat position, and turn it slowly around. If it is magnetized, it will in some,
positions repel the magnetic, needle, turning it positions repel the magnetic neeale, turning it
away from its north and south position, and in others it will attract the needle. If it is
not magnetized, it will attract the needle feebly in some positions, and more strongly
when the main spring is near the needle. (10549)
W. M. F. says: Please inform me what would take away the echo from a
hall which is on the third fioor of a building. I do not want to use a sounding-board, as it is
too expensive. I have inclosed a small plan of the hall. Λ. We do not think a sounding.
board would assist the acoustics of your hall. It is just as bad as a hall can be; a square
box with a curved ceiling (if we read your
drawing aright) and with a hard wall. $\Lambda \mathrm{n}$ abundance of soft hangings along the sid
walls, such as heavy curtains upon poles, if there were windows in the wall, is adv
ble. Such echoing halls are often able. Such echoing halls are often much
improved by stringing fine wires across them, several feet above the heads of people; in your hall this might be done nine feet above the foould deaden the noises, by putting up an abundance of bunting or cheesecloth from the
center of the ceiling to the sides and corners center of the ceiling to the sides and corners
as when the hall is dressed for some patriotic occasion. A gallery with rising rows of seats
would assist much in breaking up waves of would assist much in breaking up waves of
sound. You cannot hope to destroy the echoes sound. You cannot hope to destroy the echoes
except by such means as these. The idea is to replace the hard surfaces of the wall
soft and yielding materials, and to break the rectangular character of the room, and particularly the vaulted ceiling,
(10550) C. N. writes: It has been as serted recently in a photo-magazine that the cam of light entering the lens of a camera during the exposure of a plate for $1-1000$ of
a second is 185 miles long. ($1-1000$ part of the velocity of light taken at 185,000 miles ar second.) It is stated in support of the during an exposure has "its origin in the sun, and the beam, or rather the multiplicity of rays, hit the object, are refiected therefrom,
and ultimately reach the plate." Without conesting the explanation of the action of light the explanation a sound argument that the
length of the beam is 185 miles? If not, is the Iength mercly the distance of the object ment as quoted from the journal is quite correct. 1 s much light strikes the plates as light travels in the time of exposure. A second
exposure, and 185,000 miles of light waves
strike the plate. The light docs not stand
tin strike the plate. The light docs not stand still between a plate and an object 50 feet
away. It comes from the object all the time. It moves as fast from the object to the camera as it does anywhere in the air. And the action
of the light is cumulative upon the plate; 185 affect it $1-1000$ as much as 185,000 miles of
(10551) H. L. F. says: Can a locootive make better time on a high mountain
 though if air is rarer there would be less back ressure, and for that reason the steam w Whatever advantage in steam pressure a motive would derive at a high altitude from by the reduction of the quantity of oxygen in the air. If back pressure is reduced by the former cause, the amount of air needed to con-
sume a certain weight of coal would be insume a certain weight of coal would be in
creased by the latter. We also think that the teaming qualitics would be impaired on the at hand, but should not expect any great diference between sea level
attained by ordinary roads.
(10552) M. F. S. says: Will you please ive, in an early number of the Scivetiric at racks. cte.? Λ. First scrape with glass to take off any roughness, then grind some oth wetted and dipped in the powder, rub them until a smooth face is obtained. Next
polish with rottenstone and linsced oil, and nish with dry fiour and a piece of clean linen ag. The more rubbing with the stone and (10553) C. R. V. says: If a water pump, plunger type, should be made from a
tube having a $1 / 2$ or $5 / 2$-inch bore, and plunger ube having a $1 / 2-$ or $5 / 8$-inch bore, and plunger
itting snugly in same, check valve each side etc., plunger moving or having a stroke of
inches, what would be the limit of revolutions inches, what would be the limit of revolutions
per minute if fastened to a wheel and crank hat it would work satisfactorily? Would minute in ratio to increasing the stroke to gain same results as a smaller or shorter
stroke? What is the fixed rule for this? Λ. The most practical speed for the plunger of
all pumps is about 100 linear fcet per minute. This speed is irrespective of the size of the plunger and the length of the stroke. properly and the pump does smoothly. If the stroke is decreased, the numin the same ratio to keep the piston speed the
(10554) H. W. H. asks: Is there more expansion of a charge of air and gas when arnt or exploded in a closed chamber than
a-jet in the open? What is the cause of pipe snapping when steam is first turned it? Λ. The result of the burning of a certain its being in a closed or open space. The same amount of heat and gases should be produced whether the explosion takes place in the open
or in a close chamber. In the open air the or in a closed chamber. In the open air the
resulting power cannot be used, and is soon resulting power cannot be used, and is soon
dissipated into the space around. The noise produced when steam is turned into a cold the condensation of the steam. It is calle

NEW BOOKS, ETC.

Navigativg the Air. By members of th Aero Club of America. New York 259 pp.; numerous half-tone illustra tions. Price, $\$ 1.65$ by mail.
This book is intended to give a scientifi tatement of the progress of aeronautica prefap to the present time. Opening with Mr. C. F. Bishop, its president, and an intro ductory chapter by Carl Dienstbach telling in brief what has been one up to the present
all branches of the art, the book consists twenty-three chapters proper by leadin nnerican aeronauts and experimenters A number of these deal with balloons an
ballooning in all of its phases, and includ articles by Λ. Lawrence Rotch, William J Hammer, Augustus Post, Leo Stevens, and Kites and Balloons in the United State
Kithe such "The Use of
Kither Weather Burcau," by Oliver F'assig, Ph.D., and "The Dircetion and Velocity of Λ ir Currents," by all acronauts and students of meteorology "The Coming Dirigible Airship" teresting
W. Hedge.
now to the heavier-than-air craft the reader will find a bricf chapter by Octave Motor Flyer," and another short essay by the brothers themselves on "The Relations, Wcight, Speed, and Power of Flyers." Israel Ludlow describes the experimental flights made with hy a tugboat and by an automobile, through an attempt at riding in which Mr
Ludlow received a scrious injury. Dr. Ale ander Graham Bell has furnished an extrac from his address on Aerial Loconnotion, which was elivere before the Washingto Acacemy of Sciences last December. This ex

the Construction

hedral kites. "How to Fly as a Bird" is the title of a very interesting chapter dealing with an aeroplane constructed along the lines of Venetian blind. Phillips, in England, found posed planes was the most efficient, and Mr Holland has designed a very interesting ma-
chine along these lines. Mr. William A. Eddy contributes an article entitled "Experiment with Kite-Sustained Λ eroplanes," and Mr

1. M. Herring describes a simple propeller testing device with which he has made several Motors and Flying Machine Models" is the title of a very interesting article by Mr. Wilmented with num. Mr. Kimball has exper of which are illustrated. Prof. William H.
Pickering, of cusses this type of Hyer. Prof. David Todd Ph.D., contributes an article on " Λ erial High Speed," in which he discusses the problem of
the hydroplane, or gliding boat, and the much more difficult one of the aeroplane ley's assistant in his experiments with an aeroplane, makes some "Critical Remarks on Pro ander Graham Bell's paper, and also furnishes an article on "The Law of Atmospheric Re-
sistance of Wires and Rods." The book is illustrated with some sixty half-tone plates, considerable number of which have alread appeared in the columns of the Scientific
Ambrican, while most of the other photographs are from the collection of William . Llammer. This book will be welcomed by all
aeronauts and others interested in the new seience, as it gives a very good idea of the state of this. science at the present time.

Télégraphie Savs Fil et la Tele
MÉcanique. A la Partée de Tout le
D. E. Branly. Paris: H. Dunod et E

Pinat. Second edition, revised an
enlarged. Price, $\$ 1$.
Ln excellent idea of this volume can be Branly, the inventor of the coherer, the trans lation of a portion of which is given below
"Although the explanation of the cffects ob
"Although the explanation of the effects ob-
ioes not present great difficulty, the authors who have endeavored to popularize to leave them in a sort of half obscurity whic imposes on the good nature of the reader, an probably increases his respect for science.
"In dealing with the elementary principles M. Monier has complete idea of wireless tel graphy, and he should be congratulated on no having given way to the temptation of writing may have the good fortune to read his work will owe him great gratitude, for they wil now those things that they should know
about the subject without having had much trouble in learning them."
The Concentration of Wealth. By
Henry Laurens Call. Boston: Th cloth; 48 pages
Mr. Call's paper, read before the Λ mer can Λ ssociation for the Λ dvancement of Sci-
ence, at Columbia College, New York, Decem-
ber 27, 1906,
acked up by statistics, the fact that the workously for existence than formerly, and thai the dealer and the small producer have been This state of affairs is generally admitted as being a very grave menace to our national e think Mr. Call's plan of relief too radical nd too visionary.
Lehrbuch der Gericittricitien Chemie in Zwei Bänden. Zweite G:̈nzlich Umgearbeitete Auflage. Bearbeitet von
Dr. George Baumert, Dr. M. Dennstedt, und Dr. F. Voigtländer. Zweiter Band. Der Nachweis vom Schriftfall schungen, Blut, Sperma, u. s. w., unter besonderer Berücksichtigung Druck und verlag von Friedrich Vie weg und Sohn 8vo. paper cover; 248 pages, illustrated.
Dealing with such problems only as admit of cientific and tangible solution, this work is methods of tampering with handwriting are iscussed and their detection explained, as are also described the microscopical examination and identification of the many substances that re apt to figure in criminal cases
pes and Bheeds of Farm Animals. By Charles S. Plumb. Boston and New
York: Ginn \& Co. 8 vo.; cloth; 563 pages, illustrated. Price, $\$ 2.20$ postpaid.
Not since 1888 has a volume devoted to the preeds of horses, cattle, shecp, and swine been published in Λ merica. The most recent work ideration of the horse. This book differs somewhat from others that have preceded it, ccognition for the frst time, these being the ass, the mule, the angora and milch goats, all of which are important in certain localitics. me more important brecds have received more inute mention than those that have had less hotographs of typical individuals, with which the text is frecly illustrated, give a ifferent varictics than could be gathere from ages of descriptive matter.
Modern Methods of Testing Milk and
Milk Prodects. By Lucius L. Van Slyke. New York: Orange Judd Com pary. 12mo.; cloth; illustrated; 214 pages. Price 75 cents
Now that the full danger of impure milk, due either to unsanitary conditions in its pro-
duction, or to adulteration, is realized, a knowlclge of how to test milk is of value to everyone.
 cated apparatus or an undue cgree of technical still, and yet are reliable. The volume is written simply, so that by paying strict attention cetails, the experimenter can acquire the he Walschafit Locomotive Valve The Norman W. Henley Publishing Company. 12mo.; cloth; 193 pages; illustrated. Price, $\$ 1.50$.
Now that the enormons size of our modern on link makes the weight of the "Stepheninto consideration, engine builders are comnencing to install a metho of valve actuation hat has been in satisfactory use in Vurope for ver half a centiny, namely, the Walschacrt
valve gear. The work by Mr. Wood treats of his gear from four different standpoints in as many divisions of hls volume. The First Diceond Division deals with designing and crecting the gear. and is suited for the master vantages of the system, and the Foulth Diviion is devoted to "Questions and Answers on解 various points emphasized; one set especially, howing the valve gear in nine different posi-
ons, makes the book a necessity among railrons, makes the

INDEX OF INVENTIONS
For which Letters Patent of the

AND EACH BEARING THATDATE

