TYPICAL BRAKES ON 1907 CARS.

The accompanying photograph shows the double brakes used on the rear wheels of the new Cadillac touring car, which are typical of those used on many other 1907 models. As can be readily seen, there are both an internal expanding and an external contracting brake, each of which is lined with camel's

TYPICAL EXTERNAL AND INTERNAL HUB BRAKES USED ON CADILLAC CAR.
A.B. Expanding ehoes sined with camel's hair felt. C. Supporting drum on end of stationary axle sleeve. I, I, Toggles for expanding shoes. A. B.
$N . J$. Lever and links connecting with togles. O, O Adjustable stop for N. J. Lever and inks connecting with toggles. O, OAdjustable stop for
limiting withdrawa of hoes by coiled springe. J. Lever for operating contracting band brake.
hair felt, a material which has had much vogue of late for this purpose. The internal brake is made up of two semi-circular shoes, A and B, supported upon a pivot pin, P, that projects from the steel casting, C, forming one end of the rear axle tubing. These shoes are drawn together and away from the brake drum of the wheel by means of two coiled springs. The dis tance to which they are with drawn is regulated by two pins with lock nuts, $O O$, which screw into sockets in the shoes and press against a central washer sur rounding the axle. The lever arm N, which operates the brake, is connected to the toggles, $I I$, by a link, L. When the shaft carrying this lever arm is rotated, the toggles are pressed apart and the shoes are expanded. This makes a very powerful emergency brake, and is operated by a hand lever. The outer contracting band is operated by a lever, J, which, when it is moved forward by the rod shown, pulls the two ends of the band together by means of the rocker at tached to its shaft. This brake is connected to the pedal, and is the regular running brake. Both brakes are equalized, so that an equal pressure is exerted upon the drums of each wheel.

AN IMPROVED SLIDING-GEAR TRANSMISSION
The transmission used on the new 20-horse-power 4cylinder Cadillac car is of the double sliding type, in

CHASSIS OF THE DRAGON 26 HORSE-POWER TOURING CAR, SHOWING DRIVING SHAFT incased in torsion tube and radius rods bracing the latter.
valves on opposite sides of the cylinders is given as greater working efficiency, because the cooling water can be admitted around the exhaust valve (which is the hottest point) and taken out from around the inlet

NEW ROLLER-BEARING TRANSMISSION OF CADILLAC LIGHT TOURING CAR
valve, which it keeps at a uniform temperature and thus aids carburetion. The engine is fitted with a reverse cone clutch in the flywheel. The clutch ring can be removed very easily, thus allowing the leather face of the cone to be inspected and cleaned. If necessary, the leather can be readily renewed also. The particular feature of interest about this car is the arrangement of the torque tube and radius rods. . There is but one universal joint in the propeller shaft, and this is immediately back of the transmission. The torque tube ends in a pair of U-shaped arms, which are pivoted upon a sliding yoke. The radius rods run from the rear axle to the torque tube near its upper end, where they are attached to a yoke that is slidably mounted upon the torque tube. Thus, the rear axle, torque tube, and radius rods are virtually one solid unit, which can assume any ordinary angle with respect to the frame of the car.
The transmission is of the usual three-speed progressive type. Both it and the engine are mounted on a sub-frame extending from the front to the middle of the chassis.

then

THE WAYNE TRANSMISSION AND CLUTCH.
On the Wayne 1907 touring car is seen another design of combined transmission and differential located on the rear axle. In designing its new car this way the Wayne company has but followed out the lines

plan view of rear of wayne chassis, showing transmission combined with differential on the rear axle.
F. Torsion roa, Q. H-shaped quadrant for selective-type transmission. R, R^{\prime}. Connecting rods for feperating shifting gear sets in transmiksion. The photograph shows one end of pin. P. in ensagement with

REAR OF DASH, SHOWING SPARK COIL, TIMER, CLUTCH, AND CONTROL MECHANISM OF WAYNE 30-HORSE-POWER CAR.

upon which the Packard and Northern cars have won success during the last two years. In our 1905 Automobile Number we showed the first application of the transmission to the rear axle as displayed on a Packard chassis. Last year the Northern company brought out a 4 -cylinder car having this feature, and this year the Wayne and some others are exponents of it. The arrangement is a neat one, and gives, as a rule, little or no trouble.
The two photographs which we reproduce show the arrangement of the gear box on the rear axle and the method of operating the gears. The transmission is of the 3 -speed-and-reverse selective type, in which there are two sliding sets of gears, either one of which is picked up when the lever, G, is slipped through the "gate," or transverse slot of the H -shaped quadrant, ℓ : When this is done, pin, P, on a short lever arm forming part of sleeve, S (which G turns), slips into one of the two forks, $V V^{\prime}$, and, when G is moved forwar or backward in one of the longitudinal slots of ℓ, causes this forked lever arm and its vertical part, V (both of which are in one piece forming a bell crank) to move forward or back ward one of th ward one of the sliding-gear mem bers by means of
the connecting the connecting
rods, $R R^{\prime}$. The other rods, B and E, apply the con tracting running brakes and the expanding emerg ency brakes to the brake drums on the rear wheels. The brake bands are lined with camel's hair
felt, and are operated by pedal, A, and lever, D, respectively. Pedal C throws out the clutch, E, when pushed forward, moving backward the lower ends of the levers, $I I$, which are attached to the ring, J, of the shifting collar, K. The clutch is of the expanding ring type, leather lined. It is placed within a drum in the flywheel, and is so powerful that only a 10 -pound spring is required to operate it. Application of the emergency brake throws out the clutch by means of the lever, M, traveling along under the curved lever, N, and moving it. The propeller shaft is shown at X, and its two universal joints at W and Z. The torsion rod for taking the twisting strains of start ing from the springs, is shown at F. The springs are placed outside of the frame, which gives them greater play. The rear axle is fitted with Hyatt roller bearings, and the front wheels have adjustable ball bear ings. The motor used is a $30-35$ horse-power, 4 -cylinder, water-cooled engine of 4%-inch bore by $51 / 4$-inch stroke. The valves and piping are all on one side, which gives the other side of the motor an especially neat clean-cut appearance. The cylinders are cast integral in pairs. A gear-driven water pump and beltdriven fan and lubricator are fitted. The timer is seen in the dash at \boldsymbol{T}.

A NOVEL COMBINED SLIDING-GEAR TRANSMISSION AND MULTIPLE-DISK CLUTCH

One of the greatest improvements noted on any of the 1907 cars is that seen on the Smith machine, in which the usual three-speed sliding-gear transmission,

NOVEL INTERCONNECTED COMBINED CLUTCH AND TRANSMISSION USED ON THE SMITH CAR.
B. Connection to slide, S. S. C. Clutch operating lever. E. Leverfor connecting \boldsymbol{C} with brake. K. Multiple
lever and planger.
P. Band brake.
Q. Universal joint. U. Ball and socket joint. R. Propeller shaft.
spark coil on the dashboard. This is of the individual type, there being four separate coils with vibrators. A mechanical force-feed oiler, worked by an eccentric, forces oil at 90 pounds pressure to the three crankshaft bearings and the commutator. Eccentric oil rings beside the bearings catch the oil as it oozes out therefrom and spray it up into the cylinders. Thus it is unnecessary for the cranks to dip in the oil that is kept in the bottom of the crankcase at a certain level by an overflow. The commutator has a special ring for the return or ground wire, an arrangement that makes sure the completion of the primary circuit and does away with an obscure cause of misfiring. The transmission, as can be readily seen, is very compact. The lay shaft is placed at the bottom, and the ends of the bearings of this shaft are protected by oil-tight caps, so that there is no leakage of oil from the transmission. Although the gear box is quite small, the gears are exceptionally large, being 6 pitch and $11 / 8$-inch face. Timkin roller bearings are used in the transmission, wheels, and rear axle. The long levers which carry the clutch and brake pedals give so much leverage that a 400 pound compression spring can be used on the cone clutch, and yet the latter can be operated so gently that it is possible to start the car upon the high gear. Both the foot and hand brakes are interconnected with the clutch so that the latter is thrown out when
these gears come into mesh the roller, a, falls into the succeeding notch, and the clutch is engaged again. With this arrangement the merest tyro can operate the gear-change mechanism without any danger of stripping or damaging the gears; in fact, the control of this car is as simple as that of an electric car, for all the operator has to do is to push the lever, A, forwari or backward to pass through the various sets of gears. This transmission is a decided improve ment over the usual form, in which the gear box is separate from the clutch and from the engine. It marks a distinct advance in automobile construction, and is a device which will doubtless be imitated by other automobile manufacturers.

THE STODDARD-DAYTON CHASSIS.

The Stoddard-Dayton is one of the best built and most improved types of four-cylinder machines at present on the market. The photograph of the chassis, which we reproduce, shows very well the compact and neat appearance of the mechanism, as well as several of the special features, such as the aluminium protecting casing beneath the machinery. The engine is of the twin-cylinder type, the cylinders being cast in pairs, with the exhaust valves, E, on one side and the inlet valves, I, on the other side. The cylinders of the touring car engine have a $45 / 8$-inch bore by a 5 -inch stroke. The commutator, C, is placed on a vertical post between the two pairs of cylinders, which makes it readily accessible. All the wires, both primary and secondary, are carried through insulating piping to the
he brakes are aplied. Throwing throttles the motor, as the throttle of the automatic, water-jacketed carbureter is connected with the clutch pedal.

The torsion tube hanger, H, seen in the photograph, slides in a bronze ring which is attached to a bracket on a cross member of the frame, while the radius rods, R, are provided at their forward ends with a ball and socket. The foot brake is of the expanding type, working in a drum at the rear of the transmission. The levers, A and B, are for shifting the gears and for applying the emergency brakes on the rear wheels. These brakes are also of the expanding type. The transmission is of the three-speed selective type, and any gear can be picked up without going through the other gears, as is necessary with the progressive type of transmission.

THE GROUT 35-HORSE-POWER CHASSIS

One of the most finished chassis exhibited at the show was that of the Grout car. Grout Brothers still retain the armored wood frame on account of its elasticity. The motor is a 4 -cylinder Rutenber of $41 / 2$ inch bore by 5 -inch stroke, rated at from 30 to 35 horse-power. As can be seen from the photo of the chassis, the valves of the engine are in chambers on one side, and the exhaust and inlet pipes are clamped in place by four brackets secured by four nuts. A Holley float-feed automatic carbureter is located at K, and the centrifugal water pump is shown at H. Igni(Continued on page 53.)

CHASSIS OF THE 35 -HORSE-POWER GROUT TOURING CAR.

THE 35 -HORSE-POWER STODDARD-DAYTON CHASSIS.

