locking the movable tool on grasping the handlever employed in reciprocating it.
VENEER-CUTIER.-E. Beck, New York, N. Y. This mechanism is designed for cutting
veneers from a log. Machines in common use are used which revolve in one direction and
are large in size, and reduce the number of are large in size, and reduce the number of
veneers. If thinner saws are used they tend to cut into the grain to lead from the path
of truth, thereby injuring the veneer and saw. of truth, thereby injuring the veneer and saw.
The invention overcomes such difficulties and inconveniences and provides means enabling an increase
a log.
MACHINE FOR PRODUCING ORNAMENTAL SURFACES OR FLEECED FABRICS.C. II. French, Canton, Mass. The invention
relates to cloth-finishing machines; and its object is to provide a machine for producing ornamental surfaces on fleeced fabrics-such,
for instance, as shown and described in the for instance, as shown and described in the
application for Letters Yatent of the United
States, formerly filed by Mr. French, the maStates, formerly filed by Mr. French, the ma-
chine being arranged to provide permanent ornamental surface in the form of alternating
transverse stripes of coarse and fine texture. FOLDER ATTACHMENT FOR HEMMERS -E. F. Gibbons, Jersey City, N. J. The object of the prosent invention is the provision
of an attachment for sewing-machines affordof an attachment for sewing-machines afford-
ing means for folding the material before presenting the same to the hemmer, the general purpose being to dispense with hand op-
erators, who fold the goods in the same manner.
molding apparatus.-L. Hansen, Oshkosh, Wis. In this instance the invention is for the manufacture of roofing-tiles and sim-
ilar products from concrete or other plastic ilar products from concrete or other plastic making bricks, slabs, building-blocks, or other
suitable objects of ihe above named materials.

Prime Movers and Their Accessories. ORAFT-REGULATOR FOR STEAM-BOIL ERS.-A. J. SNow, Fromberg, Mont. Tration
vention is an improvement in draft-regulators
for steam-boilers, more especially boilers for for steam-boilers, more especially boilers for
locomotives or the like, and has for an object, among others, to provide automatic
means to prevent the suction of cold air by the exhaust of the engine through the fire for any purpose open.
Steam-actuated valve.-E. A. Menking, Pittsburg, Pa. The object of the in-
vention is to provide a valve, more especially vention is to provide a valve, more especially
designed for steam-pumps and like machines and arranged to insure an easy and automatic
shifting of the valve for controlling the ad shifting of the valve for controlting the and the cylinder. It relates to valves such as
shown and described in Letters Patent of the United States formerly granted to Mr. Men king.
COMBINED AIR AND GAS ADMISSION VALVE FOR EXPLCSIVE-ENGINES. - H.
LeNTZ, Berlin, Germany. The invention relates to valves of explosion or internal com-
bustion engines supplied with a mixture of air and gas or hydrocarbon vapors; and the ebject is to provide a valve consisting of a
single member combining in one part the air
and gas admission

Railways and Their Accessories.

 CAR-WHEEL-T. L. HAWKins, Pittsburg,ra. The invention relates to railroad and mining cars having the wheel mounted to rotate loosely on the axles. The parts are
readily assembled and by the use of the bearing balls engaging the recesses in the journal longitudinal movement on the journal and without undue friction or binding of the parts. In case the journal and the bushing become
worn to a considerable extent it is only necesworn to a considerable extent it is only neces-
sary to replace the worn-out bushing by a new one, so that the axle as well as the car-
wheel can be used. The improved renewable bushing, closed hub, self-oiling, and dust proo

Pertaining to Recreation.

IAUT-IPOTECTOR FOR YOOL AND BILLIARD TABLES.-L. J. Dirand, Torrington, impreve the protective cover for which Let-
ters ratent were formerly granted to Mr. ters ratent were formerly granted to Mr
Dirand, which improvements tend to simplify the construction and render the attachment
adjustable to different heights of table, enabling the cover to lie close to the upper
marginal portion of the table, and, further, to marginal portion of the table, and, further, to
so construct the attachment that when not in so construct the attachment that
use it may be dropped to occupy
out of the way of the players.

out of the way

TOY.-W. V. Gilbert, 30 Lonsdale road, Wanstead, N. E., Londen, England. Mr. Gil-
bert makes use of a flexible or spring device, which forms the subject of his application for patent formerly filed by him. It is formed
from a resilient plate bent inte such shape that by compression and release from comthat by compression and release from com-
pression it alternately projects and retracts
the eyes. the eyes. Means provide for its appearing to
spring or jump, and this being accompanie also by retraction or return to ortginal posi-
tion of certain movable parts the simulation also by retraction or return to ortginal posi-
tion of certain movable parts the simulation
to a living animal is rendered more complete.
amusement device.-E. N. ChamberLain, Natchez, Miss. This sounding toy is arch of the same in front of the heel, it being in practice made of normally greater vertical
diameter than the height of the heel, so that diameter than the height of the heel, so that
when the foot is pressed down or rests upon when the foot is pressed down or rests upon
the floor or other surface the bulb will be compressed and a sound emitted.

Pertaining to Vehicles.
AUTOMATIC WAGON-BRAKE. - E. F. Veatch, Palco, Kan. This brake may be easily
applied to an ordinary wagon and may be applied to an ordinary wagon and may be ised with or without the bed, being equally
efficient in both cases. It is simple in construction and entirely automatic in action and
is not liable to get out of order easily. Since considerable strain is brought to bear on no part, dan
minimum.
VEHICLE-WHEEL-P. E. Dawson, Hanock, Md. In the present patent the object the invention is the production of a wheel
which shall be distinguished by great resiliency, strength, and durability of its rim portion, the same being a punctureless elastic

Note.-Copies of any of these patents will

 Note.-Copies of any of these patents willbe furnished by Munn \& Co. for ten cents each. Please state the name of the patentee, title of the invention, and date of tuls paper.

Fotes
 and Queries and

HINTS T© CORRESPONDENTS.
Names and Adress must accompany all letters or
no attention will me paid thereto. This is for
our informan
 pecial same. Writen Information on matters of personal
rather than general interest cannot we expected
without remuneration. Scientific American Supplements referred to mas be
had at the office. Price 10 entens each.
Books refered to promptly supplied on receipt of
price. price. sent for examination should be distinctly
marised or labeled.
(10462) H. L. O'B. asks how to make itric acid from fruit. A. Citric acid is gen-
rally manufactured from lemon is imported in a concentrated state produced by evaporation by heat. It consists of citric 6 to 7 per cent, alcohol 5 to 6 , and
the remainder water, inorganic salts, etc some manufacturers it is allowed to partially ferment for the purpose of evaporating the
clear liguor from the mucilage, or it may be clear liquor from the mucilage, or it may be
clarified in the usual method by the use of albumen in the form of the white of an egg. Carbenate of lime in fine powder is gradually
added, and stirred in so long as effervesencer added, and stirred in so long as effervescence
continues. Citrate of lime forms, and after being separated by drawing off the watery being separated by drawing off the watery
liquor, is well washed with warm water. It is hen intimately mixed with strong sulphuric acid diluted with 6 parts of water. After some
hours the citrate is decomposed, the sulphuric acid having taken up the lime and formed an insoluble sulphate, setting the citric acid free This, separated by decanting and filtering, evaporated in leaden pans till it attains the
specific gravity 1.13. The evaporation is afterspecific gravity 1.13 . The evaporation is after-
ward continued by a water or steam bath till ward continued by a water or steam bath till
the liquor begins to be sirupy, or to be moved from the fire, and put aside to crysta moved from the fire, and put aside to crystal
lize, the mother liquor after a few days being evaperated as above, and again set to crystallize, and so on as long as clear crystals are ob-
tained. To obtain pure citric acid, all the crystals should be redissolved and recrystallized, it may be several times, and the solution
digested with bone black. A gallon of lemon uice should make abont 8 ounces of crystals. Limes and lemons constitute the source from
which citric acid is generally made. yet it may which citric acid is generally made. yet it may
be extracted frem oranges, currants, goosechinery and cost of manufacture will the ma upon circumstances which any one about to go into the business can best judge.
(10463) C. L. G. asks how to make koumiss. A. 1. Fill a quart champagne bottle
up to the neck with pure milk; add two table up to the neck with pure milk; add two table
sponfuls of white sugar, after dissolving same in a little water over a hot fire: add also a quarter of a two-cent cake of compressed
yeast. Then tie the cork on the bottle se-
curely, and shake the mixture well. curely, and shake the mixture well ; place it in
a reom of the temperature of 50 deg. to 95 deg. a reom of the temperature of 50 deg. to 95 deg.
Fahrenheit for six hours, and finally in the ice box overnight. Drink in such quantities as
he stemach may require. Be sure that the he stomach may require. Be sure that the
milk is pure: that the bottle is sound; that the yeast is fresh; to open the misture in the the yeast is fresh; to open the mixture in the
merning with great care, on account of its effervescent properties; not to account of its If there is any curdle or thickening part re-
sembling cheese, as this indicates that the fermentation has been prolonged beyond the
proper time.
2 . To a quart of new milk add a
sixth part of water, and to this mixture add,
as a ferment, an eighth part of the sourest as a ferment, an eighth part of the sourest
buttermilk that can be got. In future preparations, a similar quantity of old koumiss will better answer the purpose of a ferment. Cover the vessel with a cloth, and allow to stand in
a place of moderate warmth for twenty-four a place of moderate warmth for twenty-four
hours, when a thick substance will be found collected at the top. Stir well until this sub stance is thoroughly mixed with the liquid portion beneath, and allow to stand for
twenty-four hours more, when, having filled a bottle two-thirds full, and again thoroughly mixed by shaking, the preparation, now called koumiss, may be used at once, or the bottle tightly corked and kept in a cool place for
future use. Always shake the bottle well befuture use.
fore using.
(10464) P. D. asks how to make imi tation leather. A. A mixture recommende consists of 16 parts gelatine and 5 parts gly-
cerine. A coloring matter is then added as may be required-caoutchouc to give elasticity and boiled linseed oil to render the whole suffi-
ciently flexible. This composition is spread upon linen while hot, printed with any pat a solution of alum, sulphate of iron, a solution of alum, sulphate of iron, copper,
zinc. These saline solutions may likewise mixed with the composition before it is sprea on the linen. The surface is lastly varnished and may be bronzed or gilt. Another compo-
sition is obtained by boiling linseed oil with quicklime and borax, which forms a liqui that, on cooling, becomes a thick paste. It is
then mixed with rasped cork and more quicklime.
(10465) B. M. L. asks how to make kindlings. A. 1. Save the corn cobs for
kindlings, especially if wood is not going to be plentiful next winter. To prepare them, melt
together 60 parts resin and 40 parts tar. Dip together 60 parts resin and 40 parts tar. Dip
in the cobs and dry on sheet metal heated to about the temperature of boiling water. 2
Dip the wood in melted resin. The followin composition is sometimes used: 60 parts melted resin and 40 parts tar, in which the
wood is dipped for a moment. Or, take 1 quart of tar and 3 pounds of resin, melt them, then
cool; mix as much sawdust with a little charcoal added as can be worked in. Spread out lumps the size of a hickory nut, and you will
(10466) R. N. P. asks how to smooth parchment. A. To smooth parchment which
has become wrinkled, place the parchment face down upon clean blotting paper. Beat up to a clear froth, with a few drops of clove oil,
the whites of several fresh eggs, and with the fingers spread this over the back of the sheet smooth and yielding. Then spread it out a smooth as possible, cover with oil silk and press for a day. Then remove the silk and
cover with a linen cloth and press with a warm iron.
(10467) M. J. L. asks how to ascertain the area and square inches and pound
upon the seat of an inch and one-half safety valve, that blows at 80 pounds, and how the decimal 0.7854 is got, and what kind of measurement for getting same. A. The area of the
safety valve is the square of the diameter multiplied by 0.7854 , which is the propertion of the area of a square to a circle of the same diameter. The area multiplied by 80 pound
is the total pressure. See Le Van's book on the is thety valve, $\$ 2$ by mail, which gives full details and computations for pressure, weight and its place on the beam.
(10468) W. N. P. asks: What metals will expand and contract the most with heat A. Of the commercial metals, lead, magnesium and zinc expand most for a given change of temperature. Lead and zinc expand 29 mil magnesium expands 27 millionths. This is a about 100 degrees temperature. Of course the contraction upon cooling is the same as the
(10469) L. B. asks how red printing ink may be removed from paper. A. Soak
pieces of bletting paper in benzine, turpentine, or ether and apply successively, using each time a fresh clean piece of the blotting paper;
this is preferable to rubbing with these solvents, as rubbing tends to spread the ink and (10470) J. J. K. writes: Some plates for flat feet are made of spring steel covered with leather. The sweat of the feet soon rusts
the plate. I have used paint and shellac, but the plate. I have used paint and shellac, but
they do not do much good. Please let me Try a good cepal coach varnish. If it can le the best satisfaction.
(10471) L. A. H. writes: I have some fine copper gas fixtures which have been
finished with a bright thin coating called anfique finish a bright thin coating calle an destroyed to some extent by flies and other agencies. I would like to know of a proces
for restoring this polish to its original cend tion. A. Thoroughly clean the fixtures with of the usual polishes in the market. Then lacquer with the best quality of lacquer to be
had, applying it in a thin coat with a soft
(10472) G. L. Writes: Cap acetylene tas and oxygen be burned together in a cal
cium jet for lime light, the same as hydrogen and oxygen lime light? And if not, why not And if so, is it any more dangerous or exor the lime light Hydrogen is now rarely used; ordinary illuminating gas is used, being
sufficiently efficient and much cheaper. There sufficiently efficient and much cheaper. There
is no more danger when using acetylene, prois no more danger when using acetylene, pro-
vided the apparatus is in proper order, than vided the apparatus is in proper order,
with either illuminating gas or hydrogen.
(10473) G. C. asks for a formula for he making of a powder which extinguishes per cent to 10 per cent of mineral matter to prevent caking by absorption of moisture from
the air, is useful. A misture of dry bicarbonthe air, is useful. A mixture of dry bicarbon-
ate of soda and dry sal ammoniac, if kept in a ate of soda and dry sal ammoniac, if kept in a
dry place, is still more effective. In confined dry place, is still more effective. In confined
spaces, as closed rooms, a different type of extinguisher is effective. It is based on the principle of fighting fire with ince The fulphur 36 parts, and charcoal 4 parts.
(10474) F. V. N. wishes a formula for producing a rich, red color on copper, for um-
brella mountings. A. A gradually increasing rella mountings. A. A gradually increasing
temperature in a hot-air bath will give a temperature in a hot-air bath will give a
series of colors as follows: Light-burnish orange, red-burnish orange, rose red, violet, steely white, light yellow, dark yellow. Both duration of heating and temperature affect the
color obtained. As soon as the desire tint is produced, cool rapidly in air or by plunging nto cold water. Colored varnishes are also used, but their effect is not permanent. There
are various chemical ways of producing red (10475) W. H. T. asks: How is gas made from water? Is there a book that would nable a foundry foreman to learn how to make an analysis of the iron in his castings? A.
Briefly described, water gas is produced by Briefly described, water gas is produced by
blowing steam through a layer of brightly glowing coal ; the water is decomposed, and the coal is consumed; the gases coming off are a mixture of hydrogen, carbon monoxide, and dioxide and with small amount of carbonic When the coal cools off too far to further
decompose the water vapor, this is shut off, and air is blown through until the coal again burns brightly and is ready for more steam. While the air is blown in, the gases are allowed value as illuminant, and in fact would not urn at all. The water gas as it comes from This is imparted to it by enriching with ben-ine.-There is no book which would explain to anyone not a chemist how to determine the amount of iron in brass or other castings. books on analytical chemistry of the metals describe methods for this, but would be unin-
telligible to any person except a regular hemist.
(10476) R. G. P. asks: Are there any chime music boxes with a set of bells on
them? How dees the word chime get its name? A. The word chime comes from a
Latin word, meaning bell, and also cymbal. Music boxes are made with sets of bells in (10477) E. G. P. asks: How can a scratch be removed from the top of an oak
table (highly polished)? A. If the scratch is only a slight, superficial one, it can usually be rude oil. If a deep scratch, it will be best to ub down the whole top of the table with owdered pumice and crude oil, and then re-
(10478) G. P. O. wishes a process for alvanizing such as is done on the base boards first thoroughly cleaned by dipping in weak muriatic or sulphuric acid, and is then thoroughly dried. After this it is plunged in a bath of molten zinc, wherein it becomes coated with layer of zinc, being what is known as galvanize. The surface of the molten zinc must be kept clean by sprinkling with powdered sal
mmoniac and skimming off the dross from time
(10479) G. G. G. asks: How can I gild or mottle edges of books, to resemble as . To gild the edges of books, they are first rimmed smooth, then sized with egg albumen (white of egg) and gold leaf then applied.
When dry it is burnished with agate burnisher. or motting, a very thin solution of gum rabic is prepared in a tray, and the different cozen or so of the books are held securely and evenly together, and the top, bettom and front dges are successively dipped in lightly, and the excess of color is each time blown off. (10480) W. J. D. asks: 1. Is there any methed by which soft coal can be made
nto brick or lump form by mixing with other substances or by itself? A. The powdered or crushed suft ceal hen be partially coked to give strength. If the coal alone will not adhere sufficiently well on pressure, it can be mixed with pitch, and
then partially coked. 2. Can the ordinary 150
the strong smell while burning in a lamp or
wick oil stove? A. A good quality of kero-
sene will not give much odor in burning in a sene will not give much odor in burning in a
lamp or wick oil stove, if care be taken to keep the wick well trimmed, and to adjust s way of further purifying kerosene oil, as to way of further purifying
make it burn without odor.
(10481) B. E. Co. asks: What kind of solder can be used to solder iron to iron that
will in no way be affected by will in no way be affected by contact with quicksilver? Are there any other cheap metals
besides iron that quicksilver will not affect? A. We know of no kind of solder which would and lead, which are the only other cheap metals, are both affected by mercury. Copper
(10482) J. E. R. inquires whether or not a current water-wheel under a 3 -foot hydraulic pressure, with paddles 10,12 , or 16 feet
long by 3 or 4 feet wide, will run a 12 -inch centrifugal pump, elevating water all told feet (total lift 12 feet). The average fall of the stream is 10 feet per mile and it has velocity of 6 feet per second. The diamete of waterwheel any size you may suggest. What would be the horse-pewer of a current water wheel, length of paddle 14 feet long by 4 feet wide, and 16 feet in diameter? A. The 14 .
foot wide current wheel as describe should centrifugal pump should raise 6,000 gallon of water 12 feet high per minute
(10483) S. R. D. writes: Some time ago you published a formula for softening steel for a few minutes, let it gradually cool unti it turns black, then quench in warm water.
(10484) W. L. L. writes: In connec tion with my planing and lumber mill I have hundreds of tons of sawaust and shavings but lack the necessary knowledge as to how to do it. I have been informed that you can give me the desired information as to what kinds or forms of petroleum or other
material, and what kinds of machines, and where obtained, that it would be necessary to use in working this refuse up into marketable
fuel. A. Mill shavings and sawdust have been compressed with coal tar, resin, or anything that will make the material stick together, bu have been found too expensive unless ether fue wasies in the Fastern and Middle States, the whole product of the mill is burned under the boilers by enlarging the fire chamber by by a fan blower, and wet by a water spray just enough to fix the dust, is shoveled directly
ind nuch utilized by baling and selling to stable or horse bedding.
(10485) N. L. writes: In the ScienTIFIC AMERICAN of March 2, page 199, ques tion 1 , No. 10409, your author has made so
many glaring mistakes in his reply as to merit a severe calling down. An occasiona error is always pardonable, but a series of
misstatements, given out as authority, likely to mislead the uneducated, surely needs a cor ection. You say: "If a vessel begins to the bottom. Water is not compressed to any stent at greater depths than it is near the it will go to the bottom before it stops." All three of these statements are at variance with all known authorities in hydraulics. A hunchoolboy to the contrary. Is it not an es tablished fact that any body sinking in any liquid will sink until it reaches a point where
the weight of the liguid above it will just the weight of the liquid above it will just it will rest? Your statements are all at ariance with the long and well known law of upward pressure or buoyancy or liquids. of any great notice were it not for the fact hat it may mislead a great number who may be reading your replies for knowledge they expect to be absolutely correct. The question is an old one, and, as you say of question 2,
it "has traveled for a century," but you must emember that every year brings forth a new set of uneducated readers. A new generation
comes up seeking knowledge, and it is hardly fair to ridicule even the most common of questions, as you frequently do. A. We do for his very positive statement contradicting our answer to query 10409 . The compressi-
bility of all materials is given in the reference tables. The latest and, we think, the best at our disposal is the Smithsonian
Physical Tables, published under the authority Physical Tables, published under the authority D. C., the last edition of which was issued in 190.3. On pages 82 and 83 will be found the
compressibility of liquids and solids, for one atmosphere. The compressibility of sea water is given at $\mathbf{0} 0044$. The compressibility of
several metals is given: Copper, $\bullet, \bullet \bullet 0086$;
ead, $\bullet .0 \bullet 0276$; steel, $\bullet .0 \bullet 0068$. All these are for one atmosphere or 15 pounds per squar inch. It is seen that steel is $11 / 2$ times as
compressible as sea water. By compression it ncreases more rapidly in density than dees sea water, as it sinks in the ocean. Steel
is about 7.8 times as heavy as water at the s about 7.8 times as heavy as water at the
surface of the ocean, and will grow heavier
by compression as it sinks in the ocean faster than the water in which it is sinking. It will Now, how much heavier is water at the bot The of the ocean than it is at the surface the Pacific is off the Fiii Islands as given by Prof. Davis, of Harvard University, in by Physical Geography, and is $3 \mathbf{0}, 930$ feet. The ame most reliable authority gives the deepest ounding in the Atlantic as 27,366 feet. Allowing 34 feet of water as equal to an atmos phere, this depth will produce 910 atmos pheres, and will compress sea water 910 x . 000044 of its volume. This is $1 / 25$ part, and a cubic foot of sea water, which weighs 64 pounds at the surface of the ocean, will
at the bottom of the deepest place yet found weigh 66.56 pounds. Under the same pressure
whe cubic foot of steel, which weighs about 487 pounds at the surface of the ocean, will at the bottom of the deepest place yet found have its weight increased 0.062 part, and it will here weigh 517.29 pounds. At the deepest steel will weigh 450.73 pounds more than cubic foot of water at the same place. Will teel sink in water at the bottom of the pressed less by pressure Now sfeel is comnd materials, and hence other materials will be less likely to float somewhere between the surface and the bottom of the ocean than steel is. Finally, we may be permitte to quote Prof. Davis's words on this very point "Although water is easily moved, it is very ittle reduced in volume even when compressed yreat force. Hence, in spite of the great pressure of the upper layers of the ocean on those beneath, the ocean is of nearly uniform
density from top to bottom. Anything which all the way to the bottom." We are content be classed with Prof. Davis in making "so calling down" by our esteemed correspondent Now we wait for him to produce his "authoriies in hydraulics." We do not know any demonstration to the contrary, and we have
been teaching hydraulics for forty years. Will . L. tell us some of his hundred? The question which he puts at the close of his letter we answer, No, nothing of the kind. A
floating body sinks till it has displaced its volume for volume, such as a. stone, water displace its weight of water anywhere. displaces its volume of water; and as its vol ume of water weighs less than the stone it-
uelf weighs, the stone sinks, and will continu o sink to the bottom. So will our ship in five miles of water, since every ballasted ves sel even of wood will be heavier than its volume of water if water gets into the interior and dives out the air from the ship.
Now as to ridicule; we would ask our readers to refer to the answer and see if they can discern any attempt to hold the inquirer up for a laugh at his expense. We cannot see er. Certainly make any sport upo to raise laugh on the questioner. As to the frequent
requests to answer questions whose answers have been in our columns within a
o, we mus't say that our readers ought to in a guestion go through the before sending, if a question go through the papers and see quiring a separate letter written to them
(10480) I. J. P. writes: I send herewith solution to the problem asked for in Notes and Queries No. 10198, and would like the asker's ad do not see how he could think to use calculus since the required number is a constant, although more than one value, as may be noted by revolving the inner rectangle on its center or by the equation of the fourth degree.

Problem: In a given rectangle 10×20 feet in-
cribe diagonally a rectangle 2 feet wide, to find its length.
In given rectangle, A B C D, to inscribe E FHK, Ven the length of $E F(=H K)$, required length K ($=\mathrm{FH}$).
Triangles EB F and FCH are similar and right
\qquad $\mathrm{BF}:: \mathrm{FC}: \mathrm{CH}$ or $\overline{\mathrm{E}} \overline{\mathrm{B}} \times \overline{\mathrm{CH}}=\overline{\mathrm{BF}} \times \mathrm{FC}$
$\mathrm{CH}=\mathrm{CD}-\mathrm{DH}=\mathrm{CD}-\mathrm{EB}, \mathrm{FC}=\mathrm{BC}-\mathrm{BF}$ FAS(: 1$)-\mathrm{EB})=\mathrm{BF}(\mathrm{BC}-\mathrm{BF})$ $\overline{\mathrm{EB}}^{2}+\overline{\mathrm{BF}}^{2}=\overline{\mathrm{EF}}^{2}$
From (1) and (2) eliminate B F and arrange for \therefore B. $\overline{E \bar{B}}^{4}-4 \overline{\mathrm{DC}} \times \overline{\mathrm{EB}}^{3}+\left(\overline{\mathrm{BC}}^{2}+\overline{\mathrm{DC}}^{2}-4 \overline{\mathrm{EF}}^{2}\right) \overline{\mathrm{EB}}^{2}$ $2 \mathrm{DC} \times \mathrm{EF}^{2} \times \mathrm{EB}-\mathrm{BC}^{2} \times \mathrm{EF}^{2}+\overline{\mathrm{EF}}^{4}=0$. Given $\mathrm{DC}=20, \mathrm{BC}=10, \mathrm{EF}=2$, which substi-$\overline{\mathrm{EB}^{4}}-20 \mathrm{~EB}^{3}+121 \overline{\overline{\mathrm{~EB}}^{2}}+40 \overline{\mathrm{~EB}}-96=0$. $\mathrm{E}_{\mathrm{B}}=0.7816258$
Draw EL parallel to BC. Draw E H and in right riangles EFH andEL H, $\mathrm{HF}^{2}+\overline{\mathbf{E F}}^{2}=\overline{\mathbf{E L}}^{2}+\mathbf{L H}^{2}$, in which $\mathrm{EF}=2, \mathrm{EL}=10, \mathrm{LH}=\mathrm{DH}-(\mathrm{DH}+\mathrm{LC})$ $\mathrm{DH}-2 \mathrm{~EB}=20-1.5632516$.

Giving the required length as 20 feet 10.57 inches. A. We give a correct solution to the problem of rectangle rectangle of a given width in anothe to the solution not our policy togive much space There are rood of mere maticalital peroled to that work. Some physical or mechanical problem are legitimate to our purposes, and to these we usually give attention, although we cannot spen remarks upon the solution of the problem abov by Mr. L. Leland Locke, Adelphi College, Brooklyn N. Y. He shows the impossibility of having more than one rectangle of the gre atest length inscribe in another rectangle. The matter was referred t may be I. J. F. states in his leter that there mase. The solution one longest rectangle in thi correct in princmple. We have not verified the numerical work. This is not a problem of maxima as stated by the proposer of the problem in the original note, for the reason that there is but one ectangle which meets the conditions of theproblem. If a rectangle of a given width be turned so
that E and F, vertices of one end, remain respectvely in sides A B and B C of larger rectangle, and is but one position in which H will be on $C D$, in is but one position in which H will be on $C D$; in
other words, the path of H is a curve which cuts C D but once, and hence only one rectangle with a width of 2 feet can be inscribed in a givenrect angle all of whose vertices are upon the sides of the given rectangle. This is also shown by the fact that the biquadric equation yields but one positive and real root. Its other real root is nega five. If it were possible to revolve a reciangle of given width and variable length, keeping its be impossible to secure a determinate equation in volving its length.

INDEX OF INVENTIONS
For which Letters Patent of the
United States were Issued
for the Week Ending March 19, 1907.

AD BACHBRARINGTHAT DATB

HF $=20.8809456$

- 847,500847,502
847,950
847,559

sint.50 ยifig ${ }_{877, \text { s14 }}$

 : 877,34
繷 : $=$

=

