other object onto a table from a point remot therefrom, the object thrown having a contact
portion to complete the electric circuits em ployed.

Pertaining to Vehicles.

horse-detacher.-H. G. Simpson, Elkhorn, W. Va. This is an attachment for the
front axtes of carriages and wagons for releasing poles and shafts in case of danger from a horse or team running away. More particu-
larly it is an improvement in detachers which include sliding bolts adapted to secure pol or shaft irons, and a vertical oscillating leve with which s
links or rods.
Carriage-top attachment. - W. C Willitis, Eckford, Mich. This inventor's im-
provement is in that class of buggy or carriage carriage or buggy seat carriage or buggy seat. The object is to pro
vide an attachment which may be more easily and quickly applied and detached than hereto fore and which will be held securely when so
applied. It is applicable for many forms of vehicles.
CHECK ATTACHMENT TO VEHICLESS. L. Duckett, Goldfleld, Colorado. Of the purposes in this instance one is to provide an should they attempt to run away while being driven or when left standing and to provide a and which can be brought into action while th driver still holds the reins.
CRANK-HANGER.-F. M. OSborne, Ana conda, Mont. This invention is an improve ing out the invention the sprocket wheel pulls netween the bearings, and the cranks can be conveniently removed when desired without disturbing all of the parts of the hanger. The con struction forms a very simple crank-hanger from which dust will be excluded and in which
the cranks can be readily removed by simply the cranks can be readily removed by simply
turning off a nut and pulling the shaft-sections of the cranks apart.

Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each please state the name of the patentee,
the invention. aud date of this paper.
 Names and Address must accompany all letters or
no attention will hee paid thereto. This is for
our information and not
 his turn
Buyers wishing to purchase any article not adver
tised our columns will be furnished with
addresses of houses manufacturing or carrving addresses of houses manufacturing or carrying
the same.
Special Written Information on matters of personal
rather than general interest cannot be expected
vithout ret Without remuneration.
Scientific American Supplements referred to may b
had at the office. Price 10 cents each.
Books referred to promptly supplied on receipt of Minerals sent for examination should be distinctly
marked or labeled.
(10440) Mr. C. D. W. asks: Is John Tyndall dead? If so, when did he
John Tyndall died December 4, 1893 .
(10441) S. K. S. says: Is the nebular cientific theory of the cosmeogury of our cas tle? If not, what theory, if any, has supple-
mented it? A. It cannot be said that the nebular mented it? A. It cannot be said that the nebular
hymothesis of Laplace is held in its entirety hypothesis of Laplace is held in its entirety
by astronomers at the present time. The phenomena which cannot be accounted for by their
conditions are too numerous. Darwin's tidal evolution hypothesis has by many been adopted as an addition or supplement to the nebular
hypothesis. The large number of spiral nebulæ seem to demand a modification of the hy pothesis. You will find a very recent ex-
position of the whote auestion in Moulton's position of the whole question in Moutton's
'Astronomy," pp. 440-448. We can send the book for $\$ 1.25$. It is the latest text book of astronomy.
(10442) W. B. K. asks for the government formula for whitewash. The following coating for rough brick walls is used by the
United States government for painting lighthouses, and it effectually prevents moisture from striking through: Take of fresh Rosen-
dale cement, 3 parts, and of clean, fine sand, dale cement, 3 parts, and of clean, fine sand,
1 part; mix with fresh water thoroughly. This gives a gray or granite color, dark or light,
according to the color of the cement. If brick according to the color of is desired, add enough Venetian red to the misture to produce the color. If a very light color is desired. lime may be used with have all the ingredients well mixed together In applying the wash, the wall must be wet
with clean fresh water; then follow immediatewith clean fresh water; then follow immediate-
ly with the cement wash. This prevents the ly with the cement wash. This prevents the
bricks from absorbing the water from the wash too rapidly, and gives time for the cement to
set. The wash must be well stirred during the set. The wash must be well stirred during the
application. The mixture is to be made as
whitewash brush. It is admirably suited for
brickwork, fences, etc, but it brickwork, fences, etc., but it cannot be
o advantage over paint or whitewash.
(10443) A. A. H. asks how to make javelle water. A. Javelle water proper is pre
pared by passing gaseous chlorine-derived ared by passing gaseous chlorine-derived
from the action of hot sulphuric acid on a mIxture of common salt and oxide of manganeseinto a 10 per cent aqueous solution of carbonate It may also be made by adding a solution of carbonate of potash to a solution of chlorinated lime (bleaching powder) as long as a precipitate continues to form, the liquid being afterward decanted or filtered. Ordinarily, however, the liquid called javelle water is chlorinated
(10444) J. K. B. asks how to make ravel and tar walks. A. Take 2 parts very dry lime rubbish and 1 part coal ashes, also very dry, and both sifted fine. In a dry place, the middle of the heap as bricklayers do when making mortar. Into this pour boiling hot coal
tar, mix, and when as stiff as mortar put in 3 inches thick where the walk is to be; the ground should be dry and beaten smooth; sprinkle over it coarse sand. When cold, pass
a light roller over it; in a few days the walk ill be solid and waterproof
(10445) B. L. W. asks how to make Pharaoh's serpents. A. These are little cones of sulphocyanide of mercury which, when ish brown body. Prepare nitrate of mercury by dissolving mercury dioxide in strong nitric acid as long as it is taken up. Prepare also sulphocyanide of ammonium by mixing 1 volume sulphide of carbon, 4 strong solution of ammonia, and 4 atcohol. This mixture is to be requently shaken. In the course of about two hours, the bisulphide will have been dissolved,
forming a deep red solution. Boil this until he red color disappears and the solution becomes of a light yellow color. This is to be
evaporated at about- 80 deg. F., until it crysevaporated at about. 80 deg. F., until it crys-
tallizes. Add little by little the sulphocyanide tallizes. Add little by little the sulphocyanide
to the mercury solution. The sulphocyanide of mercury will precipitate. the supernocyanide o may be poured off, and the mass made into cones of about $1 / 2$ inch in height. The powder of the sulphocyanide is very irritating to the air passages, and the vapor from the burning cones should be avoided as much as possible.
To ignite them set them on a plate or the like, and light them at the apex of the cone.
(10446) H. N. M. asks how to prepare skins for fur. A. Mix bran and soft water
sufficient to cover the skins. Immerse the sufficient to cever the skins. Immerse the
latter and keep them covered for twenty-four hours ; then remove, wash clean, and carefully add 1 pound of alum and $1 / 4$ pound of salt. When dissolved and cool enough to admit en trance of the hand, immerse the skins for
twenty-four hours, dry in the shade, and rub. Stir the liquor again, immerse the skins for
twenty-four hours, dry, and rub as before; twenty-four hours, dry, and rub as before;
immerse for twenty-four hours in oatmeal and warm water, partially dry in the shade, and
watw finally rub until entirely dry. This leaves the
skin like white leather, and fit` for immediate (10447) A. C. N. asks how to lay sheet lead. A. In laying sheet lead for a flat roof, the joints between the sheets are made
either by rolls, overlaps or soldering. In joining by rolls, a long strip of wood two inches square, flat at the base and rounding above,
is placed at each seam; the edge of one sheet is placed at each seam; the edge of one sheet
is folded round the rod and beaten down close, and then the corresponding edge of the next sheet is folded over the other. In over-lapping, the adjacent edges of the two sheets are
turned up side by side, folded over each other and closely beaten down. Soldering is not and c
adopte
out.
(10448) H. J. N. asks how putz pomade is made. A. 1. In 100 pounds common yel low vaseline, melted, stir 20 pounds of fine colcothar. 2 . Same as above, only using lard in-
stead of vaseline. 3. Twenty pounds of $A \mathrm{~m}$. mineral oil and 5 pounds of lard are melted and 25 pounds of fine colcothar are stirred in.
4. The following is given as the formula for genuine putz pomade: Oxalic acid, 1 part. oxide of putz pomade: Oxalic acid, 1 part; palm oil, 60 parts ; vaseline, 4 parts. The oxide of iron may be Venetian red. Both it and the rottenstone must be absolutely free from grit. oxatic acid is poisonous.
(10449) M. B. W. asks how to make dextrine paste. A. In hot water dissolve a suf consistency of honey. This forms a strong adhesive paste that will keep a long time unate. Sheets of paper may be prepared for extempore labels coating one side with the paste and allowing it to dry; when to be used, by
slightly wetting the gummed side, it will adhere to glass. This paste is very useful in the office
(10450) H. P. W. asks how to join rubber. A. Rubber is easily joined and made as strong as an original fabric, by softening before a fire, laying the edges carefully to-
gether, without dust, dirt, or moisture between The edges so joine must be freshly cut in the beginning. Tubing can be united by joining the
iously been rolled with paper. After the glass is withdrawn the paper is easily removed. Sift
flour or powdered soapstone through the tube to prevent the sides from adhering from accidental contact.
(10451) C. N. asks for a formula for grains ; ether, Sandarac, 90 grains; mastic 20 grains; ether, 2 ounces; benzole, $1 / 2$ to
$11 / 2$ ounce. The proportion of the benzole added determines the nature of the matt ob ned.
(10452) A. M. C. asks: I have system of wires which I use for receiving wire
less messages. They are horizontal, and run nearly parallel to the elevated structure of the Long Istand Railroad, which is equipped with the third-rail system. I have noticed that un
less the weather is damp, whenever a steam engine passes on the structure, I get sparks about $1 / 8$ inch long from the wires. There ar
four wires, each 180 feet long. They run at an angle of about 15 deg. to the tracks, and are
about 40 feet off ground. Between the wires and parallel to the tracks is a two-phase 2200 volt alternating line, about the same height as the wires. The least distance from the wires to tracks is about 125 feet. No smoke
or steam from engine reaches the wires. The or steam from engine reaches the wires. The
sparks are very heavy, and apparently of an scillatory nature, not the ordinary static times except during thunderstorms can I get sarks from the wires which amount to any thing. A. There would seem to be no doubt that the sparks from the receiving wires of of the great mass are due to the induction gine, passing through a field in which heavy currents are already flowing, that of th just this current. We have not met with just this case before, but it would seem that
this cause would be sufficient to account for the effect produced.
(10453) K. S. B. writes: In regar the recent wreck of the electric train on
ne New York Central, I see by your paper New York Central, I see by your paper
that the spikes holding the outer rail were heared, showing a much greater stress on the outer rail at a given speed than for a steam leasons for this: Besides the concentration and the low height of the load, would not the gyroscopic effect of the rotating parts of the whers play an important part? As the
(drivers) are comparatively small, the peed of rotation is large. Then to change the direction of the axis of revolution of these heavy, rapidly-revolving parts would take
considerable force, which was probably no ansiderable force, which was probably not
anto account by the engineers, who levated the outer rail to counteract the in copic action" enters as a large factor in ther problems of a similar nature, and it seems to me that it would in this particular ase atso. It also seems to me that this ac
tion of the motors would have to be taken into account on heavy motors at high speeds. I resume that lighter parts, also lower speeds general, is what has kept electric trains
rom experiencing this difficulty heretofore A. Your suggestion of a gyroscopic action in he rapidly rotating wheels of an electric train produced we have not calculated. It would variable, and would increase very rapidly th the increase of speed.
(10454) E. S. D. writes: Will you indly answer me through your Notes and Queries what would be the normal height of abo barometer at an elevation of 5548 feet
ane level of the sea? A. Normal barometer at an altitude of 5,548 feet will be

$$
x_{0}=4-\infty
$$

(1045) J. B.
(10455) J. B. W. asks how to color brass deep blue. A. A cold method of coloring of carbonate of copper and 750 grammes of mmonia are fected. There are then added 150 cubic centimeters of distilled water. The mixture is
haken once more, shortly after which it ready for use. The liquid should be kept cool place, in firmly closed bottles or in lass vessels, with a large opening, the edges
f which have been subjected to emery friction nd covered by plates of greased glass. When the liquid has lost its strength it can be monia. The articles to be colored should be perfectly clean; especial care should be taken o clear them of all trace of grease. They are hen suspended by a brass wire in the liquid, 0 -and-fro movement is communicated to them. After the expiration of two or three minutes,
they are taken from the bath, washed in clean they are taken from the bath, washed in clean
water, and dried in sawdust. It is necessary hat the operation be conducted with as little xposure to the air as possible. Handsome ades are onty obtained in the case of brass nd tombac--that is to say, copper and zinc ing bronze (copper-tin), argentine, and other metallic alloys.
(10456) A. D. M. asks for a dressing linoleum. A: A weak solution of beeswax spirits of turpentine has been recommended or brightening the appearance of linoleum. ounce; paraffine, 18 ounces; kerosene, 4
ounces. Melt the parafine and oil, remove from the fire and incorporate the kerosene.
Polish.-2. Yellow wax, 1 ounce; carnauba 2 ounces; oil turpentine, 10 ounces
benzine, 10 ounces. Melt the waxes add the oil and benzine, and stir until cold 3. Yellow wax, 5 ounces; oil turpentine, 11 ounces; amber varnish, 5 ounces. Melt the
wax, add the oil, and then the varnish. Apply with a rag.
(10457) J. W. H. asks for a tool or straightening wire. A. Such a tool is
hown in the accompanying cut. It consists of a casting about 10 inches in length, having

-

n each end a bearing which may be supported suitable boxes. The pulley is a part of the asting, and is 3 inches in diameter and 2 inch apart and a little to one side of a central longitudinal line. A hole a little larger than e wire to be straightened is drilled axially
 well lubricated and is pulted through as the revolves rapidt
(10458) C. N. asks how to do annealing. A. For a small quantity, heat the teel a cherry red in a charcoal fire, then bury it in sawdust, in an iron box, covering the or a larger auantity, Let it stay until cold. or a larger quantity, and when it is required tathe or planer) chips in an iron box as follathe or planer) chips in an iron box as folan inch in depth of chips in the bottom of the ox put in a layer of steel, then more chips to fill spaces between the steel and also the half or three-quarters of an inch space between the sides of the box and steel, then more steel; and lastly, at least one inch in depth of chips, well rammed down on top of the steel. Heat the whole to and keep at a red hear for from
two to four hours. Do not disturb the box ntil cold.
(10459) B. W. F. asks how to clean aint. A. To clean paint, provide a plate with ome of the best whiting to be had; have
soady some clean warm water and a piece of flannel, which dip into the water and squeeze early dry; then take as much whiting as will ace, when a little rubbing will instantly ove any dirt or grease. After which wash the part well with clean water, rubbing it dry with a soft chamois. Paint thus cleaned looks sell as when first laid on, without any inury to the most delicate colors. It is far ore than half the time and labor.
(10460) C. D. asks how to make grape yrup. A. 1. Half pint brandy, 1 ounce tinc-
ure of temon, 1 gallon simple syrup, tincture d sanders, 1 gart simple syrup, $1 / 2$ pint. spirits of lemon, $1 / 4$ ounce; tincture of red nders, 2 ounces; simple syrup, 1 gallon. 3. one for fountain use, but a syrup from the pounds ripe freshly picked and selected tame grapes, put them into a stone jar, and pour. over them 6 quarts of boiling soft water; when sufficiently cool to allow it, well squeeze them horoughly with the hand, after which allow them to stand 3 days on the furnace with a the juice and add 10 pounds of crushed sugar; let it remain a week longer in the jar; then take off the scum, strain and bottle, Yeaving again and bottle tight, and lay the bottles on the side in a cool place.
10461) B. J. asks how to waterproof anvas. A. A solution containing equal parts by weight of gelatine and chrome alum. It
is not advisable to mix more of the solution at once than is sufficient to give the canvas one coat, as, if the mixture once sets, it cannot be reliquefied like a plain solution of gelatine, and hence, if the quantity of canvas to be waterproofed is but small, it would, perhaps, be preferable to coat with plain gelatine solution until quite impervious to cold water, and then to thoroughly soak for, say, twenty-fou
hours in a strong solution of chrome alum.

NEW BOOKS, ETC.

The Naval Pocket-Book. Founded by Sir W. Laird Clowes. Edited by W. Thacker \& Co., 1906. Pocket size; pp. 965 . Price, $\$ 3$.
The present edition of this well-known, com act, and very convenient little work is fully ap to the high quality of its predecessors. It vents of a calendar in which the leada are recorded; and this is followed by a com parative summary of the fighting fleets of the world arranged under a new system of notament Then trious whe mescriptions of the naval guns and small arms, list of drydocks, giving dimensions and capa cities, and at the close of the book are dia cities, of the leading types of ship of each
grams of
navy, showing the disposition of guns and navy, showing the and thicknesses of each.

 every case it is necessary to give the
uumber of the inquiry munn d co.

No. 5875
Inairy No. sis sf7.- Wanted, manufacturers
uiry No.
larre deal
Hantioury No. s581-Wanted,
Inauiry No
and
Inguiry No. 8 S87\%-Wanter
,
Induriry
Inga
NDEX OF INVENTIO

For which Letters Patent of the United States were Issue March 12, 1907. AND EACHBEARINGTHATDATE

$\begin{aligned} & 9 . \mathrm{Cl} \\ & 41 \\ & \mathrm{Cl}_{1} \end{aligned}$		
E. Hobson.......je. ${ }^{846,881}$		
${ }_{\text {Anparel }}$ hanger and support, w. H. . Staw.. 8		
Aiv		
ling press H. W. D. lvy...........: 874,181 Coink coile ector, McBerty \&		
		${ }_{\text {Cookin }}^{\text {Cookn }}$
b		
wer, W.W. Green. $\cdots \cdots \ldots \ldots$.		
		Current motor, alternating, E. J. ${ }^{\text {a }}$
iler furn	8468	兂
noa-refillable, device for rendering,clark		
${ }_{8}^{846,481}$ Drum, heating, F. N. Kiku		
aache		

Engine and Foot Lathes

 \qquadMis

 | $\substack{847,286 \\ 886,811}$ |
| :---: |

"WAUESCO PHOTO"
Nonompor
 ${ }_{\substack{846,988 \\ 86 ; 93 \\ \hline 18}}$
Instuctive Scientific Papers on timely topics
Price 10 Gents each by mail
ARTIFICIAL STONE. Ry LI. P. Pi. Ford. ${ }^{\text {A }}$

