tact with water, for reasons which are not
known. Such substances are known as cements. known. Such substances are known as cements.
Plaster of Paris is found in nature in the form of gypsum or anhydrite, and consists of calcium sulphate and water. A granular form of gypsum is called alabaster. Calcium sul-
phate is difficulty soluble in hot and cold phate is difticultly soluble in hot and cold
water. When heated to 100 deg. Cent. or a hittle above, it loses all of its water and forms has the power of taking up water and forming a solid substance. The hardening is a chemof the water with the salt to form a crystal lized variety of calcium sulphate
(10105) H. H. M. says: Would you kindly inform me if I could get an object float that is heavier than the water it dis-
places? For instance, are these large ocean places? For instance, are these large ocean
steamers heavier than the water they displace? A. If a rigid body or solid be immersed in a liquid, both bewg at rest, the resultant action
upon it of the urrounding upward force called the "buoyant effort", equal in amount to the weight of the liquid displaced, and acting through the center of grav
ity of the volume of displacement. From this it will be readily seen that you cannot secure an object to float which is heavier than the
water it displaces. In the case of the vessel, becanse of the particular form of the hull, the law of displacement remains the same. The
weight of the water displaced by the hull equals the entire weight of the ship and its
(10106) J. D. W. asks: Can it b proved that a right angle can be trisected?
A. The trisection of a right angle is a very simple proposition. The radius of a circle is be laid off as a chor from one extremity in the arc of a quadrant, or the arc subtending a right angle, and a radius be drawn to the on one side will be 60 deg . and on the other side the angle will be 30 deg . or one-third of right angle
(10107) A. E. N. asks: Why do steam boilers explode when, through misforboilers in steamers that are wrecked is probably due to the sudden stopping of the engines
and the abandonment of the fireroom by the firemen without the proper precaution to check the fires. It takes but a few minutes in such cases for the steamer to overbalance the outlet
of steam from the safety valves, when the rise in pressure ruptures the boilers. When one exploded boiler.
(10108) G. J. R. asks: Can you give me the reason for the vibration in a motor or generator when the armature and shaft are
balanced as nearly as possible? I would like to see what your opinion is in regard to it. will cause a perceptible vibration of an armature. As little as one-thousandth of the total
weight will cause a very considerable vibration. If an armature is perfectly balanced, it will run so quietly that it is difficult to tell of balancing an armature is described in by mail. (10109) C. H. W asks in reference to the answer to query regarding the attraction
of a 5 -pound and 15 -pound mass upon each of a 5 -pound and 15 -pound mass upon each
other. The mutual attraction between the masses is given by the formula $\mathrm{F} .=\mathrm{K}$
and to this quantity the larger mass con
tributes three times as much as the smalle It is true that this attraction acts upon both masses equally, and will give to each the same
quantity of motion. In the case of the earth, when a body falls toward it, the earth also that body. But the greater portion of the motion comes from the mass of the earth, since that is enormously greater than the mass of any body falling toward it, and therefore the traction than the larger one does.
(10110) H. L. B. asks: 1. Would you in bird's eye maple? A. We do not know how wood to produce the burls in the bird's eye. A while ago the question would have been an-
swered, "It is the nature of the tree to grow swered, "It is the nature of the tree to grow
that way." 2. Why is it necessary to only put ten 16 -candle-power 104 -volt lamps on a cir-
cuit? A. The amount of current which is allowed to flow through one cutout in a building Underwrit ers and is determined by the risk of
(10111) G. H. E. writes: In an informal conversation the statement was mad of coal an extremely large proportion is lost in the attempt to employ it productively, as in the steam engine, and that the utilization of the energy wasted by the present methods
is an important scientific and economic problem. This statement was challenged, and in
the resulting discussion the following questhe resulting discussion the following ques-
tions arose. 1. How large a proportion of energy stored in a given amount of coal is lost
by methods commonly in use? A. From 20 to by methods commonly in use? A. From 20 to
25 per cent, and sometimes more, of the heat
value of the coal is now lost. 2. At what
stages in the process of stages in the process of transformation, and
how, to the chief losses occur? A. Mostly small heat going up the chimney, and to small degree by bad stoking and radiation of
heat from defective insulation of boiler setting nd pipes. 3. What percentage of the energ. sed in producing steam? A. The possibilities for utilizing the full energy of coal are very small. Little may be. expected over the best
practice of to-day. It is the converting of the sractice of to-day. It is the converting of the
team into active power wherein the trouble lies. 4. How is the amount of energy in given amount of coal ascertained? A. The
absolute amount of energy in coal is found absolute amount of energy in coal is found
first by an analysis of its combustible con irst by an analysis of its combustible con
tituents, from which the heat units are computed ; second, by actual combustion of
iven weight and measuring its heat prod ing property by absorption of the heat (10112) J Will you (1012) J. A. W. Writes. Will you kindly inform me whether the following facts
are new, or only so to the writer? The mechanical equivalent of heat as given by Dr Joule's experiment of a weight falling through air, actuating thereby wings in water, is 778
foot-pounds according to William Kent. Now ou will note thät the relative weights of water and air are as 1 to 774 . Is there not an equation here between work, water, heat and
iir? Might yot the slight variation of 774 and 778 pounds be due to the slip of the water? William Ripper gives the equivalent
as 772 pounds. A. The mechanical equivalent heat, which is called Joule's equivalent, a
determined by Dr. Joule, was 772 foot-pounds That is, to lift 772 pounds to a height of 1 foot requires the same amount of work as to heat 1 pound of water 1 deg. Fahr. This work
was done between 1840 and 1843 . 'onsidering the advancement of mechanical science at that
time it was a marvelous piece of work. He ime it was a marvelous piece of work. He
employed the friction of water and measured the heat produced. Joule also determined the equivalent by means of the electric current.
Others investigated the same constant by other methods, the compression of metals the specific heat of air, the induced electric current in metals, and the velocity of sound, Joule. Joule's metho was that of direct
determination of the number of foot-pounds of work used in actually heating one pound of water one degree. Other methods were in direct. That these coincided fairly well with
the direct method was all that could be ex pected. All methods are open to errors, and
more or less close approximations are all that could be attained. In 1879 Prof. Rowland ork up the problem with the finest appliances
of modern science. He employed water fricof modern science. He employed water fric-
tion, as did Dr. Joule. His results were im-
mediately accepted. Probably the work will not be done over accept. Probably the work will of his results involved as many as 12,000 distinct observations. He proved that the me-
chanical equivalent varies with the temperachanical equivalent varies with the tempera-
ture. Between 41 deg. and 68 deg. there is change of nearly eight-tenths of one per f Prof. Rowland's results is 778 foot-pounds, which for all ordinary purposes is at present onsidered the true equivalent. Prof. Row heat of water diminishes from 32 deg. to
84 deg., and then increases till the beling point is reached. Rowland was able to pro duce a change of 63 deg. in the water where
Joule could produce a change of only 1 deg Joule could produce a change of only 1 deg,
He also used the sensitive air thermometer (10113) An old subscriber says: have several old daguerreotypes which until ecently were in a good state of preservation Now I find that the surface of the plate ha pparently oxidized and the portrait has dis ppeared from view. Can you give me instruc hem? A. The removal of the deposit from the surface of the daguerreotypes is such a delicate operation that, if possible, it should
be intruste to one who has had experience in that process. If, however, you wish to try it yourself, you may proceed as follows: Care-
fully separate the cover glass from the silvercoated plate, being especially careful that the
surface of the latter is not touched even anything so light as a feather. Soak the solution of potassium cyanide, from five to ten grains to the ounce; rocking the dish till he deposit is removed. A 20 -grain solution
f sodium hyposulphite may be used instead of the cyanide, although it is not always so moccessful. When the deposit has been re-
moved, the plate should be well washed under gentle stream from the tap, or in several
changes of water, finishing changes of water, finishing with distilled water. The method of drying is important The plate, after slight draining, should be
taken by a corner by a pair of pliers and held over the fiame of a spirit lamp or gas jet, remaining film of water, the evaporating of which may be assisted by gently blowing across the surface. The restored daguerreotype and cover glass, the latter after thorough
cleaning, should then be bound together as be fore, and the more compretely this is done so as to exclude the atmosphere, the longer will the image retain its pristine beauty. Potassium
cyanide is a deadly poison. It should be cyanide is a deadly poison. It should be used
with care.
(10114) C. S. asks: About how much amperes 目ow through the entire circuit and current does a $1 / 4$-inch spark coil take to give
ull length of spark? A. A good authority ives about 10,000 volts as the pressure re-
uired for a spark of $1 / 4$ inch. The current quired for a spark of $1 / 4$ inch. The current,
or amperes, is insignificant.
2. Is a relay amperes, is insignificant. 2. is a rela,
a. Is it necessary to have oscillators on tbe coil in wireless telegraphy? A. Yes. 4. With ast? A. Forever. There is no deterioration y use in an induction coil. 5. Can you exconnected with only one wire of the secondary of the coil? A. Because of electrical induction. The waves go through space from one
pole of a coil to the other. The Geissler tube da between the two poles of the secondary will glow when it is connected with neither
wire. The same experiment can be performed with the bulb of an incandescent lamp. Hold it in the hand by the metal base between the erminals of the coil.
(10115) R. W. W. asks: 1. The ob-ject-glass of my telescope consists of two lenses,
one being convex and the other concave-convex. one being convex and the other concave-convex.
When they are together they are the same as n ordinary conves lens. Why is a single one
not used? A. The two glasses are used to not used ? A. The two glasses are used to
prevent the objects seen from being bordered ith a colored fringe. Remove the concav study in some textbook of physics about achro matic lenses. 2. Why is it that copper wire is used for electric lighting and power curphone wires? A. There is a very small flow of current in the telegraph and telephone wires, and a large fiow over the lighting and
power circuits. Copper is a much better conductor than iron, and though it costs con ductor than iron, and though it costs much
more in the first place, it is far cheaper in the end. 3. What is the difference between a A. A continuous current flows like a strea of water steadily in one direction. An alter-
natinr current flows by rising to its full voltage and then falling to its least. There ar alternations of the electromotive f
has all possible values in a series.
(10116) D. P. asks: Does electricity occupy space? A. No. Electricity is not
ordinary matter, as, for example, lead Whatever it may be, it is not a material sub (10117) E. O. M. writes: I have two textbooks on physics which disagree. Mr.
Spottiswoode, of London, had an induction soil made which gave a 42 -inch spark. One
cols 42 Inch spark; the other says 30 Grove cells
were required. Which is right? A. The statement in Gordon's "Electricity" is tha with five Grove cells the coil gave a spark
28 inches long; with 10 cells the spark was 28 inches long; with 10 cells the spark was
35 inches, and with 30 cells it was $421 / 2$ inches long. 2. What difference of potential gap of 42 inches? A. We do not know. Prob gap of 42 inches? A. We do not kuo
ably hundreds of thousands of volts.
(10118) J. C. A. asks: Please inform me how to make a strong magnet of Jessop
steel. I have tried to make some 1.2 inch square by 3 inches long, straight bars, by 300 -volt current, by which they were strongly magnetized, but lost almost all magnetism in about three weeks. How can I make such a long time? will retain their strength etized to a red heat and plunge them int water. They are then to be magnetized.
Straight bars do not retain magnetism well. They should lie in parrs with opposite poles or else in pairs with an iron keeper across the poles. They may be laid four in a square down alone without keepers, the magnetism is rapidly lost.
(10119) W. F. G. asks: Will vulcan fiber answer for the insulation on sta-
c machines, and are vulcanite and vulcanized fibers identical? A. Vulcanized fiber will be this position. Vulcanite is hard rubber and is a different substance from fiber.
(10120) E. L. asks: 1. Can you tell me, without knowing the amperage, the voltof 10 candle power at full capacity? A. Ten candle lamps may be taken to be from 3 watts to 4 watts per candle. One lamp will consume from 30 watts to 40 watts, and 75 watts will
light two such lamps. 2 . What is the resislight two such lamps. 2. What is the resis-
tance of No. 16 iron wire? A. Pure iron has a resistance of 6 times as great as copper. Oras great as that of copper of the same size as great as that of copper of the same size.
No. 16 copper wire has 248.81 feet per ohm. Pure iron wire of the same size would have 41.47 feet per ohm, and No. 16 ordinary iron a current of 10 amperes at 108 volts goes through 540 feet of No. 16 iron wire, what will be the electromotive force and current remalning after it has gone through, and how
to calculate it? A. There will be 10 amperes remaini ng But there will not be any volts remaining, if the wire constitutes the
entire circuit between the mains. The same
amperes few through the entire circuit and
come out at the other end, just as the water lows through the entire length out of a pipe open at both ends and comes out at the other
end. The drop of potential along a wire is proportional to its length, provided it is of niform sectional area, as it may be presume e a drop case. This being so, there will the wire. 4. Can we run a direct-current notor is not loaded. A. Yes; if it be starte and brought up to synchronism with the cur-
rent by hand, or by some other power. It will ent by hand, or by some other power. It will
then keep step, and run by alternating current.

## NEW BOOKS, ETC.

The American Battleship in Commis SIon. By Thomas Beyer, U.S.N. York: Army and Navy Register York: Army
12mo.; pp. 248.
The author of this work, Thomas Beyer, is a first-class ship fitter of the United States of the service. The amount of information contained in this book is certainly remarkable The author begins with a general view of the organization of the navy, and then passes on about He tells, for example, how a bat teship is prepared for a voyage; how it is ture of ea and in port; gives a clear pic and describes the drills of the week and their purpose. This chapter may be considered peras it ife on a man-of-war. The remaining portions of the work are devoted to chapters on the
more material part of the bluejacket's life such as the opportunities which the service offers him, his amusements and pastimes, the manufacture of ordnance and ammunition, the de signing of a battleship. The last pertion of men-of-war yarns. The author is to be conwhich the book the praiseworthy ane illus trations are certainly the most interesting collection of pictures that we have ever seen. The typography is excellent. The book is one that we can heartily recommend for a good,
clear, impartial account of the United States havy.

INDEX OF INVENTIONS
For which Letters Patent of the
United States were Issued
for the Week Ending
August 21, 1906.
AND EACH BEARINGTHATDATE [See note at end of list about copies of these patents.]



 se2,908
 $\underset{\substack{290987 \\ 82 x, 850}}{ }$

