recently patented inventions.

Electrical Devices.

ELECTRIC CLOTH-CUTTER.-J. B. Replogle, Chicago, III. This invention has for its more particular object the production of a power-driven cutter operated, preferably, by
electricity. When the device is used for cut ting comparatively thin layers of cloth only the lower baftle-plate is called into use. When a large number of layers are to be cut simul-
taneously, the machine is fed directly against taneously, the machine is fed directly against
the edge of the "atack," the several bafflethe edge of the "tack," the several baffe due movement of such players ping the un ween.
ELECTRIC TELPHER POSTAL SYSTEM. R. T. Piscicelli, Corso Umberto I. No. 23, Naples, Italy. The inventor's object is to pro-
vide devices, acting for the most part autovide devices, acting for the most part auto-
matically, by means of which correspondence introduced in the posting-boxes in a postal district is rapidly collected and carried to the
central office. This collection is effected by central office. This collection is effected motors running over special aerial lines used exclusively for this purpose and made of in sulated metallic wires or cables, which act as guides to the vehicles and conductors of the
current.
TELEGRAPH - TRANSMITTER. - H. O. Putr, Millbury, Ohio. As its principal object be mounted under the frame of an ordinang type-writing machine and operated thereby without in any way altering the machine, and which will accurately transmit the characters of the Morse or any other alphabet automatic-
ally and rapidly, and do away with many complications in transmitting characters by tele graph by the operation of a keyboard.

Of Interest to Farmers

GATE-FASTENER.-J. Hollopeter, inventor, and P. R. Giles, assignee, Elsmere, Neb. gates such as are formed in wire fences and which are not as frequently opened as ordin-
ary gates. It refers to such gates as are ary gates. It refers to such gates as are
formed without frames and which are maintained in position by a horizontal tension in the longitudinal members of the gate. It pre-
vents the actuation of the fastener by cattle. PLOW ATTACHMENT.-J. Spoden, Clyde, Wash. This attachment is devised for press ing down or flattening wheat-straw stubble or grass on the furrow-slice as turned by the
plow. To this end a ribbed roller is provided plow. To this end a ribbed roller is provided which is held rotatably on a swinging arm
journaled on the plow-beam, the roller being adapted to work at such angle and in such
proximity to the moldboard that it acts on the furrow-slice at its turning-point, so as to break, press down, or flatten the straw, stub-
ble, or grass in such manner that it is buried ble, or grass in such manner that
in the furrow beneath the slice.

Of General Interest.

corner - fastening. - L. 1. Prahar, New York, N. Y. The purpose of the invention is to provide means for connecting the
members at the corners of a frame and in producing such result forming an opening at he junction of the corner members for the passage of a pin, rivet, or other required article.
COLLAPSIBLE KOLD.-C. W. Overturf, he improveme. The broad idea characterizing for use in the construction of plastic passage-
ways, the same being constructed collapsible, ways, the same being constructed collapsible, whereby to facilitate its removal when the
plastic is sufficiently set. It relates to molds plastic is sufficiently set. It relates to molds or forming concrete or
well-Rig.-S. S. Strotman, Haynie, Pa. This rig. comprises means for bracing a struc-
ture in the direction from whence proceeds the driving force for the movable operative parts of the structure, means being also employed for controlling the reel upon and from which is caused to be wound and unwound the line or parts of the structure are easy of access, adjustable, and smooth running in operation.
Charging apparatus.-T. F. Witherbee and J. G. Witherbee, Port Henry, N. Y. The invention refers to a charging device for
blast-furnaces and the like. The requirements of a charging apparatus at present are that it shall be capable of varying the manner of distributing the charge at will and that
it shall be adapted to mechanical filling. The it shall be adapted to mechanical filling. The is an improvement on the forme
to Mr. T. F. Witherbee, in 184
DAM.-G. E. LadShaw, Spartanburg, S. C. comprising piers provided with buttresses and comprising piers provided with buttresses and upon the opposite sides from the buttresses. While the dam may be composed of a plurality of arches supported at their abutting ends by single arch with ends directly supported by abutments.
PAD FOR HORSE-COLLARS.-D. S. BRown, Watertown, N. Y. Pads for use in collars and various similar places have been usually constructed by forming a sort of bag or by securtogether at the edges and forcing curled hair
or other cushion material into the same through an opening in the end or side. This results in making wads at certain places, and these irregularities
METHOD FOR TREATING ASBESTOS.A. H. Hipple, Omaha, Neb. This is a process same. It is an improvement on a former patent granted to Mr. Hipple. In this case he
takes asbestos fiber, powdered sulphur, and water and works the same into a pulp of the consistency used for making asbestos paper or millboard. The pulp being formed, pressure
squeezes out a part of the water, and the mass squeezes out a part of the water, and the mass
is next dried. Oil is added and absorbed readily.

POLISHING-Mitten.-R. E. Hills and V. E. Brevoort, Delaware, Ohio. The invention
is an improvement in mittens intended and is an improvement in mittens intended and
adapted for use in polishing shoes and other articles, the same being provided with tw may be worn on either hand and either palm serve as the polishing surface.
die-Stock.-H. J. Carmody, New York, N This invention relates to die-stocks-such, upon rods, tubes, pipes, etc. Practical an convenient operating means are provided for threading a pipe located in some comparatively
inaccessible position; also for cutting a thread inaccessible position ; also for cutting a thread
upon a cylindrical bar which is more readil accessible; and also means if at any stage of cutting the
backward.

TELEPHONE - DIRECTORY.-D. F. Whitthe mouthpiece the directory in use is ret upon the mouthpiece the directory in use is rotated
thereon until the desired letter is at the right side. By means of an ear the plate may be side. By means of an from the frame, thus
partially withdrawn
bringing the subscribers' names under that in dex letter to view. Since the inner edge o each of the plates conforms to the arc of a
definite circle, an outward pull on the ear be longing to that plate will have but slight ten dency to move adjacent plates, since there will be more or less friction between the inner edg
thereof and the sleeve.

Hardware.

NUT-LOCK.-L. W. Laye, J. H. Phillips, and J. Eevan, Havre De Grace, Md. The
patentees provide for: the locking of the nut by slotting the end of the bolt and also formThey pivot a hook latch on the nut at one side which may be swung into the slots of the nut and bolt and
opposite the pivot.
Key.-J. H. P. Ibbott and W. R. YearGuian, New Amsterdam, Eerbice, British locks, and has for its principal objects the provision of such a device which is normally incapable of performing its functions, but
which may be readily manipulated or set by which may be readily manipulated or set by
one familiar with its operation, so that it ma one familiar with its operation, so
be used in the customary manner.

Household Utilities.

COMEINED CHAIR AND STEP-LADDER.A. M. Whiteley and W. H. Whiteley, New
York, N. Y. The chair has a back suspended from which is an outwardly-swinging frame forming a brace for the back in outward posi-
tion of the frame, the back and the rear sup tion of the frame, the back and the rear sup-
porting-legs constituting the ladder member capable of being tilted or carried. Eack and rear legs are rigid with each other, but bottom, so that when the swinging frame is carried forwardly of the bottom the ladder member tilts for coiberation of the two.
Means secuse the swinging frame and ladder nember to the bom chair in eac position thereof, and when the frame is carried to a vertical position the ladder member
moves to corresponding position, the two bemoves to corresponding posit
coming automatically locked.
COOKING APPARATUS.-W. E. Baxter, Frankfort, Ky. In the present patent, the invention is an improvement in portable cook
ing apparatus, especially such as is ing apparatus, especially such as is intended for use in camping out, campaigning, and the
like and which can be conveniently and compactly packed in shape for storage and

Machines and Mechanical Devices.

CHUCK-L. A. Wellington, Keene, N. H The chuck comprises a body, jaws having re relation to the body, levers fulcrumed upon the latter and engaging the recesses, a ring openings, and removable portions fixed in the openings and furnishing inclined faces for con tact with the levers.
PITMAN-A. M. AKin, Spokane, Wash. The invention relates to pitmen, and especially to culture-machines, use in connection with agribut may be employed wherever a connecting element of this character is desired. Its prinipal objects are to provide a device which may be readily adjusted to
FIPER - CLEANING
Macy, Boston, Mass. This is an improved
machine for treating fibrous plants-such as
Manila hemp, ramie, maguey, sisal, and piñaManila hemp, ramie, maguey, sisal, and piña-
for separating the fibers from the pulpy and ummy portions; and a special object the in entor has in view is the production of
machine distinguished for economy of construction and efficiency in work and operation MEANS FOR HARVESTING ICE IN THE ess traveling cable is employed, together with suitable guides therefor, carried by supports eing used in connection with the cable by which the blocks of ice may be conveyed from the field directly to the shore. It is pracof ice, and requires but few operatives in the field.
ANIMAL-RELEASING DEVICE.-W. rowin, Taunton, Mass. One purpose in this case is to simultaneously release all the ani-
mals in a line of stalls and at the same time urn on an individual spray on each to fore delivery mechanism for the spray being so arranged that in action the spray will reach the ead and shoulders of each one, whether standthe hitching-straps in position for use, but when the water is turned on the straps will be simultaneously released.
PEANUT - STEMMING MACHINE. - P. D. Gwaltney, Smithfield, Va. The roots or stems adhering to peanuts as dug from the ground require to be removed preliminary to storage,
transportation, or preparation for the market, transportation, or preparation for the market,
and this is ordinarily done by hand, which is slow, laborious and expensive. This simple maand cheaply, without injury to the peanuts.

Prime Movers and Their Accessories.

torsion-indicator.-h. Föttinger, No. Prutz street, Stettin, Prussia, Germany. dapted to determine the rotary movements of power-driven shafts from their torsion in runing and transmitting energy, the apparatus being based on the fact that in all qualities of malleable iron or steel the angle or arc of
torsion is proportional to the actual rotary orsion is
moment.

Pertaining to Vehicles.

tire-cover.-W. A. Allen, New York, N. . One purpose of this inventor is to provide n effective cover for the tires of automobiles and other vehicles using rubber tires, which
cover will fit snugly to the tire and conform cover will fit snugly to the tire and conform to all parts thereof, the cover being so con-
structed that rain, snow, or hail will not beat structed that rain, snow, or hail will not beat
in, but will be shed therefrom as soon as rein, but
Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each.
Please state the name of the patentee, title of lease state the name of the patentee, title of

Business and Personal WJants.

READ THIS CoLUNT CAREFULLY--You will
 address of the party desiring the information. In
every case it is necessary to give the
number of the inquiry.

Marine Iron Works. Chicago. Catalogue free. Inquiry No. 831 3.-Wanted, second-hand wire
working machinery.
Formining engines. J. S. Mundy, Newark, N. J.
Inquiry No. 8314.-For
"U. S." Metal Polish. Indianapolis. Samples free Inquiry No. 8315. - Wanted, armature core punch
ings of different sizes.
See our Ad. on back page. Star Expansion Bolt Co.
Inquiry No. 8316.-For makers of hot-air and
steam furnaces, combined. Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St., Chagrin Falls, 0 .
Inqniry No. 8317.-For manu facturers of glass
tube sabout i2 incheslong, 12 inch outside diameter and
$5-16$ inch inside diameter. Sawmill machinery and outits manufactured by the Inquiry No. 831. - For
Boats, such as used in parks.
$\mathbf{1}$ sell patents. To buy, or having one to sell, write
Chas. A. Scott, 719 Mutual Life Building, Buffalo, N. Y. Inquirv No. 8319.-For manufacturers of or dealMetaather pulp.
Metal Novelty Works Co., manufacturers of all kinds Specialty. 43-47 S. Canal Street, Chicago.

Inquiry No. 8320.-For makers of or use on blowers 1 or ensilage cutters.

The celebrated "Hornsby-Akroyd" safety oil engine. Soerting gas engine and producer. Ice machines. Built Inquiry No. 83\%1.-W anted, makers of "Instan-
taneous" ice cream freezers. Manufacturers of patent articles, dies, metal amping, screw machine work, hardware specialties,
machinery tools, and wood fiber products. Quadrig Manufacturing Company, 18 South Canal St., Chicago. Inquir y No. 832\%. - Wanted, electric massage or
vibration machines. Inquiry No. 8323.-Wanted, parties to make an
attachment. in quantities, in the line of hasps and
strap hinges.

Names and Address must accompany all leters or

 Minoricie sent for examination should be distinctlys
marbect or tabelect.
(10098) W. B. H. writes: I was given question in a recent examination that the examiner stated was proved in a copy of your
magazine; but he could not state example appeared nor prove it himself. the problem read: "Do the amperes or volts in crease when the electricity passes through an ordinary spark coil for gas lighting?' I said volts, yet my examiner says the answer is
amperes, which I doubt. A. The volts are raised in the action of the ordinary spark coil in gas lighting. This coil has but one winding no secondary. It is not an induction coil in the usual sense. The spark is produced by the
self-induction of the current in the turns of self-induction of the current in the turns of
the primary upon itself. This produces a the primary upon itself. This produces
higher E. M. F., which causes a considerable spark. There can oe no more amperes in the circuit than the generator can produce.
(10099) J. K. asks: Please inform me why two telegraphic instruments will not work is a 4 -ohm, and the other I think is larger. The larger one can be heard from another room, while the small one can hardly be heard at all A. The smaller of the two instruments does not get current enough to work the magnet. In
order to work together, they should have near(10100) resistance.
(10100) E. B. asks: 1. Have you any the care ond containing articles relating to battery used in telephone work? A. Cooper' Primary Eatteries" gives considerable space the sal ammoniac battery. Price $\$ 4.00$ by
mail. 2. Can you recommend a book suital for one who has to look after the repair of telephone line? A. Hopkins's "Telephone Lines and Their Properties," price $\$ 1.50$ by mail. (10101) J. S. T. writes: I have been Without glasses the rays of an ordinary street lamp appear extended perpendicularly; with the glasses they appear longer the opposite way. If glasses were properly ground, should not the rays radiating from light appear of perfectly corrected by the glasses, objects (10102) W. A. P. asks: 1. Should a ampere-meter be placed in the positive or nega
tive terminal of a direct-current 110 -volt dy namo? A. The ammeter may be placed at any same current flows through evercuit, since th same This is just like the flow of a cir through a pipe. If you had a pipe 1,000 feet long from a reservoir to your house, the same water and just as much would flow through every foot of the pipe, and a meter might be
put into the pipe at any point in its length and the quantity of water flowing through the meter to be measured. 2 . How much more
would it register in the former than in the latter? A. It would register the same in either latter? A. It would register the same in either
side of the circuit. It makes no difference here the ammeter is placed.
(10103) B. A. T. asks: 1. How many of the electric motor described in armatur of the electric motor described in the issues
of the Scientific American for December 8 and 15, 1900? Also the field magnet? A About a half-pound for the armature and the same for the field. 2. How many watts are necessary to run it at its utmost power? A.
We do not know. Somewhere from 12 to 24. Four cells of 2 -volt battery, put two on series should run it. 3. Cannot other journal boxes than the brass balls mentioned be used, such
as a block of iron smoothly bored? A. Yes, of as a block of iron smoothly bored? A. Yes,
course; any kind of bearings can be used.
(10104) A. E. S. says: May I ask you to kindly inform what chemical changes take place during the setting of Portland ce A. Mortar, which is made of slaked lime and sand, when exposed to the air, slowly changes into carbonate of calcium, and the entire mass becomes extremely hard. The water contained in the mortar soon passes off. When lime-
stones that contain magnesium carbonate and aluminium silicate in considerable quantities are heate for the preparation of lime, the product does not act with water as calcium oxide does, and this lime is not adapted to the preparation of ordinary mortar. On the
other hand, it gradually becomes solid, in con-
tact with water, for reasons which are not
known. Such substances are known as cements. known. Such substances are known as cements.
Plaster of Paris is found in nature in the form of gypsum or anhydrite, and consists of calcium sulphate and water. A granular form of gypsum is called alabaster. Calcium sul-
phate is difficulty soluble in hot and cold phate is difticultly soluble in hot and cold
water. When heated to 100 deg. Cent. or a
little above, it hittle above, it loses all of its water and forms has the power of taking up water and forming a solid substance. The hardening is a chemof the water with the salt to form a crystal lized variety of calcium sulphate.
(10105) H. H. M. says: Would you kindly inform me if I could get an object float that is heavier than the water it dis-
places? For instance, are these large ocean places? For instance, are these large ocean
steamers heavier than the water they displace? A. If a rigid body or solid be immersed in a liquid, both bewg at rest, the resultant action upward force called the "buoyant effort", equal in amount to the weight of the liquid displaced, and acting through the center of gravit will be readily seen that you cannot secure an object to float which is heavier than the
water it displaces. In the case of the vessel, becanse of the particular form of the hull, the law of displacement remains the same. The
weight of the water displaced by the hull equals the entire weight of the ship and its
(10106) J. D. W. asks: Can it be proved that a right angle can be trisected?
A. The trisection of a right angle is a very simple proposition. The radius of a circle is equal to the chord of 60 deg. If the radius the arc of a quadrant, or the arc subtending a right angle, and a radius be drawn to the on one side will be 60 deg . and on the other side the angle will be 30 deg . or one-third of right angle.
(10107) A. E. N. asks: Why do steam boilers explode when, through misforboilers in steamers that are wrecked is prob ably due to the sudden stopping of the engines
and the abandonment of the fireroom by the firemen without the proper precaution to check the fires. It takes but a few minutes in such of steam from the safety valves, when the rise in pressure ruptures the boilers. When one exploded boiler.
(10108) G. J. R. asks: Can you give me the reason for the vibration in a motor or
generator when the armature balanced as nearly as possible? I would like to see what your opinion is in regard to it.
A. The slightest excess of weight on one side will cause a perceptible vibration of an armature. As little as one-thousandth of the total
weight will cause a very considerable vibration. If an armature is perfectly balanced, it will run so quietly that it is dificult to tell of balancing an armature is described in by mail. (10109) C. H. W asks in reference to the answer to query regarding the attraction
of a 5 -pound and 15 -pound mass upon each other. The mutual attraction between the masses is given by the formula $\mathrm{F} .=\mathrm{K}$ tributes three times as much as the smalle It is true that this attraction acts upon both quantity of motion. In the case of the earth when a body falls toward it, the earth also that body. But the greater portion of the motion comes from the mass of the earth, since any body falling to small body moves much farther from this at traction than the larger one does.
(10110) H. L. B. asks: 1. Would you in bird's eye maple? A. We do not know how the mechanical forces act in the growth of the
wood to produce the burls in the bird's eye. A while ago the question would have been an-
swered, "It is the nature of the tree to grow swered, "It is the nature of the tree to grow
that way." 2. Why is it necessary to only put ten 16 -candle-power 104 -volt lamps on a cir-
cuit? A. The amount of current which is alis regulated through one cutout in a building Underwriters and is determined by the risk of setting fire should a fuse blow
(10111) G. H. E. writes: In an in formal conversation the statement was mad that of the energy stored in a given amoun
of coal an extremely large proportion is lost in the attempt to employ it productively, as in the steam engine, and that the utilization of the energy wasted by the present methods
is an important scientific and economic problem. This statement was challenged, and in the resulting discussion the following ques-
tions arose. 1. How large a proportion of tions arose. 1. How large a proportion of by methods commonly in use? A. From 20 to
25 per cent, and sometimes more, of the heat
value of the coal is now lost. 2. At what
stages in the process of stages in the process of transformation, and
how, do the chief losses occur? A. Mostly by the heat going up the chimney, and to heat from defective insulation of bailer setting heat from defective insulation of boiler setting
and pipes. 3. What percentage of the energy
and in a given amount of coal can be (not is, for utilizing the full energy of coal are very small. Little may be. expected over the best
practice of to-day. It is the converting of the practice of to-day. It is the converting of the
steam into active power wherein the trouble lies. 4. How is the amount of energy in given amount of coal ascertained? A. The
absolute amount of energy in coal is found, absolute amount of energy in coal is found,
first by an analysis of its combustible con stituents, from which the heat units are com puted ; second, by actual combustion of ing property by absorption of the heat in (10112) melting ice in a calorimeter.
(10112) J. A. M. writes: Will you indly inform me whether the following facts hanical equivalent of heat as given by Dr Joule's experiment of a weight falling through air, actuating thereby wings in water, is 778 foot-pounds according to William Kent. Now water and air are as 1 to 774 . Is there not an equation here between work, water, heat and
air? Might not the slight variation of 774

Might not the slight variation of 774 and 778 pounds be due to the slip of the
water? William Ripper gives the equivalent water? William Ripper gives the equivalent
as 772 pounds. A. The mechanical equivalent determined by Dr. Joule, was 772 foot-pounds That is, to lift 772 pounds to a height of 1 foot requires the same amount of work as to
heat 1 pound of water 1 deg. Fahr. This work was done between 1840 and 1843 . ('onsidering the advancement of mechanical science at that
time it was a marvelous piece of work. He mployed the friction of water and measure equivalent by means of the electric the the quivalent by means of the electric current other methods, the compression of metals the specific heat of air, the induced electric current in metals, and the velocity of sound Joule. Joule's metho was that of direct determination of the number of foot-pound
of work used in actually heating one pound of water one degree. Other methods were in direct. That these coincided fairly well with
the direct method was all that could be expected. All methods are open to errors, and
more or less close approximations are all that could be attained. In 1879 Prof. Rowland ook up the problem with the finest appliances of modern science. He employed water fric-
tion, as did Dr. Joule. His results were im-
mediately accepted. Probably the work will not be done over again Probably the work will of his results involved as many as 12,000 dis tinct observations. He proved that the me-
chanical equivalent varies with the tempera hanical equivalent varies with the temperachange of nearly eight-tenths of one per f Prof. Rowland's results is 778 foot-pounds, which for all ordinary purposes is at present and's the true equivalent. Prof. Row heat of water diminishes from 32 deg. to
84 deg., and then increases till the beling point is reached. Rowland was able to pro duce a change of 63 deg. in the water where
Joule could produce a change of only 1 deg Joule could produce a change of only 1 deg.
He also used the sensitive air thermometer (10113) An old subscriber says: have several old daguerreotypes which until ecently were in a good state of preservation Now I find that the surface of the plate has pparently oxidized and the portrait has dis appeared from view. Can you give me instruc hem? A. The removal of the deposit from the surface of the daguerreotypes is such a delicate operation that, if possible, it should in that process. If, however, you wish to try it yourself, you may proceed as follows: Care-
fully separate the cover glass from the silvercoated plate, being especially careful that the
surface of the latter is not touched even by anything so light as a feather. Soak the solution of potassium cyanide, from five to ten grains to the ounce; rocking the dish til he deposit is remeved. A 20 -grain solution
if sodum hyposulphite may be used instea of the cyanide, although it is not always so movessful. When the deposit has been re
moved, the plate should be well washed under gentle stream from the tap, or in several
changès of water, finishing changes of water, finishing with distilled
water. The metho of drying is water. The method of drying is important The plate, after slight draining, should be
taken by a corner by a pair of pliers and held over the fiame of a spirit lamp or gas jet, remaining film of water, the evaporating of which may be assisted by gently blowing across the surface. The restored daguerreo type and cover glass, the latter after thorough
cleaning, should then be bound together as before, and the more compretely this is done so as to exclude the atmosphere, the longer will the image retain its pristine beauty. Potassium
cyanide is a deadly poison. It should be cyanide is a deadly poison. It should be used
with care.
(10114) C. S. asks: About how much amperes fow through the entire circuit and current does a $1 / 4$-inch spark coil take to give
full length of spark? A. A good authority ives about 10,000 volts as the pressure re-
guired for a spark of $1 / 4$ inch. The current, quired for a spark of $1 / 4$ inch. The current,
or amperes, is insignificant.
2. Is a relay ecessary in wireless telegrapby? A. Yes.
Is it necessary to have oscillators on tbe goo in wage how long should an induction coil ood usage how long should an induction coil
ast? A. Forever. There is no deterioration y use in an induction coil. 5. Can you exconnected with only one wire of the secondary of the coil? A. Because of electrical induction. The waves go through space from one
pole of a coil to the other. The Geissler tube between the two poles of the secondar will glow when it is connected with neithe
wire. The same experiment can be performed with the bulb of an incandescent lamp. Hold in the hand by the metal base between the minals of the coil.
(10115) R. W. W. asks: 1. The ob-ject-glass of my telescope consists of two lenses,
one being convex and the other concave-convex. one being convex and the other concave-convex.
When they are together they are the same as ordinary convex lens. Why is a single one not used ? A. The two glasses are used to
prevent the objects seen from being bordered ith a colored fringe. Remove the concave study in some textbook of physics about achro matic lenses. 2. Why is it that copper wire is used for electric lighting and power curents and iron or steel for telegraph and tele
phone wires? A. There is a very small flow of current in the telegraph and telephone wires, and a large fiow over the lighting and power circuits. Copper is a much better con-
ductor than iron, and though it costs much ductor than iron, and though it costs much
more in the first place, it is far cheaper in the more in the first place, it is far cheaper in the
end. 3. What is the difference between a A. A continuous alternating like a strea Af water steadily in one direction. An alter-
natinr current flows by rising to its full voltage and then falling to its least. There ar alternations of the electromotive f
has all possible values in a series.
(10116) D. P. asks: Does electricity occupy space? A. No. Electricity is not ordinary matter, as, for example, lead is
Whatever it may be, it is not a material sub (10117) E. O. M. writes: I have two textbooks on physics which disagree. Mr
Spottiswoode, of London, had an induction coil made which gave a 42 -inch spark. One
says it reguired 5 Grove cells to give the 42 inch spark; the other says 30 Grove cells
were required. Which is right? A. The statement in Gordon's "Electricity" is tha with five Grove cells the coil gave a spark
28 inches long; with 10 cells the spark was 28 inches long; with 10 cells the spark was
35 inches, and with 30 cells it was $421 / 2$ inches long. 2. What difference of potential gap of 42 inches? A. We do not kinow. Prob gap of 42 inches? A. We do not kuo
ably hundreds of thousands of volts.
(10118) J. C. A. asks: Please inform me how to make a strong magnet of Jessop
steel. I have tried to make some 1.2 inch square by 3 inches long, straight bais, by 300 -volt current, by which they were strongly magnetized, but lost almost all magnetism in about three weeks. How can I make such magnets which will retain their strength etized to a red heat and plunge them into water. They are then to be magnetized.
Straight bars do not retain magnetism well. They should lie in pars with opposite poles toward each other, side by side, not end to end,
or else in pairs with an iron keeper across the poles. They may be laid four in a square down alone without keepers, the magnetism is rapidly lost.
(10119) W. F. G. asks: Will vulcan fed fiber answer for the insulation on stafibers identical? A. Vulcanized fiber will be this position. Vulcanite is hard rubber and is arerent substance from fiber
(10120) E. L. asks: 1. Can you tell me, without knowing the amperage, the voltof 10 candle power at full capacity? 5 lamps candle lamps may be taken to be from 3 watts to 4 watts per candle. One lamp will consume from 30 watts to 40 watts, and 75 watts will
light two such lamps. 2 . What is the resislight two such lamps. 2. What is the resis-
tance of No. 16 iron wire? A. Pure iron has a resistance of 6 times as great as copper. Oras great as that of copper of the same size as great as that of copper of the same size.
No. 16 copper wire has 248.81 feet per ohm. Pure iron wire of the same size would have 41.47 feet per ohm, and No. 16 ordinary iron a current of 10 amperes at 108 volts goes through 540 feet of No. 16 iron wire, what will be the electromotive force and current remalning after it has gone through, and how
to calculate it? A. There will be 10 amperes remaini ng But there will not be any voltire circuit between the mains. The same
amperes few through the entire circuit and
come out at the other end, just as the water lows through the entire length out of a pipe open at both ends and comes out at the other
end drop of potential along a wire is proportional to its length, provided it is of uniform sectional area, as it may be presumed to be in this case. This being so, there will drop of one volt for each four feet alon the wire. 4. Can we run a direct-current or is not loaded. A . Yes; if it be started and brought up to synchronism with the cur
rent by hand, or by some other power. It will hen keep step, and run by alternating current

NEW BOOKS, ETC.

The American Battleship in Commis SIon. By Thomas Beyer, U.S.N. York: Army and Navy Register York: Army
12 mo .; pp. 248.
The author of this work, Thomas Beyer, i first-class ship fitter of the United States of the service. The amount of information contained in this book is certainly remarkable The author begins with a general view of the organization of the navy, and then passes on
to those subjects which laymen are most cur the tells, for example, how a bat tleship is prepared for a voyage; how it is ure at sea and in port; gives a clear pic and describes the drills of the week and their purpose. This chapter may be considered peras it most interesting man's own views of ife on a man-of-war. The remaining portions of the work are devoted to chapters on the more material part of the bluejacket's life, such him, his aportunities which the service offers facture of ordnance and ammunition, the designing of a battleship. The last pertion of man-of-war yarns. The author is to be con gan-of-war yarns. The author is to be con which the book has been issued. The illustrations are certainly the most interesting col lection of pictures that we have ever seen. The typography is excellent. The book is one that we can heartily recommend for a good,
clear, impartial account of the United States clear,
navy.

INDEX OF INVENTIONS
For which Letters Patent of the
United States were Issued
for the Week Ending
August 21, 1906.
AND EACH BEARINGTHATDATE
[See note at end of list about copies of these patents.]

 $=$

 ${ }^{285,508}$

 ${ }_{\substack{280807 \\ 88850}}$
 :

