SCIENTIFIC AMERICAN established 1845

MUNN \& CO. - Editors and Proprietors
Publishod Weekly at
No. 361 Broadway, New York

TERMS TO SUBSCRIBERS

the soientific american publications

NEW YORK, SATURDAY, AUGUST 18, 1906.
The Editor is almays yllat to receive for examination illustrated
articles on subjecte of timely interest. if the phlytur ruluth are articles on subjecte of timey interest. If the photograylis are
shaip, the articlect short, and the facts authentic, the contributions
will receive special attention. Accepted articles will be paid for will receive special at

disappearing england.

While the question of coast erosion and reclamation is one of comparative insignificance in this country the subject has, of late years, aroused considerable dis cussion in England, because of the undoubted ravages of the sea at many points of the littoral of the island. The shores of England are composed largely of clay, chalk, or friable rock which is easily eaten away by the waves of the ocean or the strong currents and tides along the coast. In consequence great stretches of the shore have been worn away and are constantly crumbling further inland with each succeeding year This gradual destruction has caused great damages to many towns situated on the seashore and has destroyed thousands of acres of valuable farming land. At certain locations, even within the memory of men still living, the sites of prosperous villages of former times are to-day covered by many fathoms of water, some times several miles from the present shore line.
Coast erosion following severe storms within recent years has been so marked at many points on the English coast that after extended press discussion a Parliamentary commission has been appointed thoroughly to investigate the subject, and if possible to devise means for the abatement of the injury. While there is little danger that the "tight little island" will completely disappear within the next few generations, there can be no doubt that coast erosion is causing serious loss of land at many points, particularly on the south and east coasts, notwithstanding that the areas gained artificially at other points almost compensate for it. It has been estimated that in the thousand years from 900 to 1900 an area of nearly 550 square miles has been worn away by the erosive action of the waves and ocean currents. That the changes in the littoral outline of England are due almost purely to this action is the opinion of the geologists who have investigated the question, and it is not believed that the subsidence and upheaval of the earth's crust are in any way responsible therefor. The material which is carried away after being eroded from the shore is either immediately borne to the deep sea in suspension, or is washed along the coast in the form $0^{\boldsymbol{c}}$ littoral drift. It is hardly possible to estimate the respective proportions of the material which are thus disposed of, but these proportions may vary from 20 to 90 per cent of the whole, though it is hardly likely that the proportion carried out to deep water often approaches the latter figure. The question of coast protection is a difficult one and the method in use at present, comprising the construction of walls and groynes along certain areas, results of necessity in the depriving of the foreshore of the material which might otherwise gather there. Thus while a uniform system of protective walls and groynes running from the walls out into the sea will, for the time being, largely prevent the erosion of the coast, it will nevertheless, by abating or largely decreasing the littoral drift, bring about the depletion of the foreshore and will ultimately cause the destruction of both protective walls and groynes. The question of coast protection and reclamation presents engineering difficulties of no mean magnitude, and the overcoming of these difficulties will constitute an interesting phase of future engineering history, for we feel certain that English technical men and men of science will find successful means for combating the destructive power of the sea.

AFTERMATH OF THE SAN FRANCISCO FIRE.

In drawing the proper lessons from a disaster of the magnitude of the San Francisco earthquake and fire, care must be exercised lest too great an emphasis be laid upon particular and unrelated incidents and effects. It has been claimed, and doubtless with some measure of truth, that in the early photographs of the fire, and particularly those of individual buildings or parts of buildings wrecked by the fire, that were published soon after the disaster, there was too much broad generalization based upon insufficient data. It
is only now, after there has been time to gather and classify material in the way of photographs and observations by experts, that the public is being placed in possession of well-digested lessons drawn from the disaster. We have recently been favored with a large number of photographs and an extremely interesting discussion of the San Francisco fire and its lessons by Mr. F. W. Fitzpatrick, the secretary-treasurer of the International Society of State and Municipal Building Commissioners and Inspectors, of Washington. The article was called forth by some photographs showing the respective behavior of fireproof tile and of concrete protection in the recent fire, which were published in the Scientifiosmencan of June 9, 1906, and which Mr. Fitzpatrick criticises as giving a one-sided and misleading impression of the facts. The article, which is too long for the columns of the Scientific American, will be found in the current issue of the Supplement. The illustrations consist largely of interior views of columns, girders, floors, and partitions which were affected by the fire, and they are from photographs selected from several hundred made under expert supervision at San Francisco. The article is an impartial and very thoughtful review of the lessons taught by the disaster as to the design and construction of future fireproof buildings.

PROF. SEE'S INVESTIGATION OF THE EARTH'S RIGIDITY.

In the Astronomische Nachrichten Prof. T. J. J. See, U. S. navy, has exhaustively investigated the rigidity of the earth and other heavenly bodies, by mathematical processes depending wholly on the theory of gravitation.
This line of investigation was begun in 1863 by Lord Kelvin, who sought to determine the rigidity of the earth from observations of the tides of the oceans. Tidal observations secured the only means of ascertaining the amount of bodily distortion experienced by the earth under the disturbing forces of the sun and moon; and it was thought that if the earth proved to be highly rigid, the result would contradict the theory long held by geologists that the earth is a globe of molten matter inclosed in a thin crust, like the shell of an egg.
Lord Kelvin reached the conclusion that the earth as a whole is certainly more rigid than glass, but perhaps not quite as rigid as steel.

About 1880 Sir George Darwin took up the investigation, and considerably extended and improved Lord Kelvin's method. By careful study of the fortnightly tides he found the earth to be more rigid than steel; that is, it yielded less under the disturbing action of the sun and moon than a solid globe of steel of the same size. This was justly held to show that our earth could not be a sphere of liquid covered by a thin crust; and geologists had to conform their theories with a globe as rigid as steel.
Prof. See's investigation is purely mathematical, and based on the pressure existing throughout the earth. According to Laplace's law, the density at the center of the earth is equal to that of lead, and the pressure equal to that exerted by a vertical column of quicksilver as long as the distance from St. Louis to San Francisco.

By considering the pressure throughout the whole earth, it is found that even if fluid, our globe would have a rigidity greater than that of wrought iron. The earth's matter under this great pressure acts as a solid, and so vibrates in an earthquake; and the average rigidity of the whole mass is nearly equal to that of nickel steel, such as, is used in the armor of a battleship. Nickel steel is one of the strongest and hardest metals known, and it affords us a good idea of the strength and rigidity of the earth. Our globe is thus proved to be capable of withstanding enormous strain; and we need have no fear that earthquares or volcanic outbursts will ever endanger its stability.

Dr. See proves that the rigidity of the earth's crust is about equal to that of granite, which is one-sixth that of steel; and that toward the center the rigidity rapidly increases. At the earth's center the imprisoned matter is at an enormously high temperature, yet under the tremendous pressure there at work, it is kept three times more rigid than the nickel steel used in the armor of a battleship.

His new method can be applied also to the other planets. Heretofore no method has been known for finding the rigidity of any mass except the earth on which we live. But the gravitational method can be applied with entire confidence to Venus, Mars, Jupiter, or Safurn, and we can find their rigidity almost as accurately as we can that of our own globe.

It turns out that the rigidity of Venus is greater than that of platinum, and most likely about identical with that of wrought iron. The rigidity of Mars is about equal to that of gold, while the rigidity of Mercury, the moon, and other satellites is about equal to that of glass.
The average rigidity of the great planets, Jupiter, Saturn, Uranus, and Neptune, lies between eighteen and three times that of nickel steel. The great rigidity of these bodies is due to the great pressure acting
throughout such large masses. In the case of the sun the result is still more extreme. The average rigidity of all the sun's layers is over two thousand times that of nickel steel.

This result affords a good idea of the effect of grav. ity in compressing and hardening a mass, even when it is self-luminous and at enormously high temperature.

Having shown by laborious calculation that these bodies are so rigid, Prof. See has gone one step farther, and inquired what effect this rigidity will have on the currents often supposed to circulate within these masses. As pressure directly increases the fluid friction of moving currents and tends to bring them to rest, it is not surprising to find that the rigidity almost prevents circulation, especially deep down in these masses.
Many geologists have held that liquid currents exist in the earth; and astronomers have been accustomed to assume that fluid currents in the sun descend almost to its center. In view of these results, it is not surprising to find that he denies the possibility of currents in the earth, and claims that currents in the sun and great planets must all be quite shallow.
These currents cannot descend to any appreciable depth, because the pressure and rigidity are too great. In the case of the earth, we cannot well conceive of currents in matter more rigid than granite; and in the case of the sun, a rigidity twenty-two times that of nickel steel only one-tenth of the way to the center makes circulation of currents below that depth likewise inconceivable.

DISCOVERIES IN THE SARGASSO SEA.

There is a sea in the middle of the very ocean itself, the limits of which are as well defined as those of any other known large body of water; its character istics are so peculiar, too, that it is impossible for anyone to mistake them. The first glimpse Columbus had of this sea reminded him, so it is said, of an "undulating meadow"; as far as the eye could reach, the sea was covered with a greenish yellow plant, just as completely as water lilies do a pond. Ever since that day when the immortal Christopher first saw the weed, and doubtless for thousands of years before then, the Sargasso Sea (for such is the name of this strange body of water) has existed. Its boundaries may be indicated by tracing a triangle, the three corners of which are represented by the Azores, the Canaries, and Cape de Verde. Within these limits the surface of the sea is covered with so thick a coating of seaweed as to prevent vessels from sailing through it. Steamers also avoid it, whenever possible, because of the fouling of their screws and paddles by the weed.
During the course of 1905 H. R. H. Prince Albert of Monaco sailed for this sea in his famous vessel, the "Princesse Alice," with three objects in view, viz., the study of bathypelagic faunas in general, of the faunas of the Sargasso Sea, and of the meteorology of the upper atmosphere. The vessel sailed from Marseilles on July 20 and returned on September 24, 1905. The results of the 64 days' voyage have recently been published, and form highly interesting reading.
No less than 118 soundings were made up to a depth of 5,580 meters (18,302 feet) and 28 samples of water were taken in Richard bottles and Buchanan tubes. Some very interesting zoölogical finds were made, of which the following is a brief description. With a bag-net there were secured (at depths ranging from 606 to 11,364 feet.) numerous Alcyonarix, several interesting crinoids, and two extremely rare specimens: of Gephyrocrinus Grimaldii, already discovered by the prince on a previous occasion. Among other crustaceæ there was a specimen of the Polycheles eryoniformis Bouv., a new species which recalls the Jurassic eryon by its dilated carapace. Another net, sunk to a deptr of 11,364 feet, brought up a rich find, comprising a new type of Cinroteuthis of a uniform black color, with large black brachial papillæ; a small Cephalopod, of an undoubtedly new type and species, having telescopic eyes and an extremely singular trilobial luminous organ. By far the most productive accessory of the campaign was found to be a wide-mouthed vertical net; in fact, adequately to describe the numerous specimens secured with its aid would require a booklet. Forty-one descents were made, to a depth of 17,712 feet, and, in most cases, the specimens obtained were similar to those obtained in the course of researches made a year ago elsewhere. The most striking objects were a new Ulmarida of the color of wine lees, closely related to the Aurelia, and constituting the first member of this family found in deep waters; of the Ostracod family there were some large spherical Gigantocypris, and several specimens of a large black (or almost black) Ostracod, the shape of which may be likened to the pip of a ripe pear, several relatively speaking new species of Nemertæ, especially a large orange-colored variety, hitherto rarely found among bathypelagic fauna; and finally some transparent Annelidæ with large red eyes, and several types of Phronima, one entirely new. In the Sargasso Sea the net also brought up one of those curious crustaceans of the Eryoneicus type; it is quite new, and M. Bouvier,
member of the Oceanographic Institute (who accom panied the expedition, together with Dr. Richard, director of the Monaco Oceanographic Museum, and other equally distinguished gentlemen) has christened it the Eryoneicus Alberti.
The fauna inhabiting the Sargasso Sea was studied on the surface, between the latter and the bottom, and on the bottom itself up to a depth of 11,364 feet. A numerous but sparseiy varied fauna lives amid the weed covering this sea; it comprises Actiniæ, Ascidiæ, Nudibranchiæ, Crabs, Isopods, and a few pelagic animals clinging mostly to the surface of the weed. Mimicry is a very marked feature of animal life in Mimicry is a very marked feature of animal life in
the Sargasso Sea. A new ※pecies of pelagic Holothuria was found, and there were captured on several occasions many specimens of a curious hemiptera (Halobates Vüllerstorfif) which jumps about on the surface of the sea.
An interesting item of the voyage was that (when in the Sargasso Sea at a distance of 840 miles from the nearest continent) the "Princesse Alice" was visited by five swallows of the American variety called Hirundo rustica erythrogaster, Bódd. A remarkable feature of the whole region comprised between the tropics, the continent of Africa, and the Azores, is the almost total lack of any animal life on the surface of the sea. No cetaceans or marine birds were met with; flying fishes and the Plankton were the sole redeeming features in a dreary and silent waste of waters. A curious double lunar rainbow was seen on one occasion (August 28, 1905), and was painted by an artist accompanying the expedition. The curious phenomenon known as the "Green Ray" was also often seen.

ELECTRICITY AND MATTER IN A GASEOUS STATE.

by prof. bdgar l. larkin.
When Newton announced the law of gravity, the effect must have been akin to the discovery of radium in our own time. Really, a rapid wave of expanding science spread over the world, and everybody talked about the mystery of all time, gravity. What has happened? If a newly discovered law equal to that of attraction should now be telegraphed to every scientific body in existence, would a scene of animation and activity set in? Or, have discoveries "followed fast, and followed faster" of late than can be assimilated? Or, would the discovery of what gravity is, or matter, or mind, occasion more than a few remarks on a street corner, about the passing wonder?
Ionization and conductivity are equal to gravity. They form two granite and hewn stones round about and under nature. If the actual gravity is ever explained, the explanation must and will be found hidden in these. All scientific men were filled with admira-tion-yes, hidden adoration-for Newton, when the Principia appeared. But another Principia is herea book, "The Conduction of Electricity Through Gases," by Prof. J. J.-Thomson. To the writer, it is as a basic Principia, upon which can be erected a vast, new, and comprehensive view of all that part of the universe known to man. Since Newton, literatures of science have teemed with the sentence: "Inversely as the square of the distance." But a new term or sentence is now appearing in scientific literature of the highest type. Here are quotations: "The saturation current between two parallel plates of given area depends upon the amount of the ionization that takes place throughout the whole volume of gas between the plates, then the greater the distance between the plates the greater is the saturation current, so that if we use constant potential differences large enough to produce constant potential differences large enough to produce
saturation, the greater the distance between the plates the larger is the current. Thus the behavior of the conducting gas is very different from that of a metallic or liquid electrolytic conductor; for if such conductors were substituted for the gas, the greater the distance between the plates the smaller would be the current." And: "The peculiarities shown by the conduction And: The peculiarities shown gases are very easily explained on the assumption that the conduction is due to ions mixed with gas" (p. 13, Thomson). And another: "The condition essential to stability in chemical combination is, 'The attraction of one atom to another (or others) increases as the distance increases'" (Berisford Ingran, Knowledge, April, 1905, p. 75). Since science began, there have not appeared more important discoveries or wisdom. While heat, light, gravity, magnetism, and electricity, when in the form of circular waves, vary in intensity inversely as the square of the distance, electricity, while traversing ionized gases as a "current," increases in quantity as the distance increases! This surely is because it gathers up ions on the way from one mass of matter to another, that is, takes up electricity. If the masses are two suns forming in space, from primordial gas, ionization allows colossal quantities of electricity to circulate from sun to sun, whether two or two trillion. And this brings the writer of this note to the point of starting, for during many years we have advocated, in season and out, the electrical basis of the universe. On page 8 Prof. Thomson says: "The electrical conductivity of
gases in the normal state is so small that, as we have seen, the proof of its existence requires very careful and elaborate experiments." Then he gives several ways of making excessively rare gases conducting, thus: Draw them from the neighborhood of flames, or from electric arcs, or from glowing metals; but far better is to allow Röntgen, Lenard, or cathode rays to pass through them, or rays from uranium, radium, polonium, thorium, and ultra-violet light to traverse and ionize. Thus two metallic plates may have rare gas between them, and electricity would have difficulty in forcing a passage. Now ionize the gaseous particles, i. e., separate them into corpuscles, and electicles, i. e., separate them into corpuscles, and elec-
tricity will "flow" from positive to negative with slight resistance, and external rays from any radioactive substance are able to ionize. It is almost impossible to resist the temptation to apply the new laws to cosmological processes in primitive conditions of matter. This primordial state was without doubt gaseous. Perhaps dissociation reigned. At all events, the mechanics of liquids and solids did not act. Finer forces, radio-active energies, and activities wrought for ages before gravity wheeled worlds into revolving systems. Let two suns be, say, within 25 trillion miles of each other. The space between, if filled with normal gas, would offer high resistance to transmission of electricity. Let rays from radium or any electrostatic field shoot across the intersolar gases at right angles and ionize them; then vast flows of electricity would take place from sun to sun. There was a circulation throughout the universe then, as well as now. The entire structure of nature is a living unit. It has a pulse. All matter by hypothesis was once ultra-gaseous. It therefore obeyed laws able to act on matter in that It therefore obeyed laws able to act on matter in that
state, and no others. Every one of the laws is elecstate,
trical.

Deviation of rays is a stupendous fact, deep-seated and far-reaching. From a study of the bending aside of rays in laboratories, imagination can easily carry back to primordial cosmical times. Radium emits alpha, beta, and gamma rays and many others besides. Magnetism is able to turn alpha rays one way and beta the other. The fact stands out that they are separated. Gamma rays cannot be bent out of their original straight lines. To begin gravity, matter must be charged with electricity. Of course, this is a "working hypothesis." This is the way to do it.
Let vast masses in space, like the nebula in Orion, or like the giant suns Antares or Canopus, be radioactive, and let floods of rays pour into space-for a active, and let floods of rays pour into spac
frigid nebuia or a hot sun can be radio-active.
Let an enormous mass be, as it were, an electrostatic "field" in space many million miles away. Electrostatic fields attract and repel precisely like a magnet. Floods of alpha, beta, and gamma rays attempt to pass in front of this field. Let a stream of alpha rays be separated out and be deviated to one side. Let them strike a world in process of formation. It will instantly be positively electrified. And another electro-magnetic or static field can deflect beta rays upon other worlds, and charge them negatively. Charges are thus set up daily in physical laboratories; why not in space? Ra-dio-active rays are absorbed by matter with great avidity. But these rays must be electric, else they could not be diverted by magnetism. At present, it is not known what effect gamma rays have when they hit a forming world. For world building has not ceased. Another cosmical worker is induced radio-activity. An active nebula or sun can establish activity in others at a distance. It is a common thing to charge suspended insulated spheres by induction electrically in every laboratory. Suns may differ actually in their phases of matter, as much as their spectra. Thus let a nebula in space at the absolute zero of temperature be composed of corpuscles-bodies smaller than the chemical atom-in dissociation.
Let alpha rays only be deflected upon it for a million years, and let beta rays fall on another nebula; then the phases of matter produced would no doubt differ. The suns condensed from them must be unlike and project differing spectra. From the vast mass of literature received on this mountain peak, it appears that the entire scientific world is going the radio-active way. And well it is, for radiant energy, in the forms of alpha, beta, gamma, Röntgen, Becquerel, and doubtless a hundred other kinds of rays, together with deflection, induction, catalysis, "acting at a distance," and ionization-these all. and surely others not yet discovered, were and still are the cosmical builders, workers, and carriers. When Crookes lighted up his lowpressure tubes he opened the gates of a world more inscrutable than that of Hermetic mysteries. And a science of boundless ramifications into every nook and corner of nature is founded and grounded on Prof. Thomson's classic book. Electricity can start from one sun to go to another. If electro-active fields are passed, then the primitive gas is ionized, and the original quantity gathers more as it flies and pours a larger flood on its neighbor. It does not weaken as the squares of the distances increase. This is absolutely new in science, is revolutionary in character, is liter ally true, and will overthrow all existing cosmological
theories. Soon it will be admitted that electricity exists in a practically infinite number of modes and forms, ordinary "currents" and "charges" being com-mon-place. In a few years it will be fashionabie to say that a cubic inch of iron and another of water contain equal quantities of matter; since both are nearly incompressible, and that the reason why iron tends toward the center of the earth with a force 7.8 times that of water, is because it contains 7.8 times as much electricity.
Lowe Observatory, Echo Mountain, Cal.

THE DESCENT OF MAN.

Kollmann, the professor of anatomy, has recently written an exhaustive article on the subject of the relationship between man and the Pithecanthropus erec. tus of Dubois. It will be remembered that some years ago Dubois discovered in the island of Java some bones, the femur and several bones of the cranium, which resembled both the corresponding bones in the human frame and also in the frame of a monkey. This discovery was much talked of, since it was thought that in these bones had been discovered portions of a prehistoric animal, which might have formed the socalled missing link in the chain of descent of mar from monkey. It was the scientist Schwalbe who, in accordance with this idea, christened this hypothetical animal with the name Pithecanthropus erectus, or man-monkey standing erect. A minute examination of the bony remains of Java permitted the hypothesis that they had belonged to a being of great stature, with habits still arboreal, and which probably passed a great part of its time in the trees, but which, like man, already possessed the faculty of speech. But Kollmann now shows that although these bones discovered in Java are of great paleontological importance, they should be interpreted in quite a different manner. He asserts that the animal to which they belonged could not have been a precursor of man, for, although they certainly belonged to one of the most highly developed of the anthropoid apes, its habits and customs could not have differed from those of its cousins still living, the chimpanzee, the gorilla, the orang-outang, all spe cies of animals which have reached the extreme limit of their variability. Kollmann is rather of the opinion that the direct antecedents of man should not be sought among the species of anthropoid apes of great height and with flat skulls, but much further back in the zoological scale, among the small monkeys with pointed skulls; from these he believes were developed the human pygmy races of prehistoric ages, with pointed skulls, and from these pygmy races finally developed the human race of historic times. In this manner may be explained the persistency with which mythology and folk lore allude to the subject of pygmy people, and it would also explain the relative frequency with which recently the fossils of small human beings belonging to prehistoric periods have been discovered.

THE DEATH OF DANIEL B. WESSON.

After a long illness Daniel Baird Wesson, the rifle and revolver maker, died at Springfield, Mass., on August 4.
Born in Worcester, Mass., Mr. Wesson was the founder of the firm of Smith \& Wesson. He went to Springfield a poor man, but died immensely wealthy
He was the inventor of the cartridge with a percussion cap. In 1883 he formed a partnership with Horace Smith, of Norwich, Conn., and there worked out the principles of the Winchester rifle. He first put into use the self-primed metallic cartridge, used during the civil war. About the same time he succeeded in perfecting a revolver, the principal feature of which was that the chambers ran entirely through the cylinder.
Mr. Wesson was also the inventor of several other improvements in firearms, the most important of which were the antomatic cartridge shell extractor and the self-lubricating cartridge. He also introduced the hammerless safety revolver.

It is reported that the Canadian Pacific Company has decided to await the outcome of experiments by the New York Central and New York, New Haven \& Hartford Railway Companies before taking steps for the electrification of any part of its system. Both the latter railways are spending enormous sums upon experiments, the former with a direct and the latter with a single-phase alternating current. The line from Montreal to Quebec will in all probability witness the first installation. All the electric power necessary can be obtained from the Shawinigan Falls.
Efforts are being made, by constructing embankments, to improve the channel at Rouen and keep it to one course, the present difficulty being that the channel is constantly shifting. Plans are now under onsideration for the lengthening of the embankment on the left side of the estuary, and for the construction of embankments on both sides of the same to confine the channel to certain limits between Val de la Haye and Biessard.

