vicess to coact between the actuating-screw,
head, box, and pin so as to practically absorb friction between the moving parts, rendering the device more durable and easier of operation and increasing the
of the hoisting-engine.
Coin-controlled vending device.G. W. Meredith, Wichita, Kan. In the present patent the invention, is a division of a prior application for a patent for a cigar-vend-
ing machine, which was formerly filed by Mr. ing machine, which was formerly filed by Mr.
Meredith; and it consists in the novel me Meredith; and it consists in the novel me-
chanical features whereby a deposited coin is chanical features whereby a deposited coin is
made the intermediary through which one or are discharged into range of possession by the purchaser.
Cigar-vending machine.-G. w. Mereorrty, Wichita, Kan. The invention relates to
vending-machines, in which individual articles vending-machines, in which individual articles
of merchandise held for sale by means of a manually-operated
handle. Although applicable to sale of other merchandise in packages of nearly uniform size, it is especially intended for the sale of cigars. The machine is constructed in its entirety as a cigar-case in which cigars are
arranged in their original boxes, with quality, brand, and price exposed to view for selection. It is for use in hotels, clubrooms, barber vented another cigar-vending machine in which articles of merchandise are discharged from a stock held for sale by working and manipulat ing an operating-handle, and although applic able for the sale of any kind of package artl cles of somewhat unilorm size, intended for the sale of cigars. His machine provides for an extension of the function the machine for the sale of one for five cents,
two for five cents, three for five cents, for ten cents, three for ten cents, one for a quarter, or any
universal excavating and grad ING MACHINE.-W. Gilmore, Meridian, provide for universal adjustment of the parts to permit working under various conditions, and especially to provide for excavating under a railroad-track without removing the track, so as to eut down grades without discontinu-
ing the trains for any length of time and to do the work at greaty- the machins on ac ling large amounts of earth.
Sawivg machine-s. J.
SAWING-MACHINE.-S. J. Graf and J. HorNing, Oakland, Cal. The object of the
improvement is to provide a novel machine of the endless-saw type adapted for cutting in any position- either vertically, horizontally, or at any desired angle. A further object is to provide means for cutting at any height desired, whereby trees may be cut near or far
from the ground and large or small logs sawed from the ground and
with equal facility.
apparatus for sorting chips. - h. Powers, Lincoln, N. H. The tank or recep-
tacle is filled with water, into which the tacle is filled with water, into which the
screened-out knots and large chips are discharged and in which the knots by their
greater specific gravity sink, while the lighter chips float, in combination with a series of perforated pipes arranged close to the water-
level, the issue-orifices all being faced in one direction, whereby the foating chips are continuously carried away by a surface current
produced by a serles of impinging jets of produced by a series of impinging jets of
water or air and under the infuence of which the floating chips are carried over a spillway and delivered to
to the rechipper.
elevator driving mechanism. - vis W. MASON, Providence, R. I. The invention is especially applicable in mechanism of the elevator driving class which is driven
electric motor. It relates especially versing mechanism, and concerns itself also witt the connection from the motor to the with the connectism. The object is to provide a reversing mechanism which will operate to apply
a brake automatically immediately upon the arresting of the forward motion and prior to the reversal of the motion.
measuring attachment for paperbox machines.-A. Bell, New York, N. Y The invention refers to improvements in attach-
ments for machines employed in placing the paper covering on the sides and ends of paste board boxes and covers, the ores the desire
provide a simple means whereby the length of material may be accurately meas ured, thus resulting in a considerable saving of paper at the overlap
Clock-A. D. Gary, Lavonia, Ga. The invention comprises the combination with the
clock-train having an escapement clock-train having an escapement shaft and
wheel, of a plate having a laterally-extending arm, a pallet for engaging the escapementwheel mounted on the arm, a pendulum
mounted to swing upon the plate, and a conmounted to swing upon the plate, and a con-
nection between the pallet and pendulum. The nection between the pallet and pendulum. The
plate is provided with a bearing for engaging the escapement-shaft and a slot leading there-
from to permit removal and attachment of the plate, and a rod secured to the plate and extending therebelow to swing the plate.
beating-in device for looms.-J. DALKRANIAN, New York, N. Y. The object of
this invention is to provide a device arranged to insure a proper beating in of the weft and in ppra-w in position during the formation of
the following row of pile-warp-thread loops,
and to keep the pairs of ground-warp threads properly separated for the pile warp-threa
needles to pass between adjacent pairs ground-warp threads. This is a division oo
the application for Letters Patent of the the application for Letters Patent of the
United States for a pile-fabric loom, formerls filed by Mr. Dalkranian.
Jig or ore-concentrator. - a. C
prises an inclined riffle upon which the ore is deposited and along which it is driven by an ntermittent air-blast. The dense stuff settles while the less dense matter is carried to a fows off through a pipe.
MOTOR-TOOL HOLDER-C. B. HAStings, New York, N. Y. The invention pertains to
notor-tools such as are adapted to be held in the hand when applied to the we held object is to produce a holder having means
for guiding the tool in a vertical plane and laving a construction enabling the tool-holder to be readily adjusted, so as to change the AUTOMATIC STOP FOR HOIST
AUTOMATIC STOP FOR HOISTS.-F. H. Kohleraner, Nanticoke, Pa. The object here nechanism that may be operated by the cage should it rise too high in its shaft by overprovide means whereby the valve or to may be closed and the brake set to instantly stop the engine should any of the parts be come deranged, such manual operation taking place without disturbing the automatic de vice, thus saving time and trouble of reseting
said device, as is necessary with the construcsaid device, as is necessary with the construc-
tion shown in a former patent granted to Mr. Kion shown

Prime Movers and Their Accessories.

 boiler-flue.-A. Van walters, Galion Ohio. The invention refers to fues or tubesas constructed in modern tubular boilers, and is especially useful in connection with steamobject is to provide a boiler-tube which effects a lasting and hermetically-tight joint between the tube and the fue-sheets, which can be
easily removed and replaced when worn out, easily removed and replaced when worn out,
and which tends to decrease the troublesome ncrustation encountered in steam-boilers.
pyromotor. - w. w. French, For Branch, Ind. In this patent the improvement refers to motors, the more particular object
being to produce a motor controlled directly by heat upon the principle of the expansion
and contraction of one or more metallic members. It further relates to means whereby the expansion and contraction of the metallic mem bers or member is caused to produce an ap reciable degree of motion
Explosion-engine.-h. D. Dibble, Mystic, S. D. The object of the invention is to
provide a gas or explosion engine arranged to utilize the motive agent to the fullest advan tage and from a previous explosion to compress the same to the igniting-point with a view to

Railways and Their Accessorles.

AUTOMATIC AIR-bRAKE AND STEAM COUPLING.-O. E. Leib and E. B. Wirte,
Trenton, N. J. The principal objects of the improvement are to provide means for effect-vir-brake making an air-tight joint between two
 ing an escape of air from each car when the
cars are uncoupled or when one is released from the other; furthermore, to prevent the in an uncupled air from the air-brake system in an uncoupled car, only allowing enough to
escape to set the brakes, and to apply the deice to both freight and passenger cars.
Grain-door--W. S. Gilleland, Newkirk, ination with a car having a door-opening provided with a sill, of doors hinged to the sides of the opening, a plurality of catches on one
of the doors and a plurality of rock-levers of the doors and a plurality of rock-levers
pivoted to the other. The levers have their voted to the other. The levers have their
outer ends provided with fianges for engaging the catches, the inner end of levers being ex ended to form a handle. A bar connects the
inner end of said levers to constrain them to more in unison, one being provided with an integral lug for directly engaging the sill when
the flanges are engaged with the catches. This prevents movement of the doors with respect Car-unloading apparatus.-A. buoubt and A. Crochet, Minerva, La. The invention relates to apparatus for unloading
sugar-cane from cars into the feeder for canemills. it is an improvement upon that form
of device in which a large rake is attached to ond carried by a horizontally-reciprocating
and
frame, which frame is hinged to sing vert frame, which frame is hinged to swing verti-
cally about a horizontal axis at one end, so as to be raised and lowered to permit the rake parate in any horizontal plane.
CAR-FENDER-M. WIck, New York, N. Y. The principal objects of the inventor are to
provide means for automatically releasing a series of movable elements when a portion of
the fender comes in contact with an obstacle so as to lift the obstacle upon a platform and uner thy danger of throwing the obstacle the size of a human body.

CAR-FENDER.-C. Hager and T. D. FIN-
ZIE, New York, N. Y. In the present patent CIE, New York, N. Y. In the present patent
the invention is an improvement in side fenders for street-railway cars, the same being
attached to and pendent from the body of a attached to and pendent from the body of a
car and hanging outside of and parallel to the car and hanging outside of and parallel to the
wheels, so as to practically inclose and preent access to the space between the ends or platforms of the car. Messrs. Hager and
Finizie have invented another improvement in the class of car-fenders which are detachably connected with the fronts or platforms of normal position in case of emergency.

Pertaining to Recreation.

GAME DEVICE.-R. D. Martin, Tampa,
Fla. The object of the game is to completely wrap a string around a mast with the inwrap a string around a mast with the in-
tention of making the ball strike the mast at chosen point. The ball having a fiexible connection with the mast, any impulse given
to the ball will cause the string constituting such connection to wind around the mast and
likewise unwind of its own accord. The purlikewise unwind of its own accord. The pur-
pose is to provide a portable game requiring pose is to provide a portabse g ,
the exercise of considerable skill.

Pertaining to Vehicles.

COOLER.-D Mc Ra Livingston, New York, N. Y. The invention is more particularly intended for the coolers of motor-vehicles procooler having lapped joints at the side edges formed by means of return-bent or inwardly projecting portions formed along the opposite edges or one plate or wan and of the companion plate or wall of the conduit through which the fuid to be cooled passes. In order that the hooked edge portions may be formed, slits at the angles are produced.
Mr. Livingston has invented another cooler Mr. Livingston has invented another cooler
and the improvement is intended principally or cles propelled by explosive-engines, and the present relates especially to that form of
cooler in which conduits are so bent as to present a diamond figure, the bends of the conduits bei
Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each. Please state the name of the patentee, title of the invention, and date of this paper.

Busimess and Personal KJants.

 cvery case ${ }^{\text {It }}$ is necessary to give the
number of the inquiry ${ }^{\text {mun }}$, co.

Marine Iron Werks. Chicago. Catalogue free Inquiry No. 8:08.-Wanted, manufacturers
Iconolometers for testing alcoocols.
U.S." Metal Poiish. Incianapois. Samples free.

Inquiry No. 8209.-Wanted, makers of steam
1 sell patents. To buy, or having one to sell, write
Chas. A. Scott, 719 Mutual Life Building, Butfalo. N. Y.
 For salee.-Water front in New York harbor with
x. y. Z.. Box 773, New York.

Inquiry No. 8.211 for washing buitons.

Tbe celebrated "Hornsby-Akroyd " Patent Safety Oil
Engine is built by the De La V ergne Machine Company Foot of East 138th Street, New York.
Inquiry No.
sda fountains.
Manufacturers of patent articles, dies, metas tumping, screw machine work, hardware specialties, machinery tools, and wood bber products. Quadriga
Manufacturing Company, 188 outh Canal St.. Chicago In aniry No. 8213.
brictemaking machinery
Automobile experts are in constant demand at high and practical, Atting men to drive, handle and repar Day and evening classes. special course for owners
New York School of Automobile Ensineers, 146 West New York school ork

parts of the corn stalk.
W ANTED.-Physical Culture Appliances. Because of my great success in the sale of appliances for the im provement of the healith and strength, 1 have found it
necessary to open another store at 1 West 42 d St., New
 hat line that would pas to push.
Prof. Anthony Barker, 1164 Broadway, N. Y. City.
Inquiry
burners.
N215.
Inainy No. 8216.--Wanted, makers of invalid Inquiry No. 821% : Wanted, the address of the
manufacturess of the
:Rapian
boiler tube cleaner.

In Inauiry No. 8221.-For makers of styptic pencils

Names and Address must accompany all liters or no atention will he paco thereto This is for

 sarte.ten Information on maters of personal
Writ than general interest cannot be expected

$\begin{array}{c}\text { price. } \\ \text { Minent for } \\ \text { marksed } \\ \text { mar or } \\ \text { or labeled. }\end{array}$
lination should be distinctly

(10036) H. M. writes: The ScienTIFIC American, of May 19, 1906, contains an answer to some queries from A. X. (9976) that
is, to say the least, different from the inforis, to say the least, different from the inforNotes and Queries column. Your paper has
the reputation of being a conservative scientific journal, reasonably accurate, and scientific journal, reasonably accurate, and one that
never stoons to persifiage. But this time the bounds were overstepped, with the usual result -the ridicule of the ediltor acted as a boomerang. In attempting to make sport of a letter
from a schoolboy, he made some mistakes that from a schoolboy, he made some mistakes that student. Among other things he says: "This letter claims to come from a high school, from a scholar, we assume. Now in the EI Paso
high school we are taught that the is applied only to a learned man, or one having great knowledge of literature or philology of course, etymologically considered the word scholar means "one who learns from a teacher," but good usage does not countenance its use
with that meaning. Again he says: "A body with that meaning. Again he says: "A body weighs more on the top of a mountain than
it does at sea level, at any time, since it is farther from the center of the earth on the mountain top." Our physics teacher taught us nat the maximum weight of a body is at the
surface of the earth (at the sea level). Of course, a body weighs more at the poles than it would at the equator, because in the former poBut, "if a body is removed above the sea level as on the top of a mountain or in a balloon, the
distance d between it and the center of the earth is increased and by reference to formula $\mathrm{Fg}=\frac{M M^{\prime}}{d^{2}} a$ we see that its weight is diminshed" (Hoadley's "Physics," p. 62). Fair play demands, Mr. Editor, that you publish an an
swer to your explanation in as prominent a place as was the original article. I am going to watch with interest to see if you dare pub-
lish this letter. In conclusion, give the next ooy a chance, for he will get over his carelessneous answers to questions dealing with elementary physics. A. Thank you, my lad, we us right. Over forty years' experience as professor has taught us to welcome correction, even from a high school scholar, and even on a point where the error was one of the types simply, or at most one of inadvertence. It
was so evident that "more" had been printed, where "less" should have been printed, that we had not supposed even the most captious and hypercritical would waste a postage stamp in
telling us the mistake, which we saw as soon telling us the mistake, which we saw as soon
as the paper came from the press. It was ss the paper came from the press. It was
so plain a slip that any one would be stupid sot to see it. Oh, yes, we do dare, we are bold
not
and bad enough to dare to print your letter, impertinence to an older person and all, and to say that we do not believe the teachers of the El Paso high school teach their students and scholars-we hope there are scholars thereany such manners as are found in your letter.
As to your limitation of the use of the word "scholar," we doubt if El Paso will be able to make this use of the word universal, espe-
cially as both Webster and the Century do not sive it first place. The Standard says, "When derstood in this latter sense"一that is "one who is thoroughly schooled, an erudite person," We agree with this usage, and wish it might become general. Our use of the word was in connection with the qualifying phrase, "from high school," and, as we understand English
athorities, was correct. Of course, one is quite at liberty to restrict the sense of a word in his vight whatever to find feust with one has no ight whatever to ind faut with another as you ized by any good authority. In this yout over zed by any good authority. In the the boung gentle-
step the bounds of good taste, as among men. We note with pleasure that you bear witness to the general and "reasonable" ac-
curacy of the ScIENTIFIC AMERICAN, and that it does not stoon to persifage. Persifiage is a very fine word for a high-school scholar to
use
It means literally to whistle. And most use It means literally to whistle. And most
high school boys do considerable of that. We shall be glad to hear from you again at any time, but will not publish another letter from
you of the sort you have sent us this time.
(10037) C. D. asks: 1. What point with poor glycerine. Let this stand a few below the freezing point do air, hydrogen, ni-
trogen, oxygen, become liguid? trogen, oxygen, become liquid? A. These tem
perature points are very nearly as follows perature points are very nearys as fonows
in Fahr. degrees, below zero: Air, 312; ; hydro-
gen, 42 ; nitrogen, 317 ; oxygen, 297. 2. Please gen, 422 ; nitrogen, 317 ; osygen, 297. 2. Please
give me the address of a reliable company that give me the address of a reliable company
sells chemicals and chemical apparatus. You would better deal with a frm in the cit near your home than to buy at a distane and
pay transportation charges. Our advertising columns very often contain the advertisements of these dealers. We do not advertise dealer
in the Notes and
Queries column. can I get some books on argon, helium, neon, krypton and xenon, and give me the prices of
them? A. We can send you many valuable papers on the rare gases of the atmosphere which have appeared in the Supplement.
Among them are argon, Nos. 1000, 1001, 1002 , Among them are argon, Nos. $1000,1001,1002$,
and others, price ten cents each; helium, Nos.
1056 , 1057 , price ten cents each 4 , what kind of chemical books, as organic chemistry, etc., so I can find liquid formene? What is
kinem
 in the Dispensatory. Its properties are those
of an anesthetic, similar to those of chloroform, soothing the pain of neuralgia and even causing insensibility. As it has been the cause
of death also, it is not used by physicians. It of death also, it is not used by physicians. It
is not a substance for an amateur to meddle is not a substance for an amateur to medde
with. 5. What are the uses of liguid air? A At present hiquid air is
(10038) C. J. K. asks: I beg to in quire if you can suggest anything that I can
use for a refiector in place of plate glass where the size required, 10 feet x 12 feet, makes plate glass impracticable to handle? A. Glas
is the best material for a reflector, since it does not tarnish with exposure to moisture and can be easily cleaned. It would not seem to be necessary to have a single piece of glass for
a reflector 10×12 feet. The difference could not be told if there were a large number of
pieces of glass set edge to edge in the frame making a total area as great as desired. This has been done in the varlous solar engines
which have been built. We do not think any (10039) J. E. N. writes: I have been a reader of your paper for many years, and
several times I have noticed where you have given receipts for, and published articles on, that to make a good ice cream it is necessary to use pure cream. Now I am telling you that you are mistaken there. There are trade a Simon pure one; it has never been pub-
lished to my knowledge, and the ice cream is as good from every point of vew as that made from pure cream. It is used by several
large dealers, the whites of the eggs being used for making icing for cakes and for cake making. Well, to proceed. To every quart of
unskimmed milk use one pound of granulated sugar and the yolks of five eggs and any flavor desired. Place the milk in an enameled dish, and heat slowly, stirring continually un-
til it just comes to a boil, then sbim and add the sugar and remove from the fire, stir with
a wooden stick until the sugar is dissolved, have the yolks of eggs in a dish well beaten up with a few quarts of warm (not hot) milk
and now add these, stirring the milk all the time. Place the milk can in a tub with cool, add your fiavor, and it is ready to freeze. it costs far less than pure cream, and makes, if anything, a far nicer article.
(10440) J. T. R writes: I have a primary battery of eighteen cells; two series
of nine connected in multiple, i.e., two positive and two negative wires connected. These are cells of chloride accumulator. The voltmete indicates 6.6 volts at storage battery and 6.5
volts at terminals of primary battery. Is my primary battery large errough, and what should be the potential of the charging plant described above? A. A storage battery should have a
charging current with a pressure of $21 / 2$ volts per cell. Three cells require $71 / 2$ volts. The
maximum charging rate should be $61 / 2$ amperes per square foot of surface of positive plate, reckoning both sides. You probably fall short in both pressure and current.
(10041) C. J. H. asks: What is the most desirable formula for making soap bub-
bles? I am in doubt in regard to the amount of glycerine and soft soap to use and as to
whether there were any other ingredients that could be added to advantage. A. A good soap bubble solution is not to be obtained by simply
mixing soft soap and glycerine. It is very difmixing soft soap and glycerine. It is very dif-
ficult to secure a good solution. Only the purest oleate of soda, or the best white soap, white Castile for example, can be used. Only
the best glycerine can be used. Price's glycerine is reliable. The manipulation is tedious. If, however, you wish to undertake it, pro-
ceed as follows: Take the purest caustic soda ceed as follows: Take the purest caustic soda
1 part, and dissolve in distilled water 40 to 50 parts. All parts by weight, of course. Take
pure oleic acid. Set it for a few days in a refrigerator and decant the clear fuid, if a separation takes place. of this take 7 parts,
and mix with the soda solution. Shake till the and mix with the soda solution. Shake till the
reaction is complete. Now add water up to reaction is complete. Now add water up to
350 parts with the previous water. To two
measures of the oleate of soda add one
days in a cool place, and siphon off the clear Some add a little ammonia to this, but it
works well as we ber (1021) w bl gla
(10042) A. P. B. says: I wish to pump the air out of a glass fruit jar, and in the jar for at least one year. Please tell me what pump to use and how to seal.
glass fruit jar is a poor style of bottle glass fruit jar is a poor style of bottle to use
for this purpose. or this purpose. Better get a ground-glass
toppered bottle with another opening near the stoppered bottle with another opening near the
neck, to which a small glass tube is sealed. Coat the stopper with petroleum, and after aving introduced the contents put in stopper and seal with hot sealing wax. The air is to
be drawn out through the other opening and glass tube, which is then sealed with a blowpipe and gas or alcohol flame. Any maker of scientific apparatus can furnish a smanl pump
as well as botle for this purpose An ordinary as well as bottle for this purpose. An ordinary
mechanical air pump used in the school laboratory will give a vacuum having not over ounces pressure absolute, or more than 14 pounds pressure less than the air. J. W.
Queen \& Co., Philadelphia, Pa., can furnish want.
(10043) F. H. B. writes: Please explain what metals, minerals or ores draw
lightning the most. We have a piece of about 10 acres on which lightning always strikes during a thunder shower. Land slopes to the lightning seldom strikes, that is, comparatively seldom. Rock near surface, sometimes cropping out, of a light gray color, looks like baswith young timber, hemlock, pine, white oak ed oak, maple, and hickory. I think full 90 per cent of the hemlocks have been struck by
lightning, while a large per cent of the other rees have also been struck. Out of 116 hemocks which measured 6 inches 20 feet above one end of the tract is a depression, at the bottom of which almost every tree has been struck by lightning. Live stock and game shun the tract, but not the land around it. The surface rock overlies a soft slate, which, judging from the dip, must be 300 feet below
the surface. Near the upper edge of the slate he surface. Near the upper edge of the slate, an oil collects, which, when collected on a
woolen cloth, burns. I have never been able oo collect enough to send you for a best, as it ows off with the water, and being trans
parent, is hard to find. Only when the spring is so low that no water runs away have I collected it on wooln cloth. A. It is a fact that some kinds of trees are struck more frequenty
by lightning than others. The Weather Bureau as investigated this matter and its brochure on the subject states that 54 per cent (the
highest) of all trees struck are oak and one highest) of all tres struck are oak and one
per cent (the lowest) beech. We do not think any ores or metals under the ground than water would do it. Nor would the min-
(10044) M. E. P. asks: 1. I am operating a single-phase light plant with about 800
lights. My transformer and liner are nearly lights. My transformer and liner are nearly all overloaded. Could I raise the voltage
from 1,000 to 2,000 volts and use 200 -volt lamps in place of 100 -volt, or would it be better to parallee the secondary coils in the
transformer and still run 100 -volt lamps and change the generator to 2,000 volts? A. An additional generator to relieve the overload is a more natural solution of your dificulty than to change an your lamps and trans.
formers, since 2,000 volts is a much greater strain on the insulation everywhere than 1,000 volts is. 2. What voltage is required to make
a 15 -inch spark, such as is given by a static machine? A. We have not exact data at hand for the voltage required to force a spark
through 15 inches of dry air under all circumstances. A paper read before the American 150,000 volts were required to force a dis charge between points, and that a a different pressure was necessary, if spheres, disks, etc.,
were emploged. We have from time to time published valuable papers concerning the work
of Prof. Trowbridge, of Harvard University of Prof. Trowbridge, of Harvard University,
in this direction. These can be had for ten in this direction. These can be had for ten
cents each. 3. Is the current or discharge cents each. 3. Is the current or discharge
from a static. machine giving 15-inch spark, will it produce death? A discharge throug very dangerous curren to encounter. Any discharge from a coil capable of giving such a spark should be
avoided. The only safe rule is not to touch the secondary while the coil is active; and if necessary to touch any part of the apparatus,
to place the hand not in use behind the back. No circuit can the be made through the body from arm to arm. 4. Will the 200 -volt
lamp last as long as the 100 -volt? A. One of the largest lamp makers says of 200 -volt
lamps: "Owing to the increased strain to which the carbons or filaments are subjected by the high voltage, these lamps are uncomeerciancy of our regular product is 4 watts
efficient per candle, and in its average life and main-
tenance of candle power it corresponds standard 100 to 125 -volt 3.1 watt lands," our shows that it will cost more to run a 200 volt lamp than a 100 -volt lamp for the same
(10045) T. D. asks: In a perfect com pound dynamo, would the neutral points vary with the load? A. Yes.
(10046) H. E. T. asks: 1. Is there an alloy approximately as soft as lead, and as
tenacious, malieable, and ductile as tenacious, malieable, and ductile as copper?
If so, what are the properties of the alloy? . There is no alloy known to us that is as soft as lead and as tenacious as copper. The alloys of lead and copper have no commercial not know the properties of such alloys.
do not 2. Is there any need (commercially speaking) now of a telephone repeater, since Dr. Pupin's
invention? In other words, could a telephone repeater have any other use than to increas the distance at which speech may be trans
mitted? A. There is the same need that there has always been. If such an instrument can be invented, it will enable speech to be transmitted not only to greater distances, but at a much
you refer.
(10047) J. M. S. writes : I have a small electric mouth lamp that when connected means of a a theosnating 104 -volt current, b volts to light it. Now what I want is to make a rheostat by covering either a pieice of wood
or iron with asbestos, and then placing same or iron with asbestos, and then placing same
in a lathe and winding it with German silver in a lathe and winding it with German silver
wire, so as to be able to cut the 104 volts down and not burn out my lamp. Can yo inform me what gage wire and how much
of it will it take to accomplish the desired results? A. We cannot give exact data for a what the current is which you use. But you man silver wire follows: Take 24 B . \& S . Ger Provide 375 feet, and wind into the coil as you propose. You can arrange a switch so
that the current may be adjusted; that is, that the current may be adjusted; that is,
make a variable rheostat; or you can by testthe light burn properly. You are probably have a small transformer for wour is to Such lamps can be run with a battery also.
(10048) M. McC. writes: A positive remedy for carbon brushes sparking is to soak the brushes for twenty-four hours in ordinary
machine ofl. Complaints I have read in columns of the Scientific american prompts the above and should be generally known.
had the same trouble and it occurred to me to try above remedy, and I find it does avoia sparking positively.
eases of dynamos whichn remedy for all disthe symptom called which show themselves by only act as a lubricator, and sparking may be due to a cause deeper than the surface of the
(10049) F. H. asks: Will you please tell me what kind of metal to use on contact
points on a gasoline engine electric and where to purchase the same? use platinum at the contact points for breaking a circuit where there will be a strong advertises in our columns can furnish the arti.
10050) A. S asks: 1 Would materials did tells be sufficient to run a six-candle lamp (10 volts,
1.5 amperes) ? If not, how many would be 1.5 amperess? If not, how many would be
required? A. No. Your lamp requires 1.5 amperes. This battery furnishes 30-1000 of rent as is needed for the lamp. bi mow shall I prepare the pastes used in the upper and
lower spirals? A. This battery is useful for testing purposes only, as the description states. The paste is prepared by mixing the solid
minium or litharge into a paste with dilute minum or litharge into a paste with dilute
sulphuric acid. This is the method in all sulphuric acid. This is the method in and
storage batteries using such pastes. 3. What is used as the electrolyte, and how is it made? A. Dilute sulphuric acid. You will have to buy the acid. You cannot very well mase
. Where could I get the battery charged? Charge the battery with a primary battery. A gravity battery is as good as any for the prpose.
(10051) N. D. writes: In your issue April 13 you mention sulphides of barium and calcium, and state "when properly pre-
pared." Are there any special directions for preparation, and how? A. To prepare a phos-
phorescent calcium sulphide, calcine clean oyster shells in order to burn out all but the calcium carbonate. Men reduce the shells Place this powder in layers in a crucible with lowers of sulphur. Cover the crucible to shut an hour. Let the whole cool while still corformed to a glass bottle, which cork tight to prevent the accession of moisture. Barium sulphide should be formed from witherite and
sulphur by heating in a crucible in the same sulphur
manner.
(10052) W. M. R. writes: I made some little time back the eight-light dynamo described in your valuable paper, designed by
Hopkins some twelve years ago or so. Having studied electricity at University College. of armature which I think have made material improvement in dynamo. The alterations were
these: Instead of using washers as sug.
gested, I cut washers out of 20 -gage charcoal fastened on to the armature by thick-end wash ers engaging a screw on armature shaft. After getting all firmly screwed up, I put into lathe and slotted out 24 grooves the breadth of 4 wires and 8 wires deep, and in these I wound he wires very carefully. By.this arrangement 1-16 inch distant from cheeks of field magnet. turned the field magnet upside down, with ose two pedestals (hollow) forming bearings or the ends of armature. I arranged the bear ings with an endless chain dipping six inches into oil chamber, with the result that I can light up 50 -volt lamps to full brilliancy at a speed of 1,660 , instead of 2,200 , the speed mentioned in your article. I have had the machine for several my house, driven by a Pelton wheel, for several months, and the bearings have not
an atom of shake and have only been filled up with oil once, as it circulates and runs back again. I thought possibly some of your readers would like to hear of my results. I would advise anyone attempting to make the machine to get the segments for commutator cast sepa-
rate. I tried both ways and found the latter rate. I tried both ways and found the latter preferable. made the commutator much
larger than the design. A. Of course, the ironarger than the design. A. Or course, the ironform of a dozen years ago. The results of the form of a dozen years ago. The
alterations are very satisfactory.
(10053) J. M. S. asks: 1. What size German silver wire and how long a piece
should I use to wind a rheostat to reduce an alternating current 7,200 amperes, 104 volts, own to 2 volts? Also size and amount of hoke for above results? A. The use of educe from 104 volts to 2 . A simple mode of getting the result would be to put a wire in series with an incandescent lamp, and take shunt from the wire at two points which have a resistance between them equal to about ne-fiftieth of the resistance of the lamp. The rom way, however, is to obtain a transformer will give you this raple of transformation If will give you this rate of transformation. If from 2,000 volts to 104 a second transformer like the first would carry it down to about 5 olts, which perhaps is near enough to your limit for your use. 2. How shall I proceed to construct an appliance for heating say a glass
of water, using same current, amount, size nd kind of wire? A. This you can do by eans of a small coil of wire in series with a amp. An arc lamp would give a quicker re-
sult. With an arc lamp use 12 or 14 B . \& $\mathrm{\delta}$. German silver wire. Wit
(10054) B. P. asks: Will you kindly furnish me with information regarding liquid air, its process of manufacture, cost, propermade regarding its uses and its dangers? A. We can send you ten good articles upon liquid air at ten cents each, or else the book upon
the subject by Sloane, for $\$ 2.50$ by mail. Liquid air has ad there are no dangers from it, if handled . one having knowledge of the usual properties of gases.
(10055) C. M. L.-The principal source of graphite in the United States is the
mines at Ticonderoga, N. Y., which furnish bout 200 tons per annum. It is also mined ear Raleigh, N. C., and in Virginia, Georgia, Iso in Nova Scotia. The best adaphite rom Coma conts per pound, according to quality Prices epend much upon the regularity of the sup depe
ply.
(10056) W. E. asks: Will you tell me how the voltage and internal resistance of
Bunsen cell can be calculated mathematically, or ject? A. The voltage and internal resistance of a battery are not calculated by mathematics. They are measured by instruments. The "Handbook of Electrical Testing," price $\$ 7.50$. This work is complete. A special book upon batteries is Carharts Primary Batteries,
(10057) X. writes: I wish to obtain some information which would be very accepttime, when the question of using gasoline engines on automobiles of different kinds is very ings, if possible, of a jump spark or induction coil that would be oblong in shape, without vibrator, light as possible, and to work on low voltage giving a one-quarter inch spark. A. The details for making an induction coil to give a spark one-quarter inch in length can be
found in Bonney's "Induction Coils," price $\$ 1$解 range the break in the combustion chamber or cylinder without special instructions. The shape may also be changed to adapt it to the
space allotted to it. The important thing is space allotted to it. The important thing is
the insulation and the windings. All else is secondary. Only a
upon so small a coil.
(10058) F. P. asks: 1. Is the effi ency of an electric motor affected if the body frame of the automobile is iron, or if mo-
tor is clad with wrought iron or other metal tor is clad with wrought iron or orther metal
instead of cast tron? A. The efficiency of am

electric motor is not affected by the material
of the frame of the carriage to which it is at of the frame of the carriage to which it is at
tached. Nor does it make any difference t the motor by what metal it is inclosed. cars is chiefly to prevent the escape of mag
netic lines into the space around the motor No metal but iron can do this, and cast iron
is cheaper than wrought iron. 2. Will wrought is cheaper than wrought iron. 2 . Will wrough
iron field magnets, instead of cast iron, in SUPPLEmENT 1195, double the efficiency of th
motors? If not, what winding will do it motors? If not, what winding will do it
A. Wrought iron will transmit about twice as many lines of force as cast iron; hence a give twice the effect of one of cast iron. If pinion wheel is placed on top of gear w
is it as efficient as if placed on the side? The position of the driving gear does not a too small, how should motors in SUPPLEMEN 1195 be wound so as to act as dynamos also
A. The winding of a motor does not need to b A. The winding of a motor does not need to is there any special danger on an electric aut mobile, whether still or moving, in a thunder
storm? A. An electric automobile is not ex posed to any more danger in a thunder-storm
than any other. We do not recall ever hear ing of any person being struck by lightning if U is a one-horse-power motor, with 3 -inch pinion meshing into 30 -inch gearwheel,
nected to 18 -inch rod, $J H$, and this nected to 18 -inch rod, $J H$, and this joined to 6 -foot lever $H F$, working on fulcrum
a, five feet from power end, what horse
power will be obtained at A on the bent axle, $C A B E$, which is connected to lever, $H F$
by 18 -inch rod, $A F$? A. With the arrangement you describe you will have at the end
of the train of wheels and levers one horse power less whatever has been lost in friction at the several bearings. No one can calculate
this. It must be found by experiment, and will depend upon the condition of the machine. done in a minute. It is not affected by the speed of motion nor by the weight lifted. If
the speed is great a less weight will be lifted by a horse-power; and if the weight is great,
the less will be the speed. Your arrangement reduces speed and increases pressure, or weight lifted, but the amount of power remains the
same. The 30 -inch gear moves one-tenth as fast as the gear which drives it, and the end as the small gear on the motor
(10059) J. F. C. asks: What is the fraction of power lost in the current produced by a generator which runs a motor, the conThat is, what is the renerator? Both are the same size. What size of a booster would be required to have both equal? A. A motor only thirty feet from
the dynamo which furnishes the current for running it has little or no drop of potential from that of the dynamo, and needs no booster.
The only loss is due to the heating of the coils by current
(10060) F. S. L. writes: I would like to know how to make a sparker or a spark
coil, and in what way it differs from an induc tion coil. I want to make a spark coil to us to ignite an acetylene gas jet. A. Spark coils
are made about ten inches long. The center is a core of iron wire as in an induction coil
It may be $\pi / 8$ inch in diameter. Insulate the core by wrapping it with paper which may be soaked in paraftine. Fit heads upon the ends of the core to hold the winding and wind four cotton-covered wire upon the core. Insulate the layers with paper. This coil is put in se
ries with a battery, and upon breaking the cirlights the gas. There is In this is the diff

$1591 \underset{\text { Broadway }}{\text { ASTER COMPAN }}$ N

How To Increase

Engine and Foot Lathes SUPPLIES. BEST MATERIALS. BEST
WORKMANSHIP. CATALOGUE FREE SEBASTIAN LATHE Co.i 120 culvert St., CIncinnatio

ELECTRO MOTOR, SIMPLE, HOW TO

THE CLIPPERCLIP

 a mipr wif ion
 44-60 East 23d Street, Now York, N. Y.
Grand Prize, Highest Award, St. Louls, 1904 .

onama manus
?"umpright Drills
smat tor Drat comaseme
:a mo. Bamese co. $1999 \stackrel{\text { Ruby }}{\text { Rub }}$

"Kaxinctl"

Whatdothe OwnersSay?
(I] That is the best question to ask, when selecting an artomobile.
Maxwell owners are the Maxwell's best advertisements.
The contentment and satisfaction that stands out all over them is the most 'catching'' thing in the motor world. Just talk to one of them and get the "sunny side" of the automobile question

 $\underset{\text { Members American Motor Car Masufacturers' Association }}{\text { MAXI }}$

It consists of Colored Charts bound up with explanatory leter-
press in strong cardboard binding, size $94 / 4$ by $135 / 4$ inches.
Price $\mathbf{\$ 1 . 5 0}$. By Mail, $\$ 1.57$
T. Y. WHITTAKER, 2 and 3 NEW York
 Make Bad Road
Send for Booklet " S "
WEED CHAIN TIRE GRIP COMPANY

FRONT DRIYE

WALRUS
ROOFING
Noms
MASBROUCK

RELIABLE MARINE ENGINES

art's book on polyphase machinery, dealing ex-
clusively with the principles, design and conclusively with the principles, design and con-
struction of modern mechanism of this character, will doubtless be found of assistance by the electrical engineer. Mathematical methods largely dispensed with and, although this may argely dispensed with and, although this may
appear to be contra to general practice in writings of this class, it will be found that the discussion hās been considerably simplified by this method without, however, materially limiting the information which the author gives about the chief characteristics of such mahinery. The book is hardly intended for the se of students, but was written for the pracising engineer.
Glass Writing, Embossing and Fascia
Work. Edited by Paul
Work. Edited by Paul N. Hasluck.
Philadelphia: David McKay, 1906. 32 mo. ; pp. 160 . Price, 50 cents. The information detailed in this handy little olume is edited by a writer who has contribdicrafts and it is in the convenient form han comprehensive series of short articles. It will be found of value for the artisan engaged in work of this character, as well as for the practical man in general.
Notes on Electrochemistry. By F. G.
Graw Publishing Com York: Mc12 mo .; pp. 145 . Price, $\$ 2$.
The latest contribution to the literature of as one of the most important practical arts-is this book by Dr. Wiechmann. While the compass of the work is limited, it gives an excellent general summary of the present state of the
art. The subject is treated in a practical art. The subject is treated in a practical manner without the elaboration of abstruse
theories. Unfortunately no descriptions of the theories. Unforus used are given, the or the contenting himself with elaboration of the principles underlying the process.
Electric Wiring, Diagranis, and Switce-
boards. By Newton Harrison, E.E.
New York: The Norman w,
ley Publishing Company, 1906.

$$
\begin{aligned}
& \text { ley Publishing } \begin{array}{c}
\text { Company, } \\
\text { 12mo.; pp. } 272 .
\end{array} \text { Price, } \$ 1.50 .
\end{aligned}
$$

This excellent little book was written espebeing to give a practical treatise on electric wiring, the construction of switchbords, and ject ref building wiring discussed, but brief explanations of the principles of transmission and the types of electrical machinery employed usually concise, though, unfortunately, the are contains a number of mistakes which it is hoped a second edition will correct.
Practical Pattern Makiña. By F. W.
Henley Publishing Company, 1906.
12 mo .; pp. 326 . Price, $\$ 2$.
The author is thoroughly conversant with his subject. While the literature of pattern making is voluminous, still there always seems work describes in lucid language the principles which underlie pattern making, as well
as the more practical side. It is very well illustrated.
Bossism and Monopoly. By Thomas
Carl Spelling. New York: D. Apple-
ton \& Co., 1906.16 mo ; pp. 358.
Price, $\$ 1.50$. The author states that: "The purpose of pointing out their lack of public spirit and need for a moral awakening in all that pertains to government, but is rather to state
boldly and without an attempt at concealment true conditions as the author sees them. It is
better to know the worst and to apply the emedy than to go straight to destruction under a delusion." The author's Preface is
dated November, 1905. Since that date there has beon much "muckrakin"" date ther has been much "muckraking," productive of
great good. The work is a valuable one deal-

Transuission of Heat Through Cold Storage Institution. By Charles F. Nostrand Company, 1905. 18mo.: pp. 41. Price, $\$ 1$.
A special book on a special subject. The itterature of ice making and refrigeration is
quite extensive already, but there always seems to be a field for a book which deals with one corner of a large industry. The re-
frigerating engineer will find this book inaluable.
Practical Handrailing. Edited by Paul
N. Hasluck. Philadel
N. Hasluck. Philadelphia: David Mc-

Kay, 1905. 18mo.; pp. 160. Price, $\$ 1$.
The art and craft of handrailing is justly considered the highest branch of carpentry. The present work begins at the very founda-
tion of subject, and works through the more difficult problems until the most com-都 prove of value to the American artisan.
Physical Optics. By Robert W. Wood.
1905 . 8vo.; pp. 546 . Price, $\$ 3.50$.
an advanced text-book for students who wish to obtain a special knowledge of a very
important branch of physics. The author is

