Vol. xov.-No. 19


SCIENTIFIC AMERICAN
ESTABLISHED 1845
MUNN \& CO.
Editors and Proprietors
Published Weekly at
No. 361 Broadway, New York

## terms to subscribers



## the soientific american publications



The combined sabseription rates and rates to foreign countries
be furnished uno appliction
Remit by postal or express mones order, or by bank draft or check.
MUNN \& CO., 361 Broadway, New York.

## NEW YORK, SATURDAY, NOVEMBER 10, 1906.

The Editor isalways glad to receive for examination 1llustrated
articles on subjects of timely interest. if the phot ographs are
 will receive special at

THE ELECTRIC RAILROAD WRECK AT ATLANTIC CITY
It is a most unhappy coincidence that on the same date on which we publish in the Supplement a de scription of the very fine work of electrifying the West Jersey and Sea Shore Branch of the Pennsylvania Railroad, we should have to comment in the Scienti fic American upon a tragic accident which occurred soon after the opening of that road, whereby between fifty and sixty people lost their lives. As we go to press, the coroner's jury is at work upon the investigation of the wreck, which occurred on October 28, and it is too early to give any definite opinion as to the cause of the derailment, by which a whole train was thrown from the drawbridge into the water, and three-fourths of its passengers drowned in over 20 feet of water. Pending the findings of the jury and the report of other investigations which will be undertaken by experts who are qualified to judge of the conditions, it is only an act of common fairness to the company to state that this work of electrification, as described in the Supplement, seems to have been carried out with that thoroughness and disregard of cost which characterizes first-class work. Shortly before reaching the "Thoroughfare"-a tidal estuary which flows beneath the railroad at a point about two miles from Atlantic City-the tracks of the new electric road are carried by an elevated viaduct over the tracks of the Pennsylvania and Reading line, and this work is thoroughly up-to-date, consisting of a steel superstruc ture carried on concrete piers. Other evidences of the high character of the work are that over a considerable part of the 65 miles from Camden, N. J., to Atlantic City, the tracks are laid with 100 -pound steel, which is the heaviest weight used on any steam railroad to-day while over the rest of the distance 85 -pound rail is used. The rolling stock is also of the most modern type, and broadly similar to that which will be used on the Pennsylvania Railroad main line improvements. The cause of this terrible accident, then, is to be sought for, not in poor construction, but in certain accidental conditions which developed at the drawbridge at the time the fatal train was crossing. The track, the bridge, and the car would seem to have been of first-class construction, and the accident would seem to have been due to some misplacement, either of the draw or the rails, or possibly to the slipping of one of the wheels on its axle-the cause to which a recent derailment in the New York Subway was at tributed.
As far as one can glean the truth from the confused and contradictory statements of railway employees, passengers, and onlookers, and from the incomplete evidence at the inquest, we are inclined to think that the draw, which had been opened for the passage of a small yacht shortly before the train approached, was not perfectly aligned when the wheels of the first trucks passed from the approach on to the draw itself. That these were the conditions is strongly suggested by the reported testimony of the bridge tender at the inquest, who stated, according to press accounts, that the rails at the drawbridge buckled at times; that he had to hammer them back into place, and that he had received instructions to saw them shorter if they buckled again. This would indicate that the rails on the downgrade of the overhead crossing over the Pennsylvania and Reading Railroad track had been creeping toward, the draw, and that possibly on this Sunday morning there was interference trouble between the rail ends, which prevented a proper closure of the draw and alignment of the track. in the interests of future railroad operations, particularly at drawbridges, it is to be hoped that the underlying causes of this disaster will be accurately determined.

SINGLE-PHASE ELECTRIC ROAD BETWEEN BALTIMORE AND THE NATIONAL CAPITAL.
Single-phase electric traction has come to stay. The latest evidence of this is shown in the announcement that a single-phase electric road is about to be built connecting Baltimore and Washington, D. C.. Some three years ago a company was formed to carry out this project; but after the contract had been let for the equipment the plans were abandoned. Owing to the failure of the first single-phase project, a most careful engineering study was made of the conditions; and the final solution of the problem, and the construction of the road by an entirely new company, are proof of the merit of the present single-phase system. The contract for the entire electrical equipment of the rejuvenated road has been let to the General Electric Company.
The total length of the new road is about 60 miles, double-tracked throughout. The main line will connect Baltimore and Washington, and there will be a branch line, from a point on the main line near Odenton, extending to Annapolis. A very complete rolling. stock equipment will be provided for both express and local service between the cities mentioned. Nineteen express cars will be operated, each capable of making 60 miles an hour on a level track; and two heavy construction cars will be equipped, each powerful enough to haul a train of five ordinary passenger coaches at 45 miles an hour. Four of the new type General Electric single-phase railway motors will be installed to drive each of these cars. These motors will each have a capacity of 125 horse-power, and as in the case of the New Haven equipment, they can be operated not only on the single-phase electric trolley of the main line, but also on the direct-current trolley sections within the city limits of Baltimore and Washington.

Two motors of this same size will be used on the local service cars. All the cars will be equipped with the multiple-unit system of control, by means of which the cars can be operated singly or in trains, on direct current or alternating current, by one motorman. Express cars will run every 15 minutes between Baltimore and Washington, the total time being 72 min utes. Power for the new road will be purchased from the Potomac Electric Company at Washington, D. C., and will be delivered by that company to suitable substations located along the line, which will supply single-phase current to the trolley at a potential of 6,600 volts. As this is one of the largest installations of exclusively single-phase railway equipment, the construction and operation of this road will be watched with great interest in railway and engineering circles.

## NEW RATING OF THE WORLD'S FLEETS

If the system of rating the fighting values of the world's fleets adopted in the latest issue of "Fighting Ships" be correct, we must entirely revise our estimate of the relative power of some of the leading navies. France yields second place to the United States, and Germany, which before the Japanese war was considered to be at least equal if not superior to the United States, moves down to fifth position with Japan ahead of her, Russia being sixth, Italy seventh, and Austria in the eighth position. The placing of the German navy below that of Japan in an estimate of relative fighting power would seem, at the first blush, to savor of absurdity; but when we begin to examine into the basis of comparison adopted in "Fighting Ships," we finc that the change has been made on grounds which are at least plausible.

This startling advancement of some of the navies and depreciation of others is due to the fact that the new system of rating is based strictly upon the stern lessons of the Japanese war, in which, during a few short months, the third greatest navy of the world was practically swept out of existence. Outside of its reassertion of the value of a trained personnel, that war emphasized the importance of the big, heavily armed, and heavily armored battleship. Furthermore it is the unanimous opinion of naval experts that the war established the overwhelming value of the heavy long-range gun. It proved, once more, that the fina command of the sea, other things being equal, will lie with the navy which can bring the largest number of big guns to bear, when the rival fleets are facing each other in line of battle. This fact has been so far accepted that the building programmes of all navies for the present year are based entirely upon its recognition.
In the new rearrangement of the navies of the world in the order of their fighting importance, above referred to, the ships are set down in parallels of fighting value, with the battleship "Dreadnought" taken as the unit. In the estimate are included all the warships of the various fleets that are built, building, or proposed. The high position given to the United States and to Japan is due mainly to the fact that fortunately neither of these powers was affected by the agitation of a few years ago in favor of installing guns of medium caliber in the main batteries
of warships, and abolishing the 12 -inch gun. As a consequence, not one of the first-class battleships of either navy carries, as its main armament, anything lighter than the 12 -inch gun, while eight of our own ships mount a 13 -inch piece of great power and accuracy. The German designers, however, in the ten years from 1890 to 1900 , were leading exponents of the school which advocated the substitution of a lighter and handier gun in place of the then cumbersome, and comparatively slow-firing, 12 -inch gun. As a consequence, every one of her battleships built during that date carries, in its main battery, a weapon which most of the leading powers to-day consider to be not even sufficiently powerful for use in the intermediate battery of battleships or the main battery of cruisers. The "Kaiser Friedrich III." class of five ships, and even the "Wittelsbach" class of five ships launched as late as 1901, mount nothing heavier than the Krupp 9.4 -inch gun. Even the ten latest ships of the "Braunschweig" and "Deutschland" classes carry only a 40 -caliber 11 -inch piece, and there is not a battleship afloat in the whole German navy to-day that mounts a 12 -inch gun.
In the "Fighting Ships" comparison the warships are rated under fourteen classes, with the "Dread nought" as the unit; and it must be borne in mind that her high efficiency is due not alone to her ten wellprotected 12 -inch guns, but also very largely to her abnormally high speed. In the First Class the British have the "Dreadnought" completed and two new "Dreadnoughts" proposed. The United States has the "South Carolina" and "Michigan" and the new proposed 20,000 -ton ship. France has nothing pro posed of equal efficiency to the "Dreadnought." Japan has two new vessels proposed, and Germany none, of the same power as the unit ship.
In the Second Class, the British have two ships of the "Lord Nelson" type, carrying four 12 -inch and ten 9.2 -inch guns, and two so-called armored cruisers which will probably be an improved "Inflexible" type, carrying eight or more 12 -inch guns. The United States has nothing in this class. The French have six of the "Danton" type carrying four 12 's and twelve 9.4's. The Japanese have two "Akis," mounting four 12's and several 10 's; the Germans two of the "Ersatz Sachsen" type, mounting fourteen 11-inch guns. In the Third Class the British have eight of the "King Edward" type carrying four 12 's and four 9.2 's, and three of the "Inflexible" type mounting eight 12 's. In this class we have a very strong representation consisting of six of the "Kansas" and "Louisiana" type mounting four 12 's and eight 8 's; five "New Jerseys" of the same battery power, and two "Idahos," also carrying four 12 's and eight 8 's. France has six ships of the "Liberte"" and "Republique" types carrying four 12 's, and a numerous battery of 6.4 's or 7.6 's. Japan has two "Kashimas" carrying four 12's and four 10 's. Germany has nothing in this class. In the Fourth Class Great Britain has twenty-five ships of the "London," "Duncan," "Warrior," and "Black Prince" types, the two last-named being cruisers. We have three of the "Maine" type and four of the cruiser "Washington" type, the latter mounting each four 10 -inch in the main battery. The French have the "Suffren" and "Iena"; the Japanese nine ships, including those that were engaged in the war, two the former Russian battleships, the "Orel" and "Czareitch," and four new cruisers, now under construction in Japan, which will carry 10 -inch or 12 -inch guns in the main battery. In this class Germany has a strong showing, including five "Deutschlands" and five "Braunschweigs," each carrying four 11-inch guns, besides two new cruisers each mounting eight 8.2's, In the Fifth Class Great Britain has fifteen battleships of the "Majestic" and "Canopus" types. We have three "Alabamas"; the French seven battleships and three powerful cruisers, and Japan three battleships, namely, the "Fuji" and two that were captured from Russia. Germany has no ship in this class. In the Sixth Class the British have twenty ships, including seven "Royal Sovereigns," the "Hood," two "Trafalgars," and ten armored cruisers of the "Drake" and "Cressy" types, the latter carrying 9.2 's in their main battery. In this class also the United States is strong, having twelve ships, including two of the "Kearsarge" type, three "Indianas," one "Iowa," and the six armored cruisers of the "California" type. France has seven ships; Japan one; and it is to this class that, because of the light character of their armament, ten of the latest battleships of the German navy, launchd between 1896 and 1901, are relegated.
It is not necessary to pursue the comparison further, but attention should be drawn to the new value assumed by that most efficient type of ship, the armored cruiser. The placing of some of these ships in the same class with the battleships is justified by the fact that in the engagements of the late war Togo did not hesitate to put his armored cruisers in the front line of battle. Under this method of rating, the author of "Fighting Ships" has placed those fine armored cruisers of our navy, the "Washington," and "Tennessee," and their sisters, in the same class wilh
the British battleships "Duncan" ard "Formidable," the Japanese battleship "Mikasa," and the German battleships of the "Deutschland" cla\$s. In the same class also he places the British cruistrs of the "Warrior" type. The compiler of these tables even prefers the "Washington," with its high velocity 10 -inch armor piercing rifle, high speed, and great coal endurance, to our own three "Alabamas," which are placed in a class below it. The high position given to our navy in this table, which has been drawn' by the man who in all Great Britain has probably given the greatest amount of attention and thought to this particular phase of the subject, is an indorsement of that traditional policy of the United States navy, dating from its earliest days, which has insisted that our ships must carry the heaviest possible !battery of long-range guns.

## A french " Juyigle."

The few Americans to whom/European opinion concedes the possession of a sense of shame and a liking for decency, and who are supposed to have been sitting with bowed heads and tightly-clamped nostrils ever since the horrors of Pedkkingtown were exposed, may stiffen their spines a bit-without, however, relaxing the death grip on their noses. They are be ginning to learn that "there are others." All sorts of horrible stories have come from England, and now M. Martel (appropriate nalme!), chief of the animal inspection service of Paris, is hammering French butchers and telling them to go to Germany, regard less of Sedan and the lost provinces, and learn that the Middle Ages no longer exist beyond the French frontier. In an article in a Frencb scientific journal (La Science au XXme Siècle) M. IIartel, who surely ought to know what he is writing about, describes a state of affairs so primitive and repugnant, that its toleration in the twent eth century in the eniightened city of Paris seems :bsolutely incredible. For, singularly enough, cond; ions are even worse in Paris than elsewhere in Frazice.
M. Martel impartially distributes the blame for the rudimentary equipment and exceeding filthiness of the 918 public abattoirs of France among ignorant architects, routine-enslaved butchers, careless municipal autnui:\%ies, and indifferent consumers. French de signers of abattoirs, he says, know nothing of the needs of the business or the importance of sanitary inspection, nd are the laughing stock of the designers of forejgn establishments. The French idea of a public abattoir has not changed in a century because the powerful butchers' syndicates have always maintained the principle that the butcher is master in his own shop, and may defy the inspectors.
The old provincial establishments, built long before there were any public abattoirs in Paris, are better planned than the newest Parisian abattoirs, for at first the advantage of working together was recognized. But the Parisian butcher would not abandon his private killing room, connected with his shop, except upon condition of finding precisely similar accommodations at the public abattoir. Consequently, the abattoirs have become agglomerations of private slaughter houses, in which everything is done in the most primitive fashion, and sanitary supervision is very difficult.
Many French cities, in order to avoid the expense of erecting public abattoirs, have conceded the privilege of building and managing them to individuals and corporations-most of the contracts being very disadvantageous to the city, and so drawn as to block all progress, for, as in Paris, the butchers use all their influence in favor of the system of many small killing rooms.
In France, as elsewhere, the public has remained indifferent to the cause of reform-especially the poorer classes, which are most exposed to the dangers of unwholesome meat. Last year a deputy, in proposing a law (which did not pass) for the extension of the system of public abattoirs, gave utterance to the following naïve confession of impotence: "We must content ourselves with the hope that small municipalities may recognize their duty, and invite the veterinary to inspect the private slaughter houses at the first suspicion of disease."
The average French abattoir consists of a series of stone-walled killing cells, about fifteen feet wide and thirty feet long, alternating with larger and more open halls or courts, which are used for the reception of cattle and for work of various sorts, including slaughtering when the adjacent cells are filled with carcasses. None of the great abattoirs of Paris possesses the modern appliances which are used in Germany and elsewhere for the slaughtering of animals and the dressing, hoisting, and aerial transport of carcasses. Many of the killing cells are poorly lighted, and in some of them lamps and candles must be used when artificial light is needed on winter mornings! The courts are exceedingly filthy. Here stomachs and intestines are cleaned, and their contents, with miscellaneous offal and embryos in every stage of development, are thrown pell mell on the blood-soaked soil. The drovers' dogs are allowed to feast on this
carrion, through which the sanitary inspectors must pick their way to the dimly-lighted killing cells.

This appetizing picture is hardly more astounding than the information that no abattoirs in Paris, and only two in France, possess cooling or cold storage rooms.
On the other hand, the public abattoirs of Germany are, in M. Martel's opinion, models of construction, equipment, operation, and inspection. Twenty-five years ago Germany possessed few public abattoirs, but now there are more than four hundred in Prussia alone. The importance of cold storage was recognized fifteen years ago. Many of the German public abattoirs are controlled by syndicates of butchers, who appreciate the advantages of refrigeration, general killing rooms, and machine hoists and carriers. On these points, however, America has little to learn from Germany. The special merits of the German establishments consist in cleanliness and vigorous sanitary inspection.
A peculiar German institution, which has been introduced into some other countries, appears at first sight anything but attractive to American eyes. The freibank is a shop devoted to the public and official sale of condemned meat which has, theoretically, been made wholesome by sterilization. Sometimes - the freibank is attached to the sanitary department of the abattoir, and is under the control both of the police and of the inspection service of the abattoir; sometimes it is in the city, in which case the supervision of the inspectors is less strict. But in every case the meat is sterilized in the sanitary department of the abattoir by methods which involve as little loss of weight and food value, and as little alteration in appearance and flavor, as possible. For example, meat which contains tapeworm larvæ is submitted to prolonged refrigeration, while tuberculous meat is simply heated to a high temperature in closed vessels.

The prices of meats sold at the freibank are fixed by the local authorities, and the quantity sold to a single purchaser is limited-usually to about six pounds. This restriction makes it impossible for keepers of hotels, restaurants, and boarding houses to feed their unsuspecting "paying guests" on this officially "cured" meat.
The freibank is rapidly becoming common in Germany, especially in the north. It is compulsory in Prussia and Saxony. In Saxony it has been gravely proposed to establish freibanke in the fire-engine houses in small towns. Austria, Belgium, and Switzerland are adopting the freibank, and it is making progress in Italy, in the face of violent opposition. In Saxony, in 1902, of each one hundred beeves slaughtered, ninety-three were admitted to unrestricted sale and five and a half were sold at the freibank-the remaining one and a half, presumably, having been condemned beyond redemption. More than three million pounds Berlin.
The freibank does not exist in France, and M. Mar. tel thinks that the French idea of equality will prevent its establishment there. But he points out that the law of supply and demand creates freibänke of a very different sort, in which meat unfit for food is sold to customers who can not afford to buy any other. Probably we free and equal-and free and easyAmericans prefer the same system.

## TULARE LAKE BASIN AGAIN FILLING UP

Tulare Lake, once a prominent feature on all old maps of California, and at the time enjoying the distinction of being the largest body of fresh water west of the Mississippi River, is located in the extreme southern part of San Joaquin County, at an altitude of about 200 feet above tidewater. In the forties its superficial area is said to have exceeded 1,200 square miles, but in 1868 its dimensions had shrunk to 760 square miles, and twenty years later to less than 200. Occasional floods have raised the level of the lake, but the general tendency has been toward obliteration.
Originally the lake, by a well-defined outlet, emptied into the San Joaquin River, but sedimentary deposits have gradually built up a dike which obstructed the flow of waters and made of the Tulare basin an independent system of its own. The lake receives the waters of Kings, o, Tule, White, Waweah, Kern, and other rivers, each draining large sections of country, and in periods of flood carrying immense volumes of water. Though of great superficial dimensions the lake is extremely shallow, the deepest part being only 30 feet in depth, while evaporation exceeds 8 feet an nually. Tulare Lake has for ages been the depository of all the sediment brought down from the Sierra Nevada Mountains by the rivers of the basin, which formed a soil of the greatest fertility and, but for a liability to flood, the wide plain constituting the basin would have been the site of extensive agricultural development and great productiveness.

Private enterprise aided by the State has made several ineffective attempts to re-open the barrier which prevents the surplus waters from flowing back through the old channel, and thus draining the whole basin,
but the undertaking involved dredging a channel 30 miles long and, in places, 30 feet in depth, and re quired an outlay of capital beyond the ability of the district to raise, though it is estimated some three quarters of a million acres would be reclaimed and made fit for cultivation if the project were carried out. Within the last ten years Tulare Lake has been visibly growing less in dimensions, and the belief in its permanent disappearance has become settled in the minds of those who were interested in the land once covered by its waters. Several reclamation district were organized, appropriating 150,000 acres of the old lake bed, and a large area put under cultivation. The fertility of the land was demonstrated and immense crops were raised, the land being protected by levees and carefully drained at an expense of several mil lions. Faith in the future was stimulated by absence of floods, and the ease with which the surplus waters of the rivers were disposed of through the customary channels, and by the belief in the capacity of the numerous irrigating districts to consume all the waters of all the rivers which normally discharge into the lake; moreover, the rainfall of the region for over ten years had been light, and the change in the seasons seemed to have become permanent
The present year opened with less than the usual rainfall, and more land was put under cultivation in Tulare basin than ever before. Thousands of acres which no plow had ever touched were planted to grain and fruit, and up to the first of February the outlook of the lake dwellers was most alluring. A vast amount had been laid out in permanent improvements and farming machinery, and appearance flattered the most exalted hopes of abundant crops of every description. These would have been fulfilled had not the early months of 1906 violated all precedent, and proved the most extraordinary in point of rainfall in the history of the State. Conditions were reversed. All the re gion included in the upper part of San Joaquin Valley was drenched with continuous rains for two months, and every watercourse emptied unprecedented floods and, having no outlet, covered the bed of Tulare Lake to a depth which submerged every acre of cultivated land within its boundaries, swallowing up all crops and improvements and utterly destroying the results of ten years of unremitting work expended by the industrious colonists. Where were once wide-spreading tracts of highly-cultivated farms there is now but a waste of waters, above which rise the ruins of great harvesters and the wrecks of homes. The loss cannot yet be estimated, but is widespread and will run into millions. There is no prospect of the lake resuming its level of the early part of the year, when not over en square miles of land was submerged, for the rivers are still pouring great floods into the basin, and will continue to do so for the next six months, as the present high stages will be succeeded by the usual summer flood arising from melting snows from the Sierras, and is sure to be of unexampled magnitude. Observers report a depth of snow on the summit of the eastern ranges of 22 to 30 feet, extending to low altitudes, and as this will not begin melting before the month of June, the outlook for Tulare is ominous.
The general belief is that no farther attempt to reclaim the vast basin will again be tried until the old outlet into the San Joaquin River is opened, and a sufficient channel to carry any possible flood dredged.

## THE CURRENT SUPPLEMENT.

The current Supplement, No. 1610, contains an unusual number of valuable technical articles. A Koerting 200 -horse-power valveless two-cycle petroleum engine for submarine boats is described and illustrated by the English correspondent of the Scientific American. The Editor has made arrangements to publish a series of articles on solders. The first of these ap pears in the current number of the Supplement. W. B. Gump writes on the properties of the series transformer. ' Most valuable is 'Dr. Eugene Haanel's discussion of the electric smelting of Canadian iron ores. The electric railway on which the unfortunate accident at Atlantic City recently occurred is described n full, and its rolling stock illustrated. How hotair balloons are inflated is told in a clear and wellillustrated article. Dr. Theodor Koller gives some very good suggestions on the utilization of waste materials. The Editor hopes to publish a series of articles on this subject. In the present installment the utilization of wood waste and horn shavings is discussed.

The proposal to transmit electricity generated at the Victoria Falls to Pretoria and Johannesburg is taking shape, and a first issue of capital will, it is said, be announced within the next few weeks. The distance from the Falls to the Rand as the crow flies is 600 miles, but it will be necessary to make deviations that will increase the distance to be covered to nearly 700 miles. The extraordinary pressure of 150,000 volts is proposed. At the outset provision is to be made for 0,000 horse-power, but this may be increased as necessity arises.

THE NEW DUELING SCHOOL IN PARIS
It seems that after all the absurd so-called "duels" which we read about as having taken place in France.


A Student at the Dueling School Wears a Mask Which Will Protect Him from Injury but Which Will Enable Him to See His Target.
Germany, and Italy, may really in the near future turn out to be very lethal affairs inceed. Hitherto, if an officer, a lawyer, a journalist, or other insulted a colleague, seconds exchanged visits, a meeting was arranged, and shots fired with quite farcical results as a general rule; for ordinarily the average professional man, even in a military nation like France, is a deplorably bad shot, and there was usually no more visible result after the so-called "duel" than an amusing paragraph in the papers.
That the French mean business in the near future, however, in this matter, will be seen from the fact that regular dueling schools have just been established in Paris, as well as in Rome and Berlin and Vienna-not merely for swordsmanship alone, but also for regular practice with the long-barreled dueling pistol. The principals wear long padded overalls, and curious masks, like those of the deep-sea diver, with a very thick glass plaque in front of the face.

The "bullets" used are pellets of clay, which, however, might do very serious damage to the pupils in these remarkable academies were it not for the glass protection over the face. Lessons are first of all given in the elaborate etiquette of dueling, and next comes instruction in the necessary "deportment."
Last and most important of all comes the duel proper, with the measuring out of the ground, the loading of the powerful spring pistols with the soft clay
balls, and the aiming on the part of each combatant at a vital spot-usually the head. No doubt the knowledge that the shooting is innocuous tends to make the duelists' aim very accurate, but there can also be no question that it familiarizes a man with the entire routine of a procedure which, without this initiation, would be extremely disconcerting to the bravest
Needless to say, the majority of the pupils by no means have real duels upon their hands; but among a passionate people like the French, qaick to anger and to avenge real or fancied insult, there is no lack of attendance at the various schools, of which three or four have already been opened in the French capital. The largest of these is a handsome saloon on the first floor in the Rue Castiglione, and its séances are at tended by crowds of the gilded youth of Paris, who are attracted thither by the novelty of firing direct at the living man, and watching the comedy of farcical duels, which may become very real ones at a day's notice.

## COMPARISON OF A TURBINE AND A RECIPROCATING

 ENGINE FOR THE UNITED STATES NAVY.Although we have been rather late in taking up the question of the marine turbine in this country, it is gratifying to know that the two most successful forms of the turbine, the Parsons and the Curtis, the former a British, and the latter an American development, are now under construction for use in American-built vessels. Of the various marine turbine installations proposed or in course of construction, perhaps the most interesting is that which is being built by the Fore River Shipbuilding Company for the United States scout "Salem." The "Salem" is one of three 24 -knot ships which were authorized in 1904, and whose contract was signed in May of 1905. In designing these vessels, the government wisely determined to use the opportunity here afforded to test the relative efficiency of the turbine and the reciprocating engine in the propulsion of fast ships. The contract for the construction of two of the vessels, the "Birmingham" and the "Salem," was awarded to the Fore River Shipbuilding Company, and the third vessel was given to the Bath Iron Works, Bath, Me. The two ships which are being built by the Fore River Company, the "Birmingham" and the "Salem," will be equipped respectively with reciprocating engines and Curtis turbines, while the "Chester" will be driven by Parsons turbines. The engines of the "Birmingham" will be of the twin-screw vertical expansion type; those of the "Chester" will consist of four turbines, driving four propellers, while the 'Salem"' will be driven by twin-screw turbines.
These navy scouts will be 420 feet long, 47 feet 1 inch in beam, and the mean draft will be 16 feet 9 inches, on which draft they will displace 3,750 tons, the full-load draft being 4,687 tons. Each ship will be armed with twelve 3 -inch rapid-fire guns and two of the new 21 -inch turbine torpedo tubes. The contract calls for a speed of 24 knots with a development of 16,000 horse-power.
The accompanying engraving affords a striking comparison of one of the Curtis turbines built for the "Salem" and one of the triple-expansion marine en-
gines built for the battleship "Vermont." The turbine is of 8,000 brake horse-power and the reciprocating engine of 8,250 horse-potwer. A comparison of the dimensions


How the Polite Arta of Dueling is Learned in France. Thus Garbed, 'Iwo Men Fire Clay Bullets at Each Oiher.
and weights of the two engines is greatly in favor the rotary type.
turbine engine.

| ngth over all ............ 16 feet $23 / 1$ |  |
| :---: | :---: |
| Width over all | . 13 feet ${ }_{\text {E }}$ |
| Height over all | . 12 feet 6 |
| Length over stuff | . 14 feet 51/2 |
| Length over all, | . 23 feet 7 |
| Size |  |
| 7 stage, R. P. M | . . . . . . |
| Weight | . 1 |

Length over all.............. 33 feet $61 / 2$ inches. Width over all............... 11 feet 3 inches. Height over all............... 21 feet 9 inches. Length over all, cylinders.. 32 feet 9 inches. Length over all, crankshaft. 31 feet 1 inch.
R. P. M..
.... 120
Weight
153 tons.
The above shows that on practically every point of comparison recorded, the turbine has an advantage and particularly in the matter of length, height, and weight, being only half as long, not much over half as high, and only two-thirds as heavy. The tests on an experimental turbine, built expressly for testing this type of turbine, show that in steam consumption there is a proportionately fine economy


Turbine for Scout "Salem."
Length, 16 feet $23 / 4$ inches, Helght. 12 feet 6 inches. Weight, 102 tons.

THE PARSEVAL DIRIGIBLE AIRSHIP.
Y dr. alfred gra witz
The ability of steering motor-driven balloons imparts to the dirigible type a considerable military value. Endeavors have therefore been made in the German army to design a suitable type of dirigible balloon, the more so as the same problem has been recently solved with some satisfaction in the French army. The attempt derives additional impor tance from the fact that wireless telegraphy affords a means oí communication between the airship and the commanding officers.

It may be said that whenever the propelling mech anism is disabled, the craft becomes a freely-moving balloon exposed to the caprices of the atmosphere. By reason of the great dimensions of the airship, a clever operator may even then be able, by utilizing the contrary winds that blow at different heights, to return to his starting point The most valuable feature of a balloon as compared with other types of air ship is the minimum of danger attend ing a landing. The main difficulty met with in designing a dirigible airship is the problem of wind currents. On ac count of these the proper speed of the balloon should be higher than the veloc ity of the wind. Whenever this is not the case, the balloon will in fact drift away. Modern racing automobiles are driven at such high speeds, despite their comparative lightness, that a solution of this problem is rendered possible. Still another difficulty is that of designing a balloon with sufficient rigidity and stiff ness to deal with any propelling motor forces and to insure a sufficient stability en route. Without being of excessive weight the balloon body should be suf ficiently rigid and solid. Moreover, the dirigible should be transportable also when empty, since it is not always possible in the case of unfavorable weather to pre vent its drifting away and its collapse far from the station. The airship is tinerefore made up of several parts to be trans ported separately on carriages or rail ways. The rigidity en routc is secured either by building a substantial frame work into the balloon itself (in some cases even a sheet-metal cover is pro vided) or by utilizing the natural rigid ity of the inflated balloon body. One of these alternatives has been chosen in the case of Count Zeppelin's airship, and the other in that of the Schwarz aluminium airship, which, not being transportable when deflated, are bound to be lost in the case of an unsuccessful landing. More over, because of the dead weight of the framework, large dimensions must be given to the gas-bag. The Rénard airship and its successors were designed much more happily, stiffening being secured by a long, detachable girder suspended below the gas-bag. A similar scheme has been adopted in the construction of the Lebaudy airship. The nat ural rigidity of the gasbag in this instance is utilized to a far greate extent, the projecting por tions of the gas-bag being supported by the internal excess pressure. The nat ural rigidity of the balloon body has been utilized to the highest extent in the Parseval airship, without subjecting the cover to higher strain than in the Lebaudy, the internal surplus pressure being 16 millimeters ( 0.629 inch) of water as against 20 milli meters ( 0.78 inch) in the Lebaudy.
Apart from the car, 6 meters (19.68 feet) in length, no provision is made for stiffening, the ease with which the air ship may be transported


A Near View of the Airship. the parseval dirigible airship.
bag has been fitted at its rear end with three rigid plane surfaces similar to the feathers of an arrow Two of these planes are located horizontally on the sides of the balloon, while the third, carrying the rudder (operated by a rope) is situated vertically below the gas-bag.
The external shape of the balloon is maintained by blowing a quantity of air corresponding with the gas leakage, into two air-bags placed at the ends under a pressure of 16 millimeters ( 0.629 inch) of water by means of a fan, a special valve allowing the two air-bags to
when deflated fully warranting this method of construction. No difficulty has been encountered in obtaining the necessary staunchness. The strength of the materials used is likewise quite sufficient. In fact, the experience gained in the case of captive balloons,


## Diagram of the Car.

which must withstand much greater forces in the wind than have ever been produced by aeronautic motors, fully warrants the fulfillment of both conditions. In order to prevent any oscillations, the cylindrical gas-
be alternately filled and discharged, for trimming the airship. The power required is supplied by the engine; it is not necessary to operate a sliding weight by hand as in the case of the Zeppelin airship.
In order to increase the rigidity of the airship, the car has been suspended far below the airship.
The propeller, 4.2 meters ( 13.77 feet) in diameter, is situated above the car as closely as possible to the latter, being thus better protected against damage in landing. It is made up of a central frame and four blades consisting of a loose fabric. These blades have been so charged with weights as to maintain their proper shape and tension, by reason of the centrifugal forces due to rotation.
In order to prevent the balloon from being carried forward underneath, so as to cause the gas-bag to tilt upward, as the propeller is started, the car is not rigidly connected with the balloon, but is suspended so as to swing forward and backward in its central plane while maintaining its parallel position relatively to the gas-bag. As the propeller starts, the car is at first drawn forward before the balloon shares this motion, when the center of gravity being displaced in a forward direction, will compensate for the tilting action of the propeller
Whenever the balloon is retarded by counter winds or accelerated by rear winds, this device will act in some similar way. Plunging and pitching are produced if the car is rigidly suspended. The car is free to swing without transmit ting its movement to the gas-bag.
The motor transmits its power to the propeller through a double bevel gearing.
The dimensions of the balloon are: Length, 48 meters ( 157.48 feet); diameter, 8.57 meters ( 26.43 feet); capacity, 2,500 cubic meters ( $3,269.75$ cubic yards).
Weights of the Balloon: Cover, 600 kilogrammes ( 1,322 pounds); car, 1,200 kilogrammes ( 2,645 pounds) ; gasoline, 200 kilogrammes (440 pounds); water 100 kilogrammes ( 220 pounds); passengers, 300 kilogrammes ( 661 pounds) ; ballast, 460 kilogrammes ( 1,014 pounds) ; thrust of propeller, 280 to 300 kilogrammes ( 617 to 661 pounds); diameter of same, 4.2 meters ( 13.779 feet). The services of three men, viz., the aeronaut, pilot and machinist, respectively, are required to operate the craft, while two men will be sufficient after some practice. The aeronautical operation has been facilitated to a high extent by the considerable lifting or lowering forces produced without detracting from the speed, by placing the gas-bag at a very small angle relatively to the horizontal line (up to about 5 deg.) and utilizing the aeroplane action on the upper and lower sides. The gas-bag may be thus displaced from its equilibrium by several hundred yards, and still kept far more easily at a given height than a freely-moving craft thus insuring a considerable saving in ballast. Even if there be a consid-
erable excess in weight, the craft will be fit for opera tion as long as the driving mechanism is operative and there is a sufficient supply of fuel.
The Parseval airship has a radius of action of ten hours, which period may, however, be lengthened considerably, if the ballast consists entirely of gasoline. The speed is placed at 45 kilometers per hour ( 27.9 miles), thus insuring a range of 225 kilometers (139 miles) in the case of a ten hours' operation in calm air. A few hours are required to get the craft into working order. A large two-horse wagon is sufficient to transport the airship when deflated.

## Ship Elevators.

In a paper read before the Austrian Engineers' and Architects' Society, and reported in the official organ, the Zeitschrift des Oesterreichischen Ingenieur und Architekten Vereines, Dr. A. Riedler-speaking more particularly of the competition for designs for the projected ship lift at Preran-pointed out that the results of such competitions can never possess any widespread applicability, owing to the preponderance of local conditions influencing the design in every case. The two essential considerations, however, in the mechanical part are reliability in working and reasonable prime cost, and to these may be added as subordinate, though important, conditions, simplicity, ease of supervision, and accessibility and interchangeability of parts. So far as the engineering part of these projects is concerned, it cannot be determined beforehand with the same degree of accuracy as is possible with the machinery, but is largely dependent on subordinate circumstances, all foundations and underground construction being influenced by the nature of the ground. Nevertheless, it is possible to fix as a standard for underground construction a limit that will be seldom reached in practice, and thereby insure absolute reliability in working, by reducing the pressure, set up on the site by the structural work, to the natural pressure. This ideal cannot be realized in the case of lifts where concentric loads, deep foundations, high supporting walls, etc., are in question, at least not without great expense. On the other hand, in the case of inclined plane lifts, this broad condition can be easily fulfilled by adopting a suitable form of construction, the reliability of working being far greater than is attainable in engineering works as a rule.
The inclined plane system is also the only one that can be constructed at a low cost, but it is essential that only a single and sufficiently high speed should be used, and that the dry-haulage method should be adopted in order to save the weight of the water trough. All the plans hitherto proposed for affording an elastic support to ships when out of the water are based on an erroneous idea, and calculated to defeat their own purpose, the only reliable way being to recognize the fact that all ships undergo deformation when loaded and afloat, and to adapt the supports to the actual form of the vessel and then fix them in a perfectly rigid manner. The hydraulic press forms the best method of carrying out this idea in practice, a number of such presses being so arranged on a truck that they can be applied to vessels of different build, and the press heads covered with a ring of hemp, which is forced against the hull by a pressure of two and onehalf atmospheres, the pressure at the contact surface being about one-tenth atmosphere. Then, as the truck is drawn out of the water, the weight of the ship gradually acts on the rings, and the press valves must be closed. If the presses are mounted six feet apart the pressure in each cylinder will not exceed forty a.t mospheres. Each press must be operated independently, so far as closing the valves is concerned, in order that the weight may be distributed uniformly; otherwise there is the danger of bending the hull plates where the internal pressure is low, and no guarantee that the more heavily loaded parts will not bulge to a dangerous extent. No difficulty will be encountered in packing the press plungers quite tightly, leather being a perfectly reliable material
In distributing the pressure, the plan recommended is to mount every eight presses in two double rows on a separate truck, all the trucks being attached to a through girder. Wheels running in ball bearings are indispensable, the frictional resistance being only about one-third that of roller or plain bearings. The tractive force is preferably applied by rack and pinion, the strains being less than those in the ordinary mountain railway of this type and the movement freer from jolting. Low speed electro-motors would furnish the motive power, two pairs of cogwheels being sufficient for the reducing gear. Springs on the truck wheels are not essential, the hull and track being sufficiently elastic to take up the slight irregularities in the rails, joints, etc.; and in this system no duplication of the lifting plant is necessary, since the rate of haulage can be increased to 10 feet per second, owing to the low dead weight and absence of water.
The plant for discharging the ship into the high
level water may be greatly simplified by providing a turntable (turning through an angle of 16 deg .) of the same gradient as the rest of the track, so that the train of trucks and their load can be run down into the water without change of gradient, only the direction of movement being reversed. The turntable can be operated by a couple of electro-motors at opposite sides. This arrangement dispenses with the necessity for any protecting wall at the high level, and no extensive masonry is required anywhere, the pressure on the site being no greater than the natural pressure.

Official Meteorological Summary, New York, N. Y. october, 1906.
Atmospheric pressure: Highest, 30.59 ; date, 13 th; lowest, 29.36; date, 6th; mean, 30.06. Temperature: Highest, 74; date, 9th; lowest, 37; date, 12th; mean of warmest day, 66 ; date, 5 th; mean of coldest day, 43 ; date, 11th; mean of maximum for the month, 61.8; mean of minimum, 50.4 ; absolute mean, 56.1 ; normal is 55.5 ; average daily excess compared with mean of 36 years, +0.6 . Warmest mean temperature for October, 61 in 1900; coldest mean, 50 in 1876. Absolute maximum and minimum for this month for 36 years, 88 and 31. Precipitation, 4.30; greatest in 24 hours, 1.21; date, 19th and 20th; average for this month for 36 years, 3.70 ; excess, +0.60 ; greatest precipitation, 11.55, in 1903; least, 0.58 , in 1879. Snow: Trace. Wind: Prevailing direction N.E.; total movement, 10.490 miles; average hourly velocity, 14.1 milles; maximum velocity, 58 miles per hour. Weather: Clear days, 5 ; partly cloudy, 10 ; cloudy, 16. Thunderstorms: Date, 9 th. Frost: Date, 11th, 12th, 13th. Fog: Dense, date, 20 th.

The first of the automobile omnibus lines commenced running in Paris not long ago. Experiments had been made for a long time past, and the public became accustomed to seeing the omnibuses pass along the streets, but the system was not put in actual operation until the first week in June, when the line known as the Montmartre-St.Germain des Près was started, and the eleven automobiles were used to replace eighteen


## Side and Bow Elevations of the Parseval Airship.

of the old form of omnibuses requiring 194 horses in all. The time which is needed to make the trip across town, which was about 45 minutes, is now reduced to 25 minutes. These cars have been furnished by the well-known automobile firm the Société Brillié, after a sharp competition between many of the leading firms. The Omnibus Company of Paris has now ordered as many as 90 new cars, which are to be used upon six lines in the city to replace the horse vehicles. These lines will be put in service from month to month so that they will all be in operation at the end of this year. It is proposed to start up soon the second line, running from the city hall to the Neuilly gate. All the cars are built after the general lines of the company's standard double-decked omnibus.

## A Bricklaying Feat.

In the erection of the House of Representatives office building, adjacent to the United States Capitol at Washington, on interesting fact has developed in connection with the brick masonry work. The first brick was laid at the site on the afternoon of July 5, 1905, and on July 3, 1906, there had been laid in the walls $11,000,000$ bricks. This is believed to be the greatest number of brick laid on any building in one year in the United States, and probably in the world. One of the causes conducing to this record-breaking feat was the remarkably "open" winter of 1905-06. In those winter months the work continued almost without interruption from either snow or cold, and not more than twelve or fifteen days were lost during the entire winter by reason of weather conditions.

Water-proof glue is manufactured of gum shellac three parts and India-rubber one part by weight, these constituents being dissolved in separate vessels in ether, free from alcohol, subject to a gentle heat. When thoroughly dissolved, the two solutions are mixed, and kept for some time in a vessel tightly sealed. This glue resists the action of water, both hot and cold, as well as most acids and alkalis. If the glue is thinned by the admixture of ether, and applied as a varnish to leather along the seams where this has been sewn together, it renders the joint or seam water-tight, and almost impossible to separate.

THE STORY OF THE DISCOVERY OF THE FIRST ANILINE DYE.

## by sir william henry perinin.

My father was a builder. In early childhood I began to think about the choice of an occupation, and as I took an interest in everything that went on about me, I thought I should probably follow in my father's footsteps, and I busied myself with practical carpentry at every possible opportunity. I remember also that I took a lively interest in the applications of the lever, the screw, and the wedge, of which I occasionally saw practical examples. The reading of some descriptions of steam engines and the like awakened an interest in machine construction, and I spent much time in making drawings and wooden models. I was also very much interested in painting, and even had, for a short time, the foolish idea that I should like to become an artist. I believe that the practical knowledge of mechanics which I thus acquired in early youth has exerted a lasting influence upon me, and I never lost the appreciation of its value.
Shortly before my thirteenth birthday something occurred which was destined to determine my final choice of an occupation. A young friend who had a cabinet of chemical apparatus showed me some experiments of a very elementary sort, including the crystallization of soda and alum, and these experiments seemed to me so wonderful (and indeed every formation of crystals appears wonderful to me to this day) that I saw that chemistry was something far higher than anything that I had yet met with, and my ambition to become a chemist was awakened. I thought that I should be happy if I were apprenticed to an apothecary, for I could make experiments at odd times; but circumstances intervened which led to a still better result. Until that time I had attended a private school in the neighborhood, but I now left it and, at the age of thirteen, entered the City of London School. In this public school lectures on chemistry and physics were given, very strangely, during the noon recess. It was the only school in the country in which these subjects were taught. I had not been there long before the teacher, Thomas Hall, B.A., observed my great interest in the lectures, and permitted me to assist in preparing the lecture experiments. This raised me to the highest pitch of enthusiasm. I often went without my luncheon in order to find time for my work in the dreadful place that in that school was called "the laboratory.'

Hall had heard a few lectures by Dr. Hofmann, and had worked with him for a short time in the Royal College of Chemistry in Oxford Street. When I was fifteen years old he had several conversations with my father, and the result was that I went to Dr. Hofmann, to study chemistry under his direction. (I am afraid that my father, although he said nothing, was displeased at the time, for I know that in accordance with his wish I should have become an architect.) soon finished my course of qualitative and quantitative analysis, and took up research work. Strangely enough, the first subject that Dr. Hofmann selected for me was anthracene. The raw material was obtained from Mr. Cliff (the manager of Bethel's tar works). Unfortunately, Laurent had assigned to this hydrocarbon an erroneous formula ( $\mathrm{C}_{15} \mathrm{H}_{12}$ ), and although I had prepared and analyzed anthrachinone (Laurent's anthracenuse) and other derivatives, the figures I obtained would not fit any possible derivative of $\mathrm{C}_{15} \mathrm{H}_{12}$, Notwithstanding this, the experience thus acquired and the material and derived products obtained all became useful to me when I began to work on alizarine many years afterward. Dr. Hofmann next gave me as a subject the action of cyanogen chloride upon naphthylamine, and after I had purified naphthaline and made from it nitronaphthaline and then naphthyl amine-operations which one had to do for one's self in those days-the remaining part of the investigation was soon finished, though it was not published until some time afterward. I was now about seventeen years old, and became an assistant in Dr. Hofmann's experimental laboratory. Before I go on I must here give expression to my profound feeling of indebtedness and gratitude to Dr. Hofmann for his brilliant method of teaching, for his stimulating enthusiasm in scientific investigation, and for the interest which he took in me during my studies.
I now come to the period connected with "mauve." As Dr. Hofmann's assistant I was occupied all day with his researches (which at that time were concerned chiefly with the phosphor bases). I therefore carried on my own work in the evening and at other spare times at home in my scantily furnished laboratory, and there it was that, in the Easter vacation of 1856, when I was just eighteen years old, I discovered "mauve." As is known, I was led thereto by an attempt to produce quinine artificially from allyltoluidine, which caused me to study next the oxidation of aniline. Now, when in experimenting with the dyestuff thus obtained I found that it was a very stable
body that produced on silk a beautiful violet, exceedingly resistant to light-being in this respect very different from archil, which was then employed in silk dyeing-it appeared to me that it would be a useful dye if it could be produced in large quantities. But its probable cost of production made this seem almost hopeless, and such would indeed have been the case had it not possessed so strikingly intense a dyeing power. I quietly continued my investigations, sought to determine the formula for the dyestuff, etc., and at the same time I obtained an introduction to Messrs. Pullar, of Perth, who gave a favorable opinion of the specimens of dyed silk submitted to them. When the summer vacation came and $I$ had more time at my disposal, I undertook, with my brother's assistance, technical experiments on a very small scale, in -which one or two ounces of the dyestuff were produced. Then, on August 26, 1856, the process was patented. Soon afterward, during a visit to the dyeworks of Messrs. Pullar in Perth, I made experiments, in conjunction with them, in dyeing cotton and other materials. They were also good enough to take me to some print works at Mary Hill near Glasgow, where experiments in printing were begun. As the results, so far, were satisfactory and the opinion of the dye was favorable, it was decided to undertake its manufacture. Consequently, I did not return to the Royal College of Chemistry at the end of the vacation. I must confess that, after taking this step, I experienced considerable apprehension that the undertaking might prove a failure, and I was also worried by the thought that my technical work would put an end to my scientific researches.

As sufficient knowledge concerning the practical operation of the process of manufacture was yet lacking, and as the dye had also not been fully tested on large quantities of material, it was not possible to begin the manufacture on a very large scale. My father had confidence in me and in the invention, found the required capital, and joined with me and my brother in the enterprise, under the firm name of "Perkin and Sons."
After the necessary land had been acquired, the erection of the factory was commenced about the end of May or the beginning of June, 1857. As my father was an architect, the buildings were quickly erected, and by the end of the year a sufficient plant was ready for operation to enable us to begin making the dyestuff and delivering it to silk dyers. This was in December, 1857.
In an article of mine, "On the History of Alizarine," may be found the print of a hasty pencil sketch of the factory, which I made early in 1858 , or less than a year after the commencement of building.*

But much yet remains to be told of the difficulties which were connected with the first commercial production of the dye, and which continued for some time longer before they were gradually overcome. At the time when we set the factory going I had no knowledge of chemical factories except what I had learned from a few books, and I had only once been, for a few minutes, inside a chemical factory, and that an alum factory. Had I, however, seen the apparatus then commonly employed in chemical manufactures, this would have been of but little value to me, because the new industry required its own peculiar appliances. As the materials were more costly and the methods more refined than those of other chemical factories, the apparatus also necessarily had to be of a far higher class and more. carefully constructed. And not only this, but it had to be newly invented, and practical directions for its manufacture had to be given to the makers, for it was astonishing how little the practical men of those days could help one with suggestions of their own. The waste of valuable time caused by the delays in their work, and their imperfect understanding of the directions given them, were at times very discouraging. Luckily, I had a little practical knowedge of machine construction and mechanics, and this was invaluable to me at that time. Fortunately, also, very little, if any, of the apparatus designed failed of its intended purpose.
In the chemical part, also, many difficulties had to be overcome. The manufacture of aniline, which could then be found in but very few laboratories, was no simple matter. Benzol was not made in large quantities, and when it was obtained it was of very variable composition, so that it had to be purified. Its conver sion into nitro-benzol at moderate cost likewise proved difficult. Strong nitric acid was not manufactured except in very small quantities and at exorbitant prices, and as we did not wish to engage in its manufacture ve tried a mixture of soda, saltpeter, and sulphuric acid, and in this way produced large quantities of nitro-benzol, an operation which, however, required
great care. The extraction of the dye and its purification also presented many difficulties.
On looking back at all the difficulties of the infant industry, many of them appear, in the light of our present knowledge, so insignificant as scarcely to be worth mentioning. Yet they had a very real existence in their time.
But the production of the dye was not all that there was to do. The methods of using it also had to be developed. In those days dyers were accustomed to the use of vegetable dyes only, and they did not know what to do with basic dyes like "mauve." I had to become, to a certain extent, a dyer and calico printer, and I spent much time, first in London and Maccles field in silk dyeing, then in Scotland in calico printing, and next in Bradford in finding out how to dye halfwoolen mixture with "mauve." I could not well spare this time from my own factory, but it had to be.
Verily, this dye was a pioneer, and it made the way clear for all that came after it! And what a change has come about in dye works and print works! Instead of, as formerly, jealously guarding their own secret processes, the heads of factories now expect that, on the appearance of a new dye, the chemists shall teach them how to use it.

## Utilization of the Entire Cotton Plant.

According to the chemical investigations of Dr. Robert R. Roberts, of Washington, D. C., the entire cotton plant is a fiber that can be utilized. Dr. Roberts has been quietly employed on cotton fiber work for the past five years, and has just reached the stage of his investigations which would justify him in announcing the results of his discovery. He can delint cottonseed in five minutes, handing out a handful of seed that


One of the Powder Filling Houses Charging 3-Inch Shells.

## THE IONA NAVAL MAGAZINE.-II.

will rattle like shelled corn. This is done without injuring the germinating qualities of the seed, nor does it affect the value of the manufacture of oil. In this delinting process Dr. Roberts claims a saving of 75 per cent of seed waste in planting, eliminating de fective seed, which will enable the Southern cotton planter to use the drill machine in planting, obviating, ir. a manner, the enormous expense of chopping out the surplus cotton stalks. He claims furthermore that his delinting process will effectively destroy the boll weevil, whether the eggs or larvæ are laid in the germinating point of the seed or hibernating in the form of a beetle in the loose cottonseed. The seed can be delinted, he says, for about $\$ 6$ per ton. Cotton stalks, after the ordinary process of reduction to a pulp, become by the new process in thirty-four hours a fine fiber, not as long as cotton itself, but similar in texture. This fiber, he claims, will make the finest paper in the world.

## Peary's New Polar Record

Commander Robert E. Peary has sent a message stating that he succeeded reaching latitude 87 degrees 6 minutes. This is higher than the point reached by the Duke of the Abruzzi, who held the record. Peary suffered terrible privation and hardship, battling incessantly with ice, storms, and headwinds. No deatlis or illness, however, occurred in the expedition.
$\mathfrak{P e a r y}$ wintered on the north coast of Grant Land and then traveled by sledge northward. Gales broke up the ice, destroyed his caches, and cut off communication with his supporting bodies. Drifting steadily eastward, however, he reached the point mentioned. On the return his party had to eat eight dogs.

## THE IONA NAVAL MAGAZINE.-II.

Concluded from page 326.)
The heart and activities of the Iona naval magazine are centered around the storage and manipulation of smokeless powder into charges for the large and small size guns of the navy, and the black for bursting charges for the shells. Some of the more important places, therefore, are the powder filling houses, four of which are in operation, situated at widely different points. These are all small, one-story, wooden structures, designed to be unpretentious and isolated owing to the possibility of an explosion. One of the accompanying pictures shows the interior of the main filling house, which presents about one of the most animated and interesting sights to be seen on the island. The men are required to wear long white serge suits and moccasins; no metal or other articles are allowed in the pockets which might in any way cause friction. All the tools, funnels, measures, cups, scales, and other appliances used are made of copper. Here the delicate and somewhat dangerous business of weighing out the various smokeless powder charges is done. Even one or two grammes difference in weight is carefully observed. At the Indian Head, Md., proving grounds the naval ordnance experts, by tests, determine the powder charge best aḍapted for the various guns. Also at the annual target practice similar results as to range and velocities are recorded. With the advent of new guns and the slight chemical change in the powder, the charges are subject to constant revision. This keeps the filling-house men constantly employed. Each morning the day's supply of powder is brought from the magazine in the lead-colored wooden boxes. These are zinc-lined, air-tight, and hold 100 pounds. The government pays seventy cents per pound for powder, and furnishes the alcohol to the manufacturers. The output of the naval powder factory at Indian Head, which is about 2,000 pounds per day, is mainly used for experimental purposes on the proving grounds. Owing to the careful process of manufacture, particularly in the final washing of the pulp, the powder is said to be equal, if not a bit superior, to that obtained from the manufacturers. The boxes of powder are emptied into a long wooden trough, and with a copper scoop it is dipped out, accurately weighed, and tied up in quarter, half, and full charges, in white bags of muslin. These bags have several wide streamers for fastening attached, and each is tagged with the date of filling and the amount of powder it contains. A small ignition charge of quick-burning black powder, to set off the smokeless, is stowed in the bottom of each bag.
They are then placed in large copper cans and returned to the magazines, where they are held in readiness to go aboard the ships. At the time of the writer's visit the big charges, 220 pounds for the 13 -inch guns, were being put up. 'These are arranged in four quarter charges of 55 pounds each. The bags when piled on top of one another reach to the top of a man's head, and present a formidable sight of bottled-up destruction. The heaviest charge used in the navy is for the new 45 -caliber, 12 -inch, breech-loading rifles installed on the "Connecticut" and "Louisiana," which is 310 to 330 pounds. As the smokeless powder, owing to various atmospheric pressures and different temperatures, absorbs moisture and undergoes a slight chemical change, all the smokeless powder is sent to the naval storage depot at Dover, N. J. Here has been established a redrying house, where the smokeless powder is placed in a series of bins or draws where, at a steady temperature, it is kept for a regular time. Three hundred thousand pounds of smokeless powder were redried here last year. No ammunition is put up at this point, it being reserved entirely for the storage of powder and high explosives. It has an ideal location for this purpose, being seven miles inland and entirely isolated.
Nearly all the powder consumed at Iona Island is sent direct from this depot.
To furnish the great number of bags for the powder charges, an extensive sewing plant is constantly kept going on the second floor of one of the ordnance buildings in the Brooklyn navy yard. Here, with an electric cutter, 50 to 100 thicknesses of muslin are cut up at a time into various sized patterns. A series of steel dies, at a single operation, cut out great quantities of the round bottoms for the bags. Thirty different sizes are made for the bursting and propelling charges, ranging from the 3 -pounder to the 13 -inch gun. The sewing is all done by skilled men operators, a motor being attached to each machine. The making of the large 12 and 13 -inch bags, with a half-dozen wide streamers, re quires an extraordinary amount of intricate sewing and manipulation. Each is deftly turned and twisted sever al hundred times before completion. Besides the regu-
lar bottom, each bag has an additional compartment made for the ignition charge, having a perforated center. One man turns out on an average fifteen to twenty 13 and 12 -inch bags a day, and about thirty-five of the 6 -inch. The longest bag made is for holding the entire 6 -inch charge, about a yard long. The com
loaded in a day. A new rotating band, to give a truer flight to shells from guns in which the rifling has been considerably worn by erosion, has been devised. At the recent target practice all shells are reported to have had a perfectly true flight. Several of the smaller filling houses are used to assemble the cart-

5 pounds, are placed on a hand power press and the projectile shoved home. The assembled shell and cart ridges are then run through a gage having the same dimensions as the actual guns on board the ship. They are afterward packed in wooden boxes up to a weight of 123 pounds, and stored for shipment. With a half-


Interior of the Main Powder Filling House, Iona Island, Where the Smokeless Powder is Put Up in Bags Which Constitute the Firing Charges of Naval Ordnance.
pleted bags are stamped on the bottom with size and caliber of the gun they are intended for, then sent up to Iona Island $t$ o b e filled and stored in the powder cans. Another important operation performed in the filling houses is loading the 13 and 12 inch projectiles with their bursting charge. For the former, 50 pounds of black powder is used, and about 30 pounds for the 12 inch. To hold the shells steady and to get at the base of these huge steel missiles, weighing over 1,000 pounds each, they are roped in a sling and hoisted clear of the floor by a pulley and chain. The point is then lowered a foot or so
into a stout wooden frame with an opening a trifle larger than the shell. Then a long narrow bag is inserted in the shell cavity, and the measured amount of black powder is poured through a funnel into the shell. Some fifty of these huge projectiles can be


Putting in the Bag to Hold the Bursting Charge of 50 Pounds of Black Powder for a 13-Inch Shell.
dozen new cruisers and several big bat tleships soon to go in commission to equip, and the regular routine work of the fleet to look after, the I on a magazine is just now one of the busiest ordnance places of the government. Owing to its superior equipment and possible enlargement; it is destined to become the most important ammunition stronghold and naval base in the country. The writer acknowledges in debtedness to Commander K. Roher, U. S. N., late Inspector Ordnance in the Brooklyn navy yard, now of the San Juan naval station, Porto Rico, for courtesies ex tended.

The United States ordnance officers are carrying on a series of tests with a new bullet which is expected to supersede the one used at present in the ammunition for the new magazine. rifle. The new bullet is jacketed, but is sharper than the earlier form.


Assembling 8-Inch Rapid-Fire Shell and Cartridge.


How Smokeless Powder is Handled Before It Is Bagged.

## CARL HAGENBECK'S NOVEL ZOOLOGICAL PARK.

 by harold J. shepstone.If there is one individual able to speak with authority on how a zoological garden should be built and conducted it is Mr. Carl Hagenbeck, of Hamburg. For half a century now Mr. Hagenbeck has been assisting in the erection of zoological gardens in all parts of
plished. At the back of the lion house, which is artistically covered all over with imitated rockwork, there is a space 60 feet wide by 45 feet deep. On three sides there are rocks which rise to such a height that no animal could possibly jump over them, while they are too steep to be climbed. The other side is absolutely open, but the animals are securely confined to
there is a distance of 30 feet. No animal could leap this, for the inclosure is so designed that it is impossible for the animals to take a running jump in that direction.
Eight lions and three Bengal tigers now occupy this inclosure. It is only right to add, perhaps, that all these beasts are tamed animals; that is to say, they


Houses and Training Nchool for Lions, Tigers, and Elephants.


The "Zoo" is Prettily and Aesthetically Laid Out with Lakes and Fountains.
the world. He is the only individual who is prepared not only to lay out a zoological garden complete, but to stock it with animals as well. Naturally, a man who has devoted his life to the study of zoological gardens should hold opinions of his own as to how a public zoo should be designed. It has long been his wish to build a zoo after his own heart, and to-day he is happy in the knowledge that shortly happy in the knowledge that shortly
his one ambition will be fulfilled. his one ambition will be fulfilled. of the busy port of Hamburg, he is hastening the erection of a great zoo which, when finally out of the builders' hands, will be one of the sights of Europe, if not of the world. It was the writer's privilege to spend a few days with Mr. Hagenbeck as his guest recently, and to inspect for himself this novel zoo. He also witnessed the placing of some of the lions and tigers in what is undoubtedly the most unique lion "house" ever designed and constructed.
Briefly, this wonderful zoo occupies thirty-six acres of ground, though the proprietor has arranged to throw another twenty-six acres into the park if desirable. But it is the bold and even daring manner in which it is being laid out that calls for special attention. Here you can gaze at lions, tigers, and other wild beasts appearing to the naked eye to be entirely in the open, no iron bars or netting interfering with your view. A descrip. tion of the lions' quarters will give an idea of how this is being accom-

and deer disport themselves. These mountains are virtually masses of imitation rocks, piled one on top of the other. In all there are some eight of these mountains, and they tower in height from 60 to 150 feet. To watch the ibex climb the steep sides and jump from one precipice to another is a fascinating spectacle. The rocks were erected by Mr. Eggenschwyler, a very skilled Swiss expert and sculptor. A framework of timber and poles was built on pillars of brickwork. The whole structure was then covered with a layer of thick cement. The rocks are so ar ranged that the animals can climb to the highest points. To prevent their
slipping, small and large pieces of granite stones have been put into the cement, to afford the animals a firm foothold in climbing during frosty weather
When completed, the garden will really consist of four distinct sections. The first of these will be de voted to all kinds of aquatic birds. The second section will be reserved for graminivorous animals. It will be replete with camels, dromedaries, yaks, llamas, ostriches, etc. The third section, now finished is th open-air lion inclosure for the big cats. The last section is the artificial mountains which have been de scribed, and which rise behind the lion house. On the top of the latter Mr. Hagenbeck will place large eagles and vultures, and these birds will move apparently at liberty, being only fastened by thin chains. Stand ing, therefore, in front of the first section, namely, the lake upon which will be placed the waterfowl, the visitor will be confronted by a wonderfu panoramic view of wild animal life, fo he will be able to see at one time the whole of the four sections and the ani mals confined within them, some 600 birds and mammals in all. This vast collection of animals will appear to be able to roam about of their own free will for the visitor will be unable to detect the ditches and other cunningly devise arrangements that will confine the ani mals to their allotted inclosures.
The garden is not expected to be finally completed until April next, but when it is, there will be other novelties in addi tion to the panoramic view of animals already described. Not the least inter esting of these will be an Arctic land scape, showing an iceberg supposed to be stranded on a rocky coast. At the foot of this iceberg polar bears will disport themselves. To the right of this there is a large basin where seals and sea-lions will congregate. Immediately behind them, on raised ground, reindeer wil roam. Then there will be a group of na tjve villages populated by races from all parts of the world. There will also be an extensive playground for children, where they can amuse themselves in gymnas tics or games of all kinds. To provide further amuse mient for young and old, Mr. Hagenbeck will arrange that a number of elephants, dromedaries, camels, smal ponies, and dwarf donkeys will be available for rides as well as sundry vehicles drawn by antelopes, llamas, ostriches, and Shetland ponies. There will also be restaurant and a concert room.
"My whole idea," said Mr. Hagenbeck, "is to erect zoological garden in a natural manner. I shall place my animals in surroundings as much like their natura haunts as possible. I fully believe that hitherto ani mals have been too cramped in our zoos, and also not allowed enough open-air exercise. I shall give my animals here plenty of room to move about freely in their inclosures, and also keep them in the open air as long as possible. Fresh air is necessary for every living creature, and I feel convinced that one of the faults of present-day zoos is the keeping of animals in heated houses-animals, I mean, that could easily become acclimated. I feel sure, too, that zoological gardens of the future will be erected on this plan. Already, commissions from the United States, South America; and Japan have arranged to come here in the spring and inspect the park."

## ome Curious Misconceptions.

by thaleon blake, c.e

It is customary to accept without question old folks' sayings, and even popular views of mechanical operations and of chemical phenomena. A little observation, or a few experiments, will disprove or confirm many of these. The laws of physics are simple, and easily understood, yet many people, who would know better were they to think about what they so credulously accept and repeat, are deluded to an extent which would, no doubt, be laughable to them selves if they could see clearly
For example, it is often asserted that water on bituminous coal both aids combustion, and "makes the coal last." Housewives, office men who live where this coal is used, and who are compelled to maintain stove or furnace fires, are firm believers, as a rule, in this paradox. That water on coal cannot do both these people would know if they but thoughtfully considered it a minute. The facts are these (and any one may easily verify them): In a light fire, that is to say, a stove or house furnace, water sprinkled on large limp-coal really causes it to burn more rapidly. It soalss into the strata, into the porous surface, and,
being there converted into steam, the lump is split into parts, or the surface becomes corrugated and cavernous, thus offering a larger area of carbon to the active oxygen of the air: If the water is in excess of the amount which will do this, it then no longer aids combustion, but retards it. Again, if the coal is fine, a small dampness, nothing approaching wetness, however, may increase combustion by holding the particles apart, thus permitting the air to be admitted. In short, water on coal favors combustion, when it does favor it, only by assisting the oxygen of the air to find more ready access to the surfaces of the carbon.
Of course, where the fire is large and hot, the draft strong, and oxygen or hydrogen affinities other than carbon are in presence, then water may be decomposed into its gases $=2 \mathrm{H}+\mathrm{O}$. If the heat is extreme, unstable compounds and environment suitable, the anom-


Artificial Mountain for Ibex, Mountain Sheep, and Goats.
aly is witnessed of water causing fire to burn fiercely, with great show and crackle, by furnishing inflammable gases.

A man, who burned coke in his furnace, obtained his supply from a local gas works. He complained that the furnace was at fault. Fires were hard to make, and never grew vigorous. He told me his troubles. I asked him the color of his coke; he said it was dark. Then I recommended him to ask for dry coke. He said his coke was dry. But the interior of air-cooled coke is usually a beautiful steel-gray, water-cooled coke dark and uninviting to the eye. He investigated, and found that the workmen at the gas works sprinkled the glowing coke to cool it as soon as it was withdrawn from the retorts, thus adding


Tame Zebras Broken to Harness.

## CARL HAGENBECK'S NOVEL ZOOLOGICAL PARK

25 to 50 per cent to its weight. They "watered their stock," but honestly, as the foreman was convinced that, if anything could, water was sure to "aid combustion." The furnace was thus exonerated
Perhaps every professional man, whose work has brought him into contact with "practical" men of the trades, has been struck with the ingeniousness of many of their "secrets." But not always does their practice succeed. To be sure, theory and practice are not synonymous; success may not come to practice based on theory. But theory is an excellent thing with which to be acquainted when practice is being investigated. I once knew a foreman of a machine shop who was positive that all he had to do to keep the demon rust from devouring steel parts to lathes, and so forth, was to dust them with quicklime. I did not like the chemical equation which ensued when calcium scope.-Pharm. Ztg
oxide was exposed to air in which moisture was liable at times to permeate. But the foreman was cer tain; and, indeed, his steel thus protected was pro tected. Some other machinists in other shops and in other cities, used the same means to prevent rust All of these said that it worked well. Many, however either did not use it or had no faith in it. Mean while, the foreman of whom I first wrote, went to an other shop, where he learned that there was an at mospheric condition in which quicklime did not prevent rust. He was astonished. Together we experimented. The chemical equations are: $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O}=$ $\mathrm{Ca}(\mathrm{OH})_{2}$. But calcium hydroxide absorbs carbonic acid gas- $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2}=\mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}$. It was this last $\mathrm{H}_{2} \mathrm{O}$ which made me question the utility of thus preventing rust. We came to the conclusion that this $\mathrm{H}_{2} \mathrm{O}$ evaporates in a dry atmosphere, and leaves n rust marks, provided that the CaO is renewed often; that it itself causes rust if the $\mathrm{CaCO}_{3}$ is old and the atmosphere not uniformly dry; that as a rust pre venter, quicklime is neither infallible nor the best under the most favorable circum stances. For it is self-evident that a substance which prevents rust by absorbing the moisture on the steel, may in the end be harmful, since it eventually gives of moisture when its final chemical trans formation is consummated.
In conclusion, many ludicrous mistakes are daily committed even by persons whose educational advantages have been exceptional. A lawyer, whose scholastic career had been exceptionally long and full of honors, became the victim of a liver complaint for which, as part of the treatment, his physician prescribed calo mel and soda, in tablets. The apothe cary from whom he purchased the tablets placed a label on the bottle, on which was printed "Mercurous Chloride (mild) 1/10 gr. with Soda Bi-carb. 1 gr." These used, the man of many degrees, given im colleges of note, happened to wish to buy more tablets when away from home. The second druggist furnished a label exactly like the first, except for the omission of the word "mild." The lawyer refused to take them, alleging that, as his complaint was not yet dangerous, the "mild" tablets were amply strong enough for him. No argument, no explanation which the druggist advanced had any weight with this skeptical customer. When the lar yer returned to his home, he proudly told his physician how his acuteness had nenetrated the second apothecary's evident desire to substitute strong tablets for a mild kind! The dis tinction which mild was intended to convey, it is hardly necessary to explain as it will occur to all readers, is that between mercurous and mercuric chlon ide, calomel and corrosive sublimate a common medicine and a deadly poi son
The habit of thinking of causes and results, of reasoning about phenomena is what, applied to mechanics, makes inventors; applied to physics and chemistry, makes discoverers; and lastly, applied to every-day details, makes them interesting and us ever developing students in the mysteries of Nature and of Life

## Reactions of Bearberry Leave

The following reactions form a use ful means of distinguishing bearberry leaves from their chief adulterants: On two rows of slides lying on a piece of white paper place drops of vanil lin-hydrochloric acid and drops of fresh solution of ferrous sulphate; in troduce into each a section of the lea to be tested (it being of no conse quence whether the section is thick or thin, longitudinal or transverse). In vanillin-hydrochloric acid sections o A. uva-ursi and of $V$. vitis-idaa de velop a crimson color due to the presence of a gluco sidal tannin, while those of $B$. sempervirens and $V$. myrtillus produce scarcely any color. With ferrous sul phate the liquid in the case of $A$. uva-ursi becomes blu ish-black, while with the others it is scarcely colored; the section of $A$. uva-ursi becomes at the time black, that of $B$. sempervirens remaining uncolored, and those of $V$. vitis-idca and V. myrtillus being darkened. It is thus possible to distinguish bearberry leaves from these possible substitutes without the aid of a micro

A reinforced concrete standpipe, 50 feet in diameter 106 feet high from the inside of the bottom of the tank to the top of the cornice, and with a capacity of 1,500 000 gallons, has been completed and is in service in the waterworks system of Attleboro, Mass

A NEW STEEL-PLATE PRINTING AND EMBOSSING MACHINE

## y a frederick coluns.

In a recent issue of the Scientific American there was described and illustrated a new engraving machine that, under the guidance of a mere boy, would cut letters on a steel plate three times as rapidly as the most ex pert hand engraver. This was a very great step looking toward the production of cheap engraved stationery, but it was soon found that in order to keep up with the output of these machines, new methods must be devised in printing and embossing from the dies.
In the old method of printing from the die, after the letters have been cut into the steel block, the hand stamper makes a counter and fastens it to the die with glue; then the ink is rubbed on the die with a brush. The surplus ink on the face of the die is then carefully wiped off; for if the slightest trace of ink remains, the sheet is wasted. The sheet is next adjusted and the screw of the press turned until the die strikes the paper, and forces it up into the sunken letters. The paper is then removed and set aside to dry, when the operation is repeated. The new machine is in reality a printing press, but a wonderful one when it is taken into consideration that it inks, stamps, and delivers as many impressions in an hour as the most skilled hand stamper can turn out in a day The mechanism for accomplishing this result is naturally more complicated than an ordinary press; but a study of the accompanying drawing and the photographs will serve to show the principles involved. As in all job presses, the machine comprises a platen on which the paper to be embossed is placed, but the bedplate that holds the die, instead of being fixed in its position, is movable, and the rocking movement of the die bedplate causes the ink-wiping mechanism to be brought into operation and the inking roller to be carried to and from its source of supply and to the die-plates. By a novel arrangement of the different parts the steel die-plate is maintained in such a position that it is in full view of the operator, except, of course, at the moment when the actual imprinting and embossing is taking place.
The frame of the machine is indicated at 1 in the drawing. The opposite sides, 2 , of the bed 3 are connected by pivots with the frame through the links 4. The inner end of the bed is pivoted upon the shaft 5 , the latter also serving as a bear ing from the inner end of the frame 6 , which car ries the matrix support or impression sheet table. The inking mechanism comprises a reservoir 7, and arranged to revolve within it is the feed roller driven by a belt from a pulley on the shaft 8 .
The die-inking roller includes a rod 9 , having a central concentric pad portion 10 , and is normally supported at its ends in the adjustable bearings 11, at the lower ends of the guide slots 12 , in the opposite sides of the frame. It will be observed that the slots, while vertical at the lower ends, incline at an upward angle toward the rear part of the machine, the purpose of which is to bring the pair of curved figures, 13 , straddling the rod 9 to a position so that the latter will be carried by he die-plate 15 , and thor ughly and venly inks its surface while passing beneath it.
The devices employed to wipe the dieplate to clean ts surface from the ink comprises a roller 16 , made of soft or yielding mateial mounted so that it will revolve upon the rod 17, whose opposite ends are passed through vertical slots or ways 18 , in the opposite sides of the frame. Pendant connec. tions support ng a weight 19 are provided
their movement up the rearward inclines of the slot and will deposit the rod into the depressions 14 , which serve as temporary bearings while the ink pad is receiving a fresh supply of ink from the feed roller (not shown in the cut). The inking roller 10 rotates upon
at the opposite ends of the rod 17 for the purpose of exerting a uniform pressure to hold the wiping roller against the surface of the die-plate as the paper passes under it. A strip of paper 20, from the roll 21, passes over the roller 22 , and thence around the wiping roller


THE NEW PRESS FOR PRINTING AND EMBOSSING STATIONERY FROM STEEL DIES. REAR VIEW OF THE MACHINE. and its salts, of cyanamide, urea, dicyandiamide, dicyanamidine, and of guanidine; it also finds application in the preparation of indigo by the fusion of the alkali salts of cyanamide with phenylglycine and in the hardening of iron. Dicyandiamide added to explosives

16, so that the wiping surface is changed intermit tently. The lower end of the rod 23 is furnished with a friction roller, which is placed in a position to be struck an upward blow by the lever arm-24. The oppo site end of the lever is fitted with a friction roller, and is located in the path of the cam swell 25 on the disk 26. As the disk rotates the cam swell strikes the lever 24 , swinging it and thus raising the rod 23 and causing the arm 29 thereon to communicate, through a spur, a quick partial turn to the yoke rod 30, carrying the pawl 31. The latter being in engage ment with the corrugated surface of the drum 32, and holding the paper fast to it, turns the drum abruptly a partial revolution against the tension of a spring, so that when the cam 25 performs its function, the paper is drawn sharply around the roller 16, and as this action is timed to occur when the roller is upon the die-plate, the surface of the latter is effectively cleaned In operation, the paper to be printed and embossed is placed on the platen while the machine is in the open position illustrated. When the flywheel is re volved, a pinion 7 carried by the flywheel rotates a gear, which in turn transmits its movement to the disk, and through cranks and links moves the bed carrying the die and the platen from the open posi tion to a closed position, when the impression is made.
In this movement the rollers have been raised in their respective slots by the bed carrying the die and the extensions, while the shaft which operates the beds, striking the projecting arms, has deflected the fingers and carried the roller with its inking pad on to the feed inking roller In the first stage of this movement, however, the ie plate has passed under the inking roller, and thence beneath the wiping roller, while the cam at this moment acts in the manner above described to suddenly turn the drum, and draw a quota of paper across the surface of the roller impinging on the die. This occurring while the dje s passing beneath the wiping roller acts very effectively in cleaning the ink from the die surface, and the subsequent imprint and embossment is performed quickly and without disfiguring the sheet impressed.

Employment of Atmospheric Nitrogen for the Preparation of Manures and Other Chemicals. When barium carbide is heated in an atmosphere of nitrogen to about 1,000 degs., it is converted into a mixture of barium cyanide and barium cyanamide; calcium carbide, on the other hand, gives, under the same conditions, only calcium cyanamide. The latter substance, containing in the raw state 20 per cent of nitrogen, is considered o be as good as ammonium sulphate for agricultural purposes; in contact with moist earth and carbon dioxide it is converted by the help of certain bacteria into calcium carbonate and cyanamide, which then probably passes into urea, am monia, and finally into nitric acid; in the absence of all bacteria these changes take place much more slowly. Calcium cyanamide may also be used as the starting point for the preparation of ammonia lowers their c ombustion e mperatures Zeit. angew Chem.

The largest casting ever made in the United States has recently been complet ed by the Bethlehem Steel Company; it is the frame for a $171 / 2$-foot gap hydraulic riv eter for the Lehigh Valley Railroad shops at Sayre, Pa. It is design ed for a maxi num pressure of 150 tons per square inch. A special truck was required to transport $t h e$ machine to its destination.

# An Aid to Modern Business 

By ISAAC F. MARCOSSON

There was a time when personality ruled business and gave it an imperishable tradition, when vast commercial enterprises sprang from one man'sefforts and generations plucked the rich fruits of his endeavors. It was the era of the business men of the old school, the forerunners of the builders of our empire of industry. Perhaps it was some shipping prince whose fleet of clipper ships touched at far-away wharves to exchange Yankee products for the treasure of the storied East; perhaps it was a merchant king who turned cheese into dollars and ruled a dusty counting-room with an iron hand; or perhaps it was some mill lord from whose myriad looms was spun the glittering fabric of a great fortune. But whether the old master of trade moved with stately mien and ponderous gait through ship, mill, or store, his business was conducted after the very simple and unwritten law and in the good old way.
"Why bother about frills and secretaries?'" said these old merchants as they made their way serenely amid the changing tides of men and affairs. Personality and integrity were the very Gibraltar upon which the unyielding structure of their fortunes were reared. There was dignity and glamor about their calling. It was a very great honor to be a great merchant. These men merged their names into the history of their times, and they turned "keen, untroubled" faces upon the dangers that hurled lesser men to their ruin. When they died, their sons succeeded them. Sons came and sons went, and old businesses seemed destined to go on forever.

But as these old merchants faded from the market-place swift changes were shaking the foundations of the regime that long years of fidelity had builded. A wonderful commercial expansion swept the country, uprooting all business traditions. It followed a marvelous development, the annexing of every state and country to the growing empire of business. Invention had come to the aid of business and sped it on with tingling leaps. A fleet of steel steamers succeeded every old-time clipper ship, pulsing factories rose where the ancient looms had whirred, and towering skyscrapers reared their roofs where musty warehouses had stood. Commerce followed the flag, and the nation was rushed into the thrilling race for world-trade. Fierce competition succeeded the dignified calm of the old business days, and the game was to the swift and to the quick.

But what of the character of business? Business underwent a complete evolution, and the last vestige, save honor, of the old order of things was swept away, with few exceptions. In that mighty evolution which had fairly hurled the United States far into the van of the struggle for world-commercial power the very.methods of business changed. Vast volumes of trade, coupled with the many-sided phases of modern industry,
made new and exacting demands upon man's ingenuity and resource. The time had gone when one man could steer a great business through the swift eddies of competition and progress to devious paths that touched at many lands. Industries with a hundred branches; railroads that employed armies and made and unmade states; enterprises that girdled the globe,--these were the Titanic activities that man was called upon to harness.

What happened? Business became organized as never before. It became as consummate a plan of action as ever Napoleon wielded to crush the Allies of Europe. In short, business became a science that had for

untted states senator john f. dryden, president, the prudential insurance company of america.
its aim the elimination of failure and the complete enhancement of financial success.

The old-time business man carried much of the plan and detail of his undertakings in his head. His business developed itself, and he merely guided it. It was a tradition that certain volumes of business, like history, repeated. But with the new science of business came the business engineer. He was the concrete symbol of an era of organization and system; a business doctor who prescribed for a business that was ill and failing, who applied strenuous remedies. He laid out business campaigns as a civil engineer laid out the route of a railroad for a syndicate. The parallel was easy. On the one hand was an untilled business field ready to be broken for a golden harvest; on the other was a virgin country to be linked with bonds of steel.

What did the business engineer do? First of all, he revolutionized business methods. He showed men how to conduct their business better than they had done before. He
showed them where waste was eating up their profits; where energy was going to naught; where concentration might increase output; and how worry, that eternal menace of prosperity and health, could be vanquished. Best of all, he did away with the old-time theory that a man had to wait six months to find out how his affairs stood. "Know how you stand every day at the close of business," said the business engineer. And he proved it. He introduced systems for the use of looseleaf ledgers and card catalogues, by which a man at 5 o'clock every day knew just what his profits and his losses were.
What is the result? No more illusions about being on the sunny side of the business street when you are in reality verging on the edge of bankruptcy.

But the business engineer did more than this. He organized great industrial enterprises so that system ruled them just as the personality of the old-time business man dominated his establishment. He took a great manufacturing company, for example, that had eighty branch stores all over the United States. He made a series of charts that covered comprehensively every phase of the business. By their use the head of the great business could sit at his desk in the morning and have spread before him the very vitals of his whole vast business. He could see what every department was doing-just how the line of output paralleled the line of sale (and this was a vastly important thing to know) ; he could observe at a glance just what his supply of raw material was; how many men were at work, and how they did their work. In brief, he sat there with his finger on a business pulse that throbbed in every State.
But the greatest example of business system is in the conduct of The Prudential Insurance Company, of Newark, N. J., with its practically perfect plan of handling and recording the tremendous detail incidental to the operation of six and onehalf million policies all in force. With every labor-saving device known to modern business invention and convenience, the company is able to minimize its expenses. For example, it has its own complete printing plant, where all the enormous amount of supplies are printed, and where the company publications, which have a circulation of $3,000,000$, are published. It has actuarial machines that turn out complete records in less than a minute. This annihilation of all unnecessary expense makes possible liberal dividends for policyholders. The system of recording has been brought to its highest development by the Prudential Company. Every detail of the great insurance undertaking is concentrated and recorded, so that any detail can be referred to without the least delay, which not only means system, bút proclaims economy. Business, then, has been reduced to a
science. The man at the head of it was like a general conducting a military campaign. It was a fascinating science-instead of researchers, there were alert, eager-brained business men, searching every law of demand and supply, probing every possibility, exploring new fields of commercial conquest. In the uncertain crucibles of speculation and ambition they stirred vast enterprises into dazzling results.

Thus men built their shining structures on the vast checkerboard of business. But the grim factor Death had to be reckoned with. Man, however, had found a way to provide against the uncertainty of life, and the way was through life insurance. As business had made its mighty strides, life insurance had kept pace. As business had become reduced to an exact science, so had life insurance been perfected until its all-protecting arms sheltered a whole world. It put an infallible safeguard about the most sacred institution in the world-the home. Business men were quick to appreciate its value to them, for it became a sure and certain investment, an unerring means to economy ; and the policy became a negotiable paper that was a sterling asset.

But how was life insurance to protect business as it was protecting millions of homes? The Prudential, of Newark, made it possible with a partnership policy that was destined to become an inseparable aid to business. Behind this great company was the personality of United States Senator John F. Dryden, who had founded and developed it until it became a monument of impregnable insurance protection. The joint-partnership policy was evolved upon this theory: "If men can successfully insure their lives for their families, why not insure for their partners or their business?', So the plan of parinership insurance was evolved, in which a group of men associated in business could insure tnemsclves for each other's benefit or for the benefit of the firm, and thus guarantee the integrity of the institution.

The plan developed and put into wide and successful operation by the Prudential is as simple and economical as it is far-reaching in its beneficial effects. Brown, Smith, and Jones, for example, are engaged in business in New York. They are healthy, insurable, and their business prospers. One day Brown says to his partners:
"What would happen if one of us died suddenly?" In the midst of life, with success smiling at them from every side and the future beckoning alluringly before them, this
was not a pleasant prospect. There was a pause. Then Jones said:
"I guess there would be great confusion and no one would know where he stood."
Presently Smith remarked: "We'd have to take in another partner, I suppose."

But Brown broke in at this juncture: "I have a remedy for this contingency which is liable to come any time and when we are least prepared. Let us take out a Prudential joint-partnership insurance in favor of the business. Then things will go on all right, no matter what happens.'"
So they took out a Prudential partnership policy. Brown was thirty-nine years old, Smith was forty-two, and Jones was forty. Each took out a policy for $\$ 10,000$. The beneficiary for the $\$ 30,000$ of insurance was the firm. The combined annual premium was $\$ 993.10$, which was paid out of the firm's sinking fund as a legitimate expense.

What was the result? From the day those policies reposed in the firm's safe, a keener confidence pervaded the business that was like tonic to the partners. The whole foundation of the business seemed safer and surer. These men knew absolutely that no matter how suddenly death might stalk among them the business which they had reared with patient hands and hopeful hearts was immune from disintegration, which the death of one of their number might have caused.

But the insurance was not the only benefit that this group of policies bestowed. They had also the confidence and the constant satisfaction that protection afforded. There was still another. Their credit was enhanced. One day an opportunity presented itself for a business deal of considerable scope. A sum of money beyond that in hand was necessary, and since the greater part of the firm's available security was employed, the partners were in a quandary. Suddenly Jones had an inspiration.
"How about our partnership policy and the loan which the Prudential will make to us?" he exclaimed.
"'Sure enough,', replied the partners. It was put into the breach and was a ready security; the money was secured and the deal was consummated, the profit secured, and the loan restored.
Then one day the tragic news was flashed to the office: "Smith is dead." He had passed away suddenly in the night. In the ordinary course of events which follow such a misfortune there would have been endless confusion and a yawning gap in the business, to be instantly filled at any cost or the result to the
firm would be serious. Ready money is always necessary at such times. Long experience has taught that in these crises $\$ 10,000$ in available cash is worth more than ten times that sum at any other time, for it is sometimes difficult to convert assets, however valuable, quickly into cash. That is why so many rich men have large policies which provide ready money in just such emergencies. But in the case of Smith there was the Prudential partnership policy, which was the ready wंedge ready to be driven straight into the emergency. There was a check for $\$ 10,000$ the next day; it bridged over all troubles, and permitted no menace to the integrity of the business.

But assume that the partners lived. The benefit would be just as great. Since the elusive Elixir of Life remains undiscovered, the uncertainty of earthly existence menaced these men as all other mortals. Yet the policy girded them with confidence and granted them immunity from worry. No matter what happened, they were protected. The policy, therefore, represented at all times, not only a safeguard, but an infallible asset for the realization of money and the building up of credit. If one of the partners, or all of them, retired from business, the policies could be changed so as to make the wives the beneficiaries. The protection was continuous. Thus, life insurance has taken its place as essential to the safe and systematic conduct of business-a first and last aid to the business man.

The value of life insurance remains unimpaired. When President Dryden, of the Prudential, at his own request, was summoned to appear before the Armstrong investigating committee in New York he declared on the stand, in answer to the question why his company maintained a large surplus, that it represented security,-the first and unalterable purpose of the company. As the ratio of mortality and the expense of insurance are lessened each year, so does the attitude of the company toward its policyholders become correspondingly more liberal.

We have seen how life insurance maintains the integrity of business. So does it in a larger sense preserve the unity of the American home. It makes possible those vital forces that provide the bone and sinew of our national life. Viewed in the light of our civilization, it has taken a high and unimpeachable place in the destiny of the nation. For in the perfect security of the people lies the real hope and safeguard of the democracy.


## RECENTLY PATENTED INVENTIONS.

 high-potential insulator.-L. Stein berger, New York, N. Y. In the present pat ent the invention has reference to high-poten tial insulators and admits of general use, bu is of peculiar service upon transmission-linesemployed for conveying currents of high po tential from one point to another distant there from.
SPARK-GAP AND MUFFLER THEREFOR M. Haslett, Jersey City, N. J. The inventio M. Haslett, Jersey City, N. J. The invention
relates to spark-gaps of the kind used in wireless telegraphy and in relations analogous
thereto, the more particular thereto, the more particular object being
provide an improved form of muffer for i provide an improved form of muffler for
closing the spark-gap so as to reduce to closing the spark-gap so as to reduce to a
minimum the annoyance caused by sound proceeding therefrom.

## Of Interest to Farmers.

BAND-CUTTER AND FEEDER FOR THRESHNG-MACHINES.-T. L. CoMMINGS, ment in band-cutters and feeders. for thresh ing-machines, and it provides means for feed ing bundles from either or both sides of the
machine, comprising two feed-aprons revolubly machine, comprising two feed-aprons revolubly
mounted upon a trackway and adapted to be mounted upon a trackway and adapted to be
swung to the fmont or the sides of the machine.
COTTON-CHOPPER.-H. T. Johnson, Timmonsville, $\mathbf{S}$. C. The purpose of the invention is to provide a machine for chopping out
young cotton-plants wherein a hoe will be automatically given a rotary chopping action as the machine is drawn over the ground and $o$ provide a machine which will be simple,
conomic in construction and which will hav few parts and those not liable to get out of ow par.
REPLANTER ATTACHMENT FOR CULTI Vators.-O. Froman and J. C. Cave, Edna, Kansas. The object of the inventors is to
provide an attachment readily applied to any ultivator and operated by the operator either by hand or foot and to so construct the device
that a person operating the cultivator may instantly and accurately drop a set or a hill of corn or other grain in a lost hill and to
add to one thinly planted and cover the same add to one thinly planted and cove
while the field is being cultivated.

Of General Interest
BLOCK-MOLD.-J. A. Gibson, Buffalo, N. . Means provide for automatically separating the walls of the mold when the lifting
frame ordinarily employed is raised and for ac curately replacing the mold-walls in proper position for receiving the molding material
when the frame is lowered and the mold placed when the frame is lowered and the mold placed
on the pallet. Means provide for securing cores to the pallet so there will be no pro-
jecting handle or the like to interfere with jecting handle or the like to interfere with
smoothing off the top of mold, thus necessitasmoothing off the top of mold, thus a a hopper for directing material into the mold and preventing loss thereof
ADJUSTABLE SHELF.-B. J. Whitcomb, Kennebunk, Maine. The object in this case is to provide details of construction for a de
vice which are simple, practical, convenient in adjustment, and that enable the secure attachment of a shelf horizontally between stiles of window or door casements which may be of different widths and permit the instant re-
moval of the shelf without the use of tools and also without injuring woodwork of window or door frame.
Camera.-W. H. Wallace, New York, N Y. The aim is to produce an arrangement to plate or film by means of an auxiliary focusplate or film by means of an auxiliary focusable a camera of one compartment to be used in this way without admitting in jurious light o the sensitized plate and without necessitating the operator's perceiving the image actually
formed at the position of the sensitized film. Plastering device-n. Cetersen, Perth Amboy, N. J. In the operation the cas ing is to be filled with plaster and then the device is to be moved upward along the wall, and as the toothed wheels project forward of the casing and engage with the wall they will that the plaster will be forced out through a cylinder opening, and the smoothing-plate will impart an even surface to the plaster.
LEACHING-TANK.-C. Voelker, Helena,
Iont. The invention refers to improvements Iont. The invention refers to improvements in leaching tanks or apparatus for pulp, the
object being to provide in the leaching-tank a object being to provide in tho and novel device to prevent the packing of the pulp, thus permittin.
culation of the leaching liquid.
SNOW GUARD AND F'ENDER.-H. N. Sie-
(ier and R. I. Sieger, Slatington, Pa. In this ase the invention pertains to improvements in guards or fenders to prevent snow from sliding from a roof, an object being to provide a device for this purpose that will be simple in The guard may be made of any suitable metal The guard may be made of any suita
DRILLING-TOOL.-A. C. Shister, Arroyo Grande, Cal. The object of the inventor is to
provide a tool arranged to permit fishing up provide a tool arranged to permit fishing up
of a lost bit, to prevent injury to the drivepipe shoe or pipe by the socket of the bit, and
to allow the drillings to pass up away from to allow the drillings to pass up away from
the cutting edge of the bit to prevent clogging
of the same and to permit it to be readily
PLASTIC COMPOSITION.-J. E. Beck, New Orleans, La. The product has when warmed a strong adhesive quality, which enables it to be applied and adhere to canvas, burlap, etc., which serves as a backing, and to be so treated as to form any geometrical or other figure or
appearance of blocks, etc. It may be utilized appearance of blocks, etc. It may be utilized
without the backing as a covering for floors without the backing as a covering for floors
and walls, also for wainscoting. To proãuce a substitute for for wainscoting. To proum, the required thickness of the material having been applied to the press to give it solidity and coherence.
Filling apparatus.-W. H. Sheffirld, Hobart, N. Y. The object of the inventor is signed for filling milk and other liquids into a number of bottles or receptacles moved intermittently over a stationary table, the arrangement being such that the waste or loss of the liquid is reduced to a minimum and the receptacles are accurately and uniformly filled
to desired height. It relates to apparatus hown and descr. Sedid
FASt Mr. Sheffield.
FASTENING DEVICE.-C. B. Longenecker, hiladelphia, Pa. The improvement relates oses, and is particularly useful in connection with closures where it is only possible to use unfastening the clasp. The object is to provide a clasp which can be attached to the tear loose therefrom, which can be fastened or unfastened by simple manipulation and which strongly resists all lateral pull.
TURPENTINE BOX AND SPOUT.-S. G. Lewis and V. J. Ward, Millard, Fla. The pine trees for the collection of sap known as "crude turpentine," and has for its objec means consisting of a peculiar face or spou under the usual scoring of its bark, and peculiar tank or box detachably supported by the face or spout, the tank or box having a hinged cover provided with an opening leading thereunto.
The object here B. Farmer, New York, N. Y ilar instrument arranged to produce an exceed ingly sharp, clear, and yet very melodious tone when the instrument is played, to allow of convenient loosening of the membrane with view to relieve it of undue tension after play-
ing and while the instrument is not in use, and to permit of readily adjusting the memdeck of the instrument shoul frets i
warp.
Propeller.-J. Crowther, Dallas, Ore The invention refers to propeller-wheels, and mum power is required for its operation an which shall be fashioned, affording improved results over similar wheels as heretofore con structing the blades of flat sheet metal, havin their front edges sharpened the better for cut ting weeds and other entanglements, and by fashioning the rear portion of the blades into
wing-like form with the same disposed projecting rearwardly
assorter and washer for sand and The VEL.- P. ChMELEFF, Moscow, Russia ing, sifting, and assorting sand used for filling water-filters, for concrete-works, and the like and also for gravel and other granular materi als of all kinds. Further objects are to sepaall kinds of granular material from dust and fine particles.
FENCE-POST.-R. R. Blero, Slaughter, La. Mr. Bueto's invention is an improvement in the class of metallic fence-posts which are provided with means for anchoring them in the round. The anchor plate has a wntral openflanges bent down at a right angle to enter the ground, and made of a uniform width through the lower ends of the flanges are provided to prevent rocking or tilting of the plate in the

## Hardware

HAMMER.-H. C. Lyon, Howard. Lake, Minn. The invention rolates more particularly to hammers of the magazine type, which car
ries and supplies nails in position for driv ing. The device enables the workman to supply and drive with one hand, leaving the othe This allows such operations as shingling and lathing to be carried on with great speed SASH-LOCK.-C. S. Wray, Highland Mills, ocks such as are used on sliding sashes for locks such as are used on sliding sashes for
same to the window-casement. The object is to produce a sash-lock of simple con struction which will not become inefficient from

## Heating and Lighting.

gas-meter.-A. s. J. Weir and T. J. Men ving, San Diego, Cal. The improvement is
in the class of so-called "diaphragm" meters.
in which the casing is divided loy a central ver-
tical partition into equal compartments, each containing a bellows or expansible diaphragn
adapted to alternately receive and discharge certain volume of gas and connected with valve
controlling the alternate inlet and outlet of as and ondernate inlet and gas passing through the meter to the hous

## Household Utilities.

window - screen. - T. Landsberg, New Brunswick, N. J. The object of this invento is to improve the arrangement of window automatically returning them to folded position. It is the object also to so construct and arrange the screen and its coacting parts tha window frame will be such as to insure at al times the exclusion of flies and other insects. ROCKING-CHAIR.-J. E. NuTTER, Ferris Texas. Mr. Nutter employs a base for the chair of special construction, working upon which
are specially constructed rockers, between which and the seat are disposed special cush ioning devices for the seat. The movable por tions are easy working and practically noise
less in operation, and capable of being readily less in operation, and capable of being readily
taken apart and again put together.

Machines and Mechanical Devices.
SpEED-Indicator.-E. H. Riordan, Idah City, Idaho. The invention refers to talkingachines, and its object is to provide an indio conveniently and quickly adjust the speed of the motor, and consequently that of the re cord, to insure playing of the record-piece in proper time.
VARIABLE-Speed driving mechanism -R. M. Ruck, 44 Thurloe Square, South Ken sington, London, England. The invention re particularly such as used in transmission of power from high-speed motors; and the object
is to provide apparatus which shall combine the is to provide apparatus which shall combine the
advantages (with regard to positive driving and advantages (with regard to positive driving and
graduated alteration of speed ratio) and avoid graduated alteration of speed ratio) and avoid
the disadvantages (with regard to shock and the disadvantages (with regard to shock and
slip) incidental to the use of toothed-wheel gearing and of conoidal friction-pulley variablepeed mechanism.
bottle-labeling machine.-a. Hanke ersey City, N. J. The improvement pertains label-affixers, and its object is to provide a iently and quickly applying labels to bottles while filling and corking the same, the labelaffixer being actuated by and in unison with the hing and corking devices.
ICING-MACHINE.-P. S. Guilford, Portland, Ore. By means of this invention the cakes to be iced are supported during the dif-
ferent operations of icing, turning, and drying pon forks connected to an endless carrier hav through the various positions required by such operations.
LUbricator.-C. e. McCaffrey, Winsted, Conn. The lubricator is more especially derills and other steam-actuated machine rock arranged to prevent leakage and waste of the lubricant, to insure regular feed of the lubricant in predetermined quantities, and allow of
readily refilling without stopping the machine teadily refilling without stopping

STRIPPING AND CLEANING MACHINE.e. Bemrendi. Manfa, Philppine Islanas. The vention relates to machines for stripping and leaning the leaf-sheaths or band-like material rom the abaca and the like plants-such as Patent of the U. S., formerly filed by Mr. Behrendt. The object is to provide a machine arranged to cut and brer and to remove the pulp revious to winding the fibers on a roller or pool.
MACHINE FOR DECORATING DISHES. E. Bell, Kittanning, Pa. One purpose here may be stamped wherever desired upon dishes, ne operation only of the machine being necessary to effect the decoration. Another is to provide a machine whose construction essen-
tially comprises a plunger-operated stamp-supially comprises a plunger-operated stamp-
port, to which stamps or pads carrying the design are applied, and guide-supports for the dish to be decorated.
animal trap.-H. H. Stick, Glenville, Pa. The trap is especially adapted for catchmall dog; and consists of a cage having a double floor and opened at both ends, the ends being closed when the trap is not set by ade in two parts hingedly connected together, which, through the intermediary of a novel rigger mechanism, springs the trap and closes
he door or doors by the weight of the animal. - FEED DEVICE FOR THE INKING-RIBbons OF Writing-Machines.-A. Steiner and R. Rein, Berlin, Germany. Means are furnished for feeding the inking-ribbon in
writing-machines in which the two vertical spindles carrying the ribbon spools are each spindles carrying the ribbon spools are each
provided with a ratchet-wheel, with which engage the pawls rocking in horizontal planes.
while the ribbon spindles rotating in horizontal Wile the ribbon spindles rotating in horizontal plane. By the displacement of an adjustable
bar the ratchet-wheels are thrown out of gear
by means of pawl mechanisms alternately op-
positely set, this displacement part being arpositely set, this displacement part being ar-
ranged between the rocking lever and the ratchet-wheels.

## Prime Movers and Their Accessories.

BOILER.-H. Keller, Chattanooga, Tenn The invention pertains to stationary and locoend ring and door for the same, the end ring being arranged to provide for expansion and ontraction with a view to prevent breaking rendering the end ring air-tight the same time ready romoval of the sections who alowing and replacing the same by new ones.
boiler-furnace.-P. Jackson, Macon, a. The object of this inventor is to provide bagasse and the like as a fuel and arranged to insure a complete combustion of the burning fuel and to utilize the heat to the fullest adantage with a view to economize in fuel and o quickly generate steam without danger of barning the boiler-shell.
ROTATING MOTOR.-H. J. Dabonville, 2 Rue Bellefond, Paris, France. The subject of
this invention is a system of rotating motors ; and it consists of a rotating compression and pansion motor of progressive and variable peed, reversible or non-reversible, and capab water, gas, or any liquid or fluid. The prin cipal characteristic is the mounting on the cylinder under the impulse of the motive power acting on wings or pistons articulated
W. Crit-gear For steam-engines.-C vention Crord, Brazil, Ind. The present in team-engines arranged to provide a gear for clearance, silent action of the valve when running the engine at a high rate of speed, quick positive opening and closing of the closed. It relates to gears described in the application for Letters Patent of the United States formerly filed by this inventor. Crawford has invented another valve-gear for steam-engines arranged to permit of runnin the engine at a high rate of speed, to insure proper working of the inlet and exhaust valves without danger of undue wear, and to reduce a minimum the clearance-space of the pis
n relative to the admission and exhaust ton p .

AUTOMATIC PRESSURE - RETAINing VALVE.-A. Ashcraft, Fort Smith, Ark. Th design of the inventor is to have the improve ment take the place of the well-known hand
operated pressure-retainer, one object being to operated pratically retain a predetermined amount of braking pressure in the brake-cylinder of car, locomotive, or tender, and to produce a
device absolutely under the engineer's control.

## Pertaining to Recreation

amusement device.-O. Henrichsen, Nide an amusement device so constructed that objects-such as yachts, boats, or swimmers may be individually moved at the surface of the water with more or less speed through the medium of a motor controlled by the instrumen tality of lung-power or exhalations of ind
viduy the game, whereby to afford amusement in the form of racing and sccure benefit by reason of the lung exercise obtained. game apparatus.-E. Bawden, New York, N. Y. In the present patent the inven the more particular object of the improvement is the production of a chance-controlled mech anism provided with means for keeping the record of the scores made by the several players in the game.
Game apparatus.-J. E. Heron, Mee-
 rsent the game of life to the players, wheren impediment to a given goal, but wherein through the incidents of the game retrograde and advance aros are necessarily pre resent prosperity, sickness, or accident.

## Pertaining to Vehicles.

bicycle attachment.-S. J. Taylor, cially adapted for attachment to ordinar bicycles, thus making a cushion-frame without change in the frame proper. It does not to the bicycle weight and can be attached to any chain-bicycle. It can be put on or taken off whenever desired and require
whatever in the original frame.
PNEUMATIC-TIRE SHIELD.-J. H. Lowrey, Neola, Iowa. In this case the object is o provide a durable shiela to be applied to vehicles to protect arainst injury to the tire vehicles to protect against injury to the tire
increase the tractive adherence to the road, so as to successfully travel over ice, snow, and mud or climb hills without slipping, and pre vent accidents occurring by reason of fron
wheels failing to respond to the guiding influence of the steering-gear.
Note.-Copies of any of these patents will De furnished by Munn \& Co. for ten cents each.
Please state the name of the patentee, title of

Business and Personal WVants.
READ InHIS COLUMN CAREFULLYY-You will
find inquiries for certain classes of articles numbere?
 address of the party desiring the information. In
every ease itis neessary to give the
number of the inquiry.

Marine Iron Works. Chicago. Catalogue free.
Inguiry No. S448. Wanted, addresses of manu-

U. S." Metal Polish. Indianapolis. Samples free.
 For bridge erecting engines. J. S. Mundy, Newark, N. J. Inquiry
formity braces. 8450.-Wanted, rivets for use on de

Sawmill machinery and outtts manu.
Lane Mfg. Coo., Box 13, Montpelier, vt.
gine iniry No. © $\mathbf{\text { N451.}}$-For manufacturers of gas en-
Make Aleohol from Farm Products.- New book, $\$ 1.00$.
Spon $\&$ Chamberlain 123 S. A. Liberty Street, N. $\mathbf{Y}$.
fropuiry No. S452.-Wanted. manuacturers of of
as celerory, etch.
1 sell patents. To buy, or having one to sell, write
Chas. A. Scott. 719 Mutual Life Building, Buttalo, N. Y. Y. Inquiry No. 8453.-Wanted. the name of of the
manuacturer of a bolt clipper called the "Champion." Metal Novelty Works Co.. manufacturers of all kinds
of light Metal Goods. Dies and Metal Stampings our of light Metal Goods. Dies and Metal St,
Specialty. 43 - -7 Y S. Canal Street, Cicago.
Inquiry
soiled or sta. S454.--Wanted, a brush for cleaning The celebrated "Hornsby-A kroyd" safety oil engine.
Koerting gas engine and producer. Ice machines. Built by De 1 Vergne Mab Co Ft. E. 138 th St. N. Y.C. Inquiry No. 8455.-Wanted, an appar.
Headquarters for new and sliphtly used machinery.
Liberty Machinery Mart, 13 S Liberty Street, New Yoris. Inquiry No. S45 5 .-Wanted, a smal, battery an
motor ountit adapted to run a sewng machine.
Manufacturers of patent articles, dies, metal stamping, screww machine work, hardware specialties, machine work and special size washers. Quadriga
Manufacturing Company, 18 South Canal St., Chicago. Inquiry No. 845\%-Wanted, name and address of
the manufacturer of the Thomas Arithmetic Machine. selenquiry cells. 8458.-Wanted, manufacturers of Inquiry So. S459.-For manufacturers of a ma
chine tor making wooden meat skewers.


## 




 Special Writiten Information on matters of personal
rathithen
without reneral
remunerat interest cant

Books referreed to prompty suppiea on receipt oren
Mineraces. sent for examination should be distinctly
(10192) H. W. L. says: Is it possible (10at radiators as here shown (Fig. 1)? Ose only one pipe, which drops 8 inches in
150 feet to a trap. Attach live steam at 80
pen pounds pressure between trap and radiators
and have air cockso on top of each radiator.

A. We think that it would be possible to heat radiators in the manner in which you describe, provided the proper apparatus is installed. A
much better system, however, is shown in accompanying sketch (Fig. 2).
(10193) C. E. D. writes: Your conclusion about the spoon in the freezing mixture sounds rational. If the facts had been as you
assume, I would never have written in the first place. Unfortunately for your view of the matter, the facts are as I stated and not as you assume. You ought to be able to get
chipped ice at any soda fountain, which, liberally flavored with sugar and fruit juice, is
pleasant eating on hot days. You can thereore both experiment and refresh yourself at the same time. I again repeat that if the spoon is cold (as it can be readily made by
stirring the mixture), ice will scarcely freeze to it if allowed to stand still in the mixture for a while; but if the spoon, warm from
the mouth, gas jet, or other source of heat, is the mouth, gas jet, or other source of heat, is
inserted in the mixture, and allowed to stand
motionless for a second or two, the ice will
freeze to it firmly and in large amount. Cry it yourself. The reason for this behavior,
which I have observed so often, is what I am seeking for. A. Silver is by far the best conductor among the metals. Its specific heat is
small. From these two facts it may be in
and ferred that a hot spoon will soon cool to the temperature of ice, and will melt a little but
not much ice in cooling through a wide of much ice in cooling through a wide change
of temperature. A cold spoon on the other hand will not melt any ice. Now the thin y frozen again in the mass of ice, and in freez ing attaches the spoon to the ice, since the film of water is in contact with the spoon which melted it from the ice when the spoon was thrust hot into the ice. The ice is thus frozen to the spoon. Now the cold spoon thrust into the ice comes to the temperature of the ice, an melts no ice. There is no reason why it water on the spoon to be frozen, and no way or the ice to freeze to the cold spoon. Chtpped ee and fruit juice is not a freezing mixture as you imply. Its temperature cannot be in the open air below the freezing point of water. It cannot of itself freeze the spoon to the ice, nor
would the spoon freeze to the ice unless the ice would the spoo
was quite dry.
(10194) B. B. calls our attention to n error in the comparison of the sensitive ness of ordinary lantern-slide plates with that of carbon vel ox, appearing in Query No. 10775
of the October 13 issue. It is stated in the of the October 13 issue. It is stated in the
answer to this query that lantern-slide plates answer to this query that lantern-slide plates
are no more sensitive to light than the ordinary carbon sensitive to light than the our correspondent considers this reply incorrect, and states that than ordinary carbon velox paper. He finds that with a negative of ordinary density ne second or even a fraction of a second is required to secure a good impression, using
the ordinary standard developer, while for a velox carbon print something like twenty sec nds, with a negative at the same distance
from the lamp, would be needed from the lamp,
$(10195)$ V
(10195) V. B. A. asks: 1. How many volts does a 500 -ohm induction coil give
with two dry batteries in the primary? with two dry batteries in the primary?
A. The output of an induction coil is not rated A. The output of an induction coil is not rated
in volts, but in the length of spark which it will give. You say "a 500 -ohm induction coil." We do not know what that means. The obtained by multiplying the voltage of the primary current by the ratio of the windings in the secondary to those of the primary. You may get an idea of the effect you can obtain with two dry cells. These have about 1.5
olts each. You have 3 volts at your disposal volts each. You have 3 volts at your disposal.
If you have 100 turns in your primary and 10,000 in the secondary, you will have 100
times 3 volts in the secondary, or 300 volts. o of any other numbers. 2. How can the medical coil? A. The volts may be regulated by increasing or diminishing the number of cells in the battery. In a medical coil the
volts are not changed. The magnetizing effect of the primary on the secondary is controlled
by either slipping a metal tube between the by either slipping a metal tube between the
primary and the secondary, or by withdrawing the primary from the secondary, till the discharge can be borne. 3. How large a cold for 3 miles, and what Supplement describes it? A. Supplement 1527 describes a coil giving a 4 -inch spark, which will probably com-
(10196) A. H. asks: Having tie rods of $3 / 4$ iron running through storage battery rooms, tried to overcome the action of acid
fumes by covering them with alphaltum, but find it is not invulnerable. A There is nothing better than asphaltum to withstand the cor rosive action of acids. When it gives out, put on another coat.
(10197) F. W. L. asks: Will you please explain where we get the right or authority for the use of the cross in place of the
word number. Have never seen in any publication, either book or otherwise, any explana tion of its use. A. We are not able to trace the origin of this very useful sign. Perhaps
some one of our numerous readers may have some one of our numerous readers may have upon this matt
(10198) A. H. A. asks: I am fond of only at nights I can study. I have tried hard to solve the following problem by calculus, but have been unable to get the correct answer. Will some of your able readers kindly explain in your Notes and Queries and oblige? The problem is as follows: In a given rectangle 20 feet long and 10 feet wide, to lay another
rectangle diagonally, the inner rectangle to be 2 feet wide; what will be the maximum ength?
(10199) E. R. asks: Can you give an explanation for the following phenomenon :
While out hunting last week at half-past five in the morning a severe snow storm came up We were on a small lake about a quarter of My companion called my attention to a "light" on the end of his gun I did not see it from on the end of his gun. I did not see it from
my end of the boat. A few moments later I reached in my pocket to get my watch, and saw that on each of my fingers there was
small luminous spot, as if the finger had been
touched with a phosphorus match. Thinking that I had matches in my pocket I reached in
again, took the watch out, and saw that the watch was covered with small spots. There were no matches in the pocket. I dropped the matter, thinking there must have been some there on the previous day, but when I put on the tips of the fingers of the gloves fingers it was about an inch in the air, apparently suspended from a loose hair. Looking down into the boat I saw that there was no foot higher than my head it appeared there. I have never seen anything like it before and
could not believe that my observation was correct. I verified it, however, by holding my hand out to my companion and having him point to the lights where he saw them, which them. When he raised his gun in the in saw tically the light at the tip became larger, and on moving nearer I could see it distinctly Once I thought that I smelled ozone, or the characteristic odor of the static machine, on drawing my hand nearer my face. Of this am not quite certain. I have never seen or
heard of anything similar to this and would be obliged to you if you could inform me what it was. A. Your observations concerning the yoctricity in the air during the storm when you were in a boat are interesting. Sailors
call the light seen in this way St. Elmo's Fire. It may be seen in storms at night on the tips of the spars of ships. You will fin
it described in books. The air was so highly charged with electricity that it charged you person by induction, and fire streamed from the tips of all articles about you. While your feet were below the gunwale of the boat no
discharge could take place from them, since clectricity does not readily enter the interio of hollow things, but when you raised your foot above the edge of the boat the fire of the
discharge appeared upon the tip of your (10200) C. L. M. asks: 1. In "Home Mechanics for Amateurs," a description is
given for making an electric furnace to used with making an electric furnace to be used with a 110 -volt lighting system current
with 20 feet of German-silver wire resistance. With a 250 -volt circuit how many feet would be required? A. The furnace in "Home Mechanics" uses three arcs. With 250 volts a proportionate number of arcs are rewith 250 volts and $50^{\circ}$ feet of wire. 2. It also states that six or eight 32 -candle-power lamps might be used for resistance. If these were ased on the 250 -volt circuit, how many would be required? A. If your 32 -candle-power lamps for 110 volts. You cannot use 110 -volt lamps single on a 250 -volt circuit. They will burn out. Two can be put in series with a resist are be run with a storage battery? A. An arc light can be run with storage battery by having half as many cells in series as the voltage used by the arc, namely, 25 cells.
(10201) H. B. M. asks: 1. Would it be possible to revolve a glass plate 20 inches
in diameter at 50,000 revolutions per second? A. It is very safe to say that no glass disk could hold together to be revolved at anything ike the speed you name- 50,000 revolutions terial can stand it ; nor do we know any ma chine which produces this velocity. 2 a trans former having 400 turns in its primary of No 14 B. \& S. with a core 15 inches long and $21 / 4$ inches in diameter, and 800 turns of No
28 B. \& S. in its secondary; the primary is What ought the secondary voltage be? It is used as a step-up transformer. A. A trans former with 400 turns in primary and 8,000 in secondary will raise the voltage of the
primary twenty times. Thus 100 volts primary will become 2,000 volts in the secondary spark of 2 inches when operated on D. C., but when the vibrator is scrough, it gives little or no spark at all. What is the trouble? are not able to tell you what the trouble is in the action of the alternating current on your "suitable" as you think it is.
(10202) J. B. asks: Please be so kind as to give an explanation of the following
henomenon: The moon appears larger when near the horizon than at the zenith. A. The moon appears larger when near the horizon than all other heavenly bodies and measurehorizon ten degrees up toward the zenith is apparently much farther than from the zenith ten degrees toward the horizon. A sextant ures the same in any part of the sky. It is agreed by scientists that the apparent in tical illusion. All distances seem longer if there are many intervening objects. Distances
on the surface of the ocean or on a treeless plain are thought to be less than if there are bjects scattcred along the way. This idea is well worked out in Todd's New Astronomy,' which we can send for $\$ 1.50$. To ans a trific larger when in the zenith, since then it is
nearly 4,000 miles nearer to us, than when it is on the horizon
 ANDEACH BEARING THAT DATE
[See note atend of list about copies of these patents.]





 834,705
834,630
834,562
834

 matic, L. Fondu,
Blowing enyine, J. Fawel
Boiler, F. S. Gilick
Boiler stand, range,
Boiler . H. Foster.... $\cdots$
 834,30
843,311
834,510
834,54
8





 Colum, veneered, H. L. Manning. M.......
Composition of matter, Ma Wa
Composition of matter and making same,

## 

## 


 Copying press, G. Bluen $… . . . . . . .$.
Corksew, hand, Mu A.
Corn gathering and husking machine




 | 834,805 |
| :---: |
| 834,794 |



縞 834,718
834,627 834,626
833,514
834,687 834,686 834,829
834,582
834,779 834,779
834,533
834,657
834,603 8344,246
$834+43$
834,661


## Inexpensive Classified Advertisements

 Advertising in this column is 50 cents a line. No lessthan four nor more than ten lines accepted. Count
seven words to the line. All orders must be accom. panied by a remittance. Further information sent on panied by
request.

SALE AND EXCHANGE.


## BUSINESS OPPORTUNITIES

 in positions. You can learn at your own home in a few
weeks without orss of time or monev. We guarantee
it. Write for full information and our free book, "How
it
 STEEL WHEELS to ft any wagon or cart. Made
any size, any $\left.\begin{array}{c}\text { width of tite. Also handy wagons with } \\ \text { low } \\ \text { wnels }\end{array}\right)$ low wheels and wide tires. Wood wagons with steel
wheels. or steel wagon with steel wheels. Log wagns
and heavy traction wayonso
traction engine power. Steel aaxles of any horses or
size and traction engine power. Steel axles of any size and
shape. Adres Electrict Wheel Company, Walton
Square, Quincy, Ill, U, S. A. A FEW DOLLARS will start a prosperous mail order
business. We furnish catalagues and everything neces.
sary. Biour eask
day. MiburnAUTO CAR PRACTICE.-" Homans' Self.Propelled
Yehicles." 1907 editition just issued, right up to date, is
the
 wanted specimen pages free upon request. For full
particulars and information address Theo. Audel $\&$ Co.,
63 Fifth Avenue, New York.
 new patent stock and die. Party with means. For tur
particulars and information address M. G. Cornell, 555
Coney Island Avenue, Brooklyn, N. Y.
 scriptive picture drawing. etc.
West New Brighton. New York.
WANTED, BOOKS.
brary of Technology . The
toranton International Lition and ingood condition. Add ress, stating lowest price
for tion Libarian State Agricultural College.
Agricultural Coliege P. O., Michigan. AUTOMOBILE FXP PERTS are, in constant demand

 to push. Must have merit. Ony full particulars
notices. Address w. B. Westerfela, 420 West 146 L B
Street, New York City.

## HELP WANTED.

WANTED,-High class specialty salesmen to repre-
sent large corporation in exclusive territory.
ticulars address with references J. ticulars address with referencenesiv. Jerritory. For par punch, President
901 Wasnington Avenue, St. Louis, Mo.
 interest in and charge of an Engineering School to eve
affiliated with a well established Shool in the West.
For full information anfor full winformation wand established partulars, wrion in the West.
Fich, 730 Grand Ave., Milwaukee, Wis, DRAUGHTSMAN--Good positions for frst-class ar-
chitectural, mechanical and structural men in New
 MAN or Woman wanted by Mail Order Catalog House
to travel, collect and appolint agents. No capital or ex-


## PATENTS FOR SALE.

vice, easy of manufacture and chear. Can be curling de-
 PATENT FOR SALE.-I want to sell outright the
poprieary right in my new Improved Metal Fence
Post, sure to be used in all parks farms and gardens.
C. C. Dolan, 324 Green Street, Lockport, N. Y.


MACHINERY FOR SALE. IF interested in power for any kind of light man ufacinformation on the most improved kerosene oil engIne
by sending for catalogue to Remington Oil Engine Co.,
41 Park Row.

## PARTNERS WANTED

PARTNER WANTED,-Interest in old establishe
Patent business for sale at $\$ 5$, , oo. Rare opportunity fo young busn wess for sale toennical trainning Rare opportunity this profto
ble busines.
For further information address T.

PATTERNS AND MODELS. $\underset{\text { Wachine work wood patterns metal paters. }}{\text { Phone No. } 1274 \text { Franklin, General light }}$
 INVENTIONS DEVELOPED; MODELS OF ANY description; special machinery; drawings. For full
intoration and particulars, adress
Works, 207 Centre Street, New York. I INVENTTORS: I MAKE MODELS, Patterns, Dies, ideas and design special machin ery, Price reasonable.
Best advice on inventions free. Saliger, 100 W . 23rd St.,
New York.

[^0]PROFESSIONAL CARDS
CHEMIST.-Prof. C. A. Jacobson, S. B. Graduate stu-

 834,569
834,86
83,364
834,469
843,409
834,292
83,

## The Franklin takes nothing for granted, but proves its way from start to finish.

## Four years ago, the Franklin came out with its

 four-cylinders, air-cooled motor, and light-weight non-jarring construction; and backed up its prin ciple with commonsense logic and a car that did things. But full proof was lacking.Now we have the proof-facts that anybody can see-such proof of ability, endurance, and reliability as places the Franklin in a class by itself.

By winning the great Two-Gallon Efficiency Contest, the Franklin proved its unequaled efficiency and economy.

Whitman's marvelous record-breaking run from San Franhe hot sandy trackless desert, through Nebraska mud--in 1 days, 2 hours, 12 minutes-proved an ability, reliability, and endurance not hitherto believed possible in any motor-car.

No other car in the world could have done these things. No other car has such qualities or such proofs.
Don't you want to read the story of Whitman's transcontinental dash, and his
ecent capture of the Chicago to New York record with the same car? Write us for recent capture of the Chicago to New York record
hem, and for the catalogue of 1907 Franklin cars.

## Shaft=drive Runabout $\quad \$ 1800 \quad$ 4-cylinder Touring=car $\$ 2800$ 4=cylinder Light Touring=car $\$ 1850 \quad \mathbf{6}=$ cylinder Touringecar $\$ 4000$

 ces in standard colors and equipment $f$, o. b. Syracuse.Special upholstery. equipment and color extra.


## Just Published The New Agriculture

By T. BYARD COLLINS

12mo, 374 pages, 106 illustrations, cloth, price $\$ 2.00$

THIS new and authoritative work deals with the subject in a scientific way and from a new viewpoint. Dr. Collins has devoted his lifetime to the study of changing economic agricultural conditions. "Back to the soil" was never a more attractive proposition and never so worthy of being heeded as during these opening years of the twentieth century. Farm life to-day offers more inducements than at any previous period in the world's history, and it is calling millions from the desk. The reason for this is not at first obvious, and for this reason Dr. Collins has prepared the present work, which demonstrates conclusively the debt which agriculture owes to modern science and the painstaking government and State officials. Much of the drudgery of the old farm life has been done away with by the use of improved methods, improved stock and varieties. All this tends to create wealth by increased value of the product and decreased cost of production. Irrigation, the new fertilization, the new transportation, the new creations, the new machinery, all come in for a share of attention. The illustrations are of special value, and are unique. All who are in any way interested in agriculture should obtain a copy of this most timely addition to the literature of agriculture. A full table of contents, as well as sample illustrations, will be sent on application.
MUNN \& CO., "sclentitite A mermerken," 36I Broadway, New York

## Valuable Books Home Mechanics for Amateurs



WENTY=THIRD EDITION
EXPERIMENTAL SCIENCE.
 REVISED and ENIARGED EDITION
Cyclopedia $\%$
15,000 Receipts. 734 Pages.
Price, $\$ 5.00$ in Cloth. $\$ 6.00$ in Sheep. $\$ 6.50$
in Half Morocco. Post Free.







1901 APPENDIX.
Price, bound in cloth, 81.00
MAGIC $\begin{gathered}\text { Stage IIILsions and scientific Diver. } \\ \text { sions, including Trick Photos graphy }\end{gathered}$


Scientific American Reference Book



[^1]








CHAS. HOYT WILLIAMS 1061 Fidelity Building, BUFFALO, N. Y.

SPRINGFIELD ABRASIVE POLISHING Used for polshing machinery, cutlery
and edge tools of all kinds and for red moval. Makeots ver stmooth surface
metal. Mares a very
without marrin. Coitaining rubber
which gives it the resilient effect. Made which yives it the resilient effect. Made
with either Emery or Crarborundum in
difterent grades. Write for price list
and specialt trade discounts. The Springield Tire and Rubber Co.,
$\begin{gathered}\text { SPRINGFIELD, OHIO, U.S.A. }\end{gathered}$.

## This Bookisfree

It Tells You About a System of Handling Figures with Lightning Rapidity.

One Thousand Copies Will be Given Away to Those Who Apply First.

$T^{\mathrm{HHS} \text { sook }}$ shorls about marvelous methods of


 Culator of the day. Every man should calculate
quickly and with ease. Every bubiness nand must calculate. Often a certain calculation must be made
mentally and instantly if ycu would take care oo your owninterests. By our improved methods you
see results without effort. You multiply, add, sub-
tract and divide fractions or whole numbers with tract and divide fractions. or whole numbers, with
marvelous ease. The methods introduced by this book will revolutionize figuring and arithmetic for
you. You can learn at your own home with little effort and without loss of time. If you are an office
man the result will be seen in your pay envelope. man the result will be seen in your pay envelope.
The man who figures accurately and rapidly can do
three times as much work as the one who uses ordinary methods. Unless you know all about figures
that you want to know, unless you are accurate in every calculation, you cannot aford to be wathout
this information. It costs you nothing to write for
the book, it 1 free. tion or a, valuable promotion to neglect this op-
portunity. Address Cominercial Correspondence
School, 390D Commercial Building Rochester


The Enterprise Mfg. Co. of Pa., 2211 N. 3 A St., Phillada., v. S.
Two Autos One Price

$\underset{\substack{\text { convert } \\ \text { Your }}}{\substack{\text { Incto } \\ \text { a }}}$ Motorcycle Atman ceat hatianding


[^2]

## Saves 20\% to 50\% on Power

## A series of tests made by Prof. C. H. Benjamin, of the Case Scientific School, of total power of the plant to drive the shafting alone, when run in babbitted bearings. That meant 50 per cent. of the p ductive. It showed for the <br> Peninsular Self=0iling Roller Bearings

## an average sazing in friction over the babbitted

 bearing as follows: 43.2 per cent. for the $1 \frac{1}{5} \frac{5}{6}$ nch shatt; 73.6 per cent. for the $2_{\mathrm{T}} \frac{\mathrm{T}}{}$ inch shaft OUR GUARANTEE: tobbit ted bearings. to saye 10 rer cent. of your
tolat onwer byy replacing them with Peninsular
Selfooiling Roiler Bearings. $\mathbf{1 0}$ per cent. is assured, $\mathbf{5 0}$ perc cent. has been achieved. and
never have we fallen below a savng of $\mathbf{2 0}$ per cent. For any reliable frm we will plady put the claim to the esest by equippng a shaft, or, if desired, their entire plant with
 general wear and tear. Running in a bath of oil. they are non-heating and not a drop of oill is lost-a savaring in oil of of 50 Write for Our Book on "POWER-SAVING
 Bearings in rededing friction: also containng letet
Peninsular self-oiling Roller Bearings.

GEORGE A. McKEEL \& CO., Ltd., Transmission Dept., JACKSON, MICH.

## PRINTS.







"KNat." BALL BEARINGS




 better results by our course of instruarninings and and
Accounting. Small cost-spare hours-easy pay
 places and manage the best factories, A postal
will bring you the details.
NTERNATIONAL ACCOUNTANTS' SOCIETY, IIc. $\frac{59 \text { Fort St. W., Detroit, rich. }}{\text { BRAIN WORKERS-THINKERS! }}$

FREE ILLUSTRATED BOOK



## YOUR PATENT

Carefully Developed May Be a Success

 I PrintIMy
O Own
Exitsi Cards


LINENID.-A MOLDED MATERIAL MADE
CRANIE BROS. MANUFACTURERS. WESTFIELD, MASS.
BE A WATCHMAKER



 THE F. H. ALDEN co., E. 4th St., Otncinnatl, ©


## New Catalogue of

 Scientific and Technical BooksA new II2-page Catalogue is now ready for distribution. It is entirely new and lists 5,000 of the latest and best books of a scientific and technical nature. Copies are being mailed to all subscribers to our periodicals, but those who purchase our publications at news stands, or read them in libraries, should send at once for a copy of our
Catalogue, which will be mailed free to any address in the world

MUNV \& COMPANY, Publishers, 361 Broadway, New York City


## Rubber Elevator \＆

 Conveyor BeltingFOR CONVEYING AND LIFTING PULP，GRAVEL SAND，SUGAR ，tce， special construction EXCEPTIONAL QUALITY
NEW YORK BELTING \＆ PACKING CO．，Ltd． 91 －93 Chamввя Streft，New York SEND Stion Now How To Make Alcohol
 plete instructions．stills illustrated．
hol Law and Goverument Reulatitons． 123 S A．SPON Liberty CHAMBERLAIN


Bausch \＆Lomb Reading Glasses


The lenses of these large magnifying glasses are carefully
ground and polished and are mounted in durable nickeled rim with ebopized handle．Every SCIENTIFIC AMERICAN reader
Ought th have one of these glasses．There are hundreds of things in every day work that are easier to see with a little magninication．
PRICES： 2 in．eh lens，$\$ 0.75$ ，Post Paid．Catalog on
3 inch lens． Bausch \＆Lomb Opt．Co．，Rochester，N．Y．
tool knowidide giife

 Catalougue No．$\because=$ ．It is cloth－
bound and contains 950 pages all
about Tools．Full descriptions and thousands of illusctrations．
Sent post－paid on receipt of $\$ 1.00$ Sent post－paid on receipt of $\$ 1.00$
which is refunded on your first
purchase from us of $\$ 10.00$ or over
MONTGOMERY \＆CO． 105 Fulton St．，N．Y．City


AS AGAINST WOOD FLOORINGS（hard AS AGAINST LINOLEUMS and other or soft）Pennsylvania Rubber Tiling is prac－similar materials：These are merely makeshifts lutely non－porous and water－proof，and there－comparison with Pennsylvania Rubber fore non－absorbent of unsanitary elements， which fairly teem in wood after short use（a As Against All Other Rubber Tilings， particularly important point in public buildings，the Pennsylvania Brand is adaptable to un－ hotels and hospitals）At the same time the matchable designs，is richer and permanent of physical advantages of wood－warmth and coloring，superior in quality，laid with much resiliency under foot－are far superior in
Pennsylvania Rubber Tiling． AS AGAINST MARBLE and tilings of cemental or ceramic character：All these are forth nerve－grating sounds－are with greatest desirable fort economical，elegant，sanitary and difficulty kept spotless－－and unavoidable crev－NO ARCHITECT OR BUILDER does ices form unsightly features．These draw－justice to himself without having on hand data backs are wholly lacking in Pennsylvania regarding Pennsylvania Rubber Tiling，and Rubber Tiling，which is practicaily silent to our Book－of－Designs－in－Color，which will be
the tread，never slippery，seal－close at the sent on request，with list of important build－ joints，and fully as durable as any of the above．ings furnished with this flooring
special designs appropriate to any individual interior are
Pennsylvania Rubber Company
 JEANNETTE，PA．

## 园Cのわ○んY



Write $\begin{gathered}\text { to．ary } \\ \text { MOTSINGER AUTO－SPARKER }\end{gathered}$



THE＂LEADER．＂
$1_{\frac{1}{2}}$ H．P．Gasolene Auto＝Marine Engine

## STEAM USERS

## Rainoow Padxing

The original and only genuine red sheet packing．
The only effective and most economical flange packing in ex－ istence．

Can＇t blow Rainbow out．
For steam，air，hot or cold water，acid and ammonia joints． Beware of imitations．
Look for the trade mark－the word Rainbow in a diamond in black，three rows of which extend the full length of each roll．

PEERLESS RUBBER MFG．CO
16 Warren St．，New York

＊10DaysTrial


Another Good Thing from RECIPROCATING AUTOMATIC DRILL





We Challenge
Comparisons．



[^0]:    GAS-LIGHTING APPLIANCES THE "PNEU-WAY" of lighting gas! Lights Welsinstalled, over lasting. Ask your gan on wanny or wasily
    PneumaticGas Lithting Company, 150 Nassae St., N. Y.
    Valuable Christmas surprise.

[^1]:    

[^2]:    Hundreds in use. Send stamp tor outitic catalaopee.

