graphs cannot possibly refer to bodies falling in a vacuum seems to be shown by the sen-
tense: 'Take a piece of cork in one hand and a bullet in the other, and drop these two ob-
jects at the same moment from the same jects at the same moment from the same
height." A. The article which you quote from the Encyclopædia Britannica was written by Prof. Ball, Astronomer Royal of Ireland at
the time he wrote it. It is hardly likely that the time he wrote it. It is hardly likely that he was in error on so simple a matter as the
fall of a cork and a bullet from the hand to the ground. Have you tried it for yourself Had you done so, you could hardly have writ ten the letter to us. The experiment is sim-
pile. So are others given by Prof. Ball. Try them till you are convinced that it is the mat ter of the earth which draws bodies down to
its surface, and that the rate of fall is no its surface, and that the rate of fall is no
dependent upon the weight or the density o dependent upon the weight or the density of
the body falling. This was demonstrated by Galileo at the Leaning Tower of Pisa befor the immortal demonstration of the law of
gravitation by Newton. The paragraphs you gravitation by Newton. The paragraphs you
refer to have no dependence upon the other fact that the lightest and heaviest bodies fall alike in a vacuum. They refer to the fact that all moderately heavy bodies fall practically alike through the air. Very light things are retarded enough by the air to have their rate
of fall changed by the resistance of the medium through which they are falling
(10183) H. M. asks: 1. Why are the guns on battleships not larger than 45 caliber, 12 -inch? Is it because they are strong to carry larger guns? A. 45 calibers is found to be the maximum length which can be used
to advantage for the 12 -inch gun. The greater lo advantage for the 12 -inch gun. The greater tate larger turrets to accommodate the greater weight back of the trunnions. 2. By what formula is the displacement of ships known
before they are launched? A. The displace before they are launched? A. The displace-
ment of ships is found by calculating the 3. Would it be possible to build torpedo boats of say 400 tons with a speed of 45 knots? A In the present state of the art it would be ampossible to build a hull of 400 tons displace
ment which would float horse-power necessary to give a speed of 45 knots. The "Viper," a torpedo boat of slightly over 400 tons, holds the record for speed of slightly over 36 knots an hour. The horse-power increases as more than
the cube of the speed, and hence the weight of the engines to give a propeller thrust suitable prohibitive. 4. a. A description of the 21 -inch torpedo in use in the United States navy. A The United States 21-inch torpedo was de-
scribed in the Scientific American of January 6 , 1906. b. A description of the 45 -cent meter torpedo in use in the German navy. A. We are not aware that any data regarding the
German 45-centimeter torpedo have been made public. 5. Is there any work giving complete statistics of all rapid-fire guns in use in the
large navies? A. Brassey's Naval Annual gives full statistics. 6. Please put an article In your paper that treats of the new ship armored cruiser- "Orion," T. B. destroyer "Afridi," and the special type torpedo boat that is intended to make 36 knots per hour
A. The "Dreadnought" was illustrated and described in the issue of the Scientific Ameri can of August 25,1906 . We have no
respecting the other vessels mentioned.
(10184) E. R. asks: Will you please tate in your query column how many revalotions the earth makes in 365 days? A. The
earth makes 366 revolutions on its axis in 365 solar days. One rotation of the earth on its axis is completed when a star which was due south last night is tonight in the same position. Since the earth is also moving in an orbit around the sun, the star seems to each night than it did the previous night. earth might than it did the previous night. The . .es of time more to bring the sun to the same place day by day. This extra time constitutes the difference in length between the solar and the sidereal day, and in a year more than there are solar days. There are 365 solar days and 366 sidereal days in each year. T e sidereal day is the true measure
of the rotation of the earth on its axis with reference to a star or to a fixed point in absoute space.
(10185) H. B. C. asks. 1. Why is it that a light, when put into a 110 -volt circuit, will not short-circuit the current, while a piece as the filament of the lamp when place in as the filament of the lamp, when placed in
the same position, will immediately short circuit? I have found it to be a fact that when an incandescent light's globe breaks, the filament does the same as the piece of copper wire, provided, of course, that the current is on. Do I not, therefore, Save reason for
thinking that the air has something to do with this? A. When the globe of an incandescent lamp breaks, the hot filament is instantly burned by the oxygen of the air just as any is not short-circuited by the filament The flash of light which is seen is due to the chemical action of burning the filament, and not to any electrical action. When the circuit is bridged copper wire is small and a large flow $\overbrace{o f}$, by a short copper wire, the resistance of the
copper wire is small and a large flow \rightarrow of
amperes takes place, which heats and melts
and also burns the copper. This is what
meant by a "short circuit." 2. How may small, practical, 110 -volt current electric heater be made? Is not German silver wire the
best for this purpose? A. If you want an electrical heater which may be attached to a lamp socket, wind about 200 to 220 ohms of
fine German silver wire on porcelain tubes and mount in some convenient fashion. SuppleHunt in some convenient fashion. Supple data concerning electrical heaters. 3. What is the smallest size of wire allowed by the Fire Underwriters' Association for wiring building with 110 -volt current? I have been using what is known as No. 14 rubber-covered for my outside, and No. 14 weather-proof for my in-
side wiring. In this am 1 meeting the re side wiring. In this am 1 meeting the re
uirements or not? A. No. 14 wire is allowed quirements or not? A. No. 14 wire is allowed
by the Underwriters to carry 12 amperes in by the Underwriters to carry 12 amperes in
rubber insulation, and 16 amperes in other insulations. 4. Do wires necessarily in need to be soldered in joining them to make them ore electrically and mechanically perfect the wires are always solonection s allowed.
(10186) J. C. B. says: 1. In what probable way does Edison expect to utilize cobalt? Can he use the chlorine gas from it motive power? If not, how to use it in we are not able to answer your inquiry, "In what probable way does Mr. Edison expect to utilize cobalt?", etc. It would be a hazardous hing to attempt to tell what Mr. Edison will probably do, or may be expected to do. We doubt if he tells any one, even if he knows himself, what he expects to do. We may say dive power in chlorine. Whee cobalt, and no mo edison does not expect to find either of these results in his investigations 2 , In antebellum days here in North Carolina, by rub ing a pocket knife blade across the points of the old flat strap iron on the railroad track, the blades of the knife so rubbed became highly magnetic, capable of lifting iron or steel obejects of considerable weight, a fourpenny nail
or larger perhaps. I have so done often myor larger perhaps. I have so done often my-
self, but after some forty years cannot say positively I raised anything heavier than a fourpenny nail. Have tried the present T-iron rail repeatedly, with no magnetism resulting at all Why is this? The magnetic properties were hen well known, but do not know if I can now establish the fact by another witness than myself. A. Any magnetizing of a knife by stroking it on a rail was due to the fact that the rail was a magnet. If the old experiment
cannot now be repeated, it is because the prescannot now be repeated, it is because the pres-
int rail is not a magnet. 3. From what source does the ocean derive its intense saltiness, and how retain same in uniform. strength? he salt now in the ocean has been in the past beds of salt in the earth to which the wat gained access. The saltness remains, since all the water which evaporates from th ocean is fresh water. The original water was resh. It became salt by dissolving salt from he earth. 4. Why are the conventional numer of guns (21) fired in honor of the Pres dent of the United States? Is it by Congress original in thirteen States? A. The firing of 21. guns as a salute for the national flag the President of this or other countries, or the sovereign.
custom.
(10187) O. B. writes: 1. There seems to be an idea that artificial ice does not keep well as natural. Is there any truth in the is not usually as dense as natural ice which forms slowly and rejects the contained air more completely. The air can be seen in a cake of artificial ice in the middle of the
cake. When artificial ice melts, it separate cake. When artificial ice melts, it separate sty. These features of artificial ice seem to us to account for the impression that it does
not keep as well as natural ice, that is, that解 could be equal to a pound of natural ice 2. In winter in the north temperate zone, in解 everywhere north of the equator, the sun houses that face due south. Has refraction of the sun's rays aryilling to do with that fact? A. Your second query reads as follows :
"In winter in the north temperate zone, in fact In winter in the north temperate zone, in fact
everywhere north of the equator, the sun hines at sunrise and sunset on north sides of of sun's rays anything to do with the fact?" e do not understand the fact to be as you er, the sun rises in the east and sets in the est the world over. In that position the sun's rays at rising and setting would glance along we north and south sides of a house which faces south. The same is true at the vernal quinox. From September 22 till December 22 ha sun moves to the south, hill on the latter south of the east point and sets the same dis once south of the west point It is obvious that its rays cannot in these positions shine n the north sides of houses which face south Refraction could not produce any such effect s this. It changes the apparent position of the sun on the horizon about the diameter of
the sun, or about a half degree; more exactly, 34 minutes of arc.

NEW BOOKS, ETC

Dictionary of Engineering in English and Spanish. By Andres J. R. V.
Garcia. New York: Sion \& Cham berlain, $1906 . \quad 32 \mathrm{mo}$.; pp. 150 Price, $\$ 1$.
The user will find some $\mathbf{3 , 0 0 0}$ technical provides two little dictionary. The author in English, and the former will be found specially valuable in translating from Spanish into English. The English index has been made as complete as possible without causing well adapted to satisfy the demand for an upgeneral use by other language.
illustrated Technical Dictionary. Vol.
I. Compiled by K. Deinhardt and
A. Schlomann, Engineers. New

York: McGraw Publishing Company
This is the first volume of the American edition of a series of technical dictionaries eleven volumes being in contemplation to give successively the industries of electricity, steam, hydraulics, mechanical handling of railways, tore, and naval construction. The dictionary is published on a new plan, and one that ap-
pears more nearly to meet the numerous re quirements of thorough technical work of this character. The main feature is the classifica ether, the reference to any particular subject sing obtained through a general index of the terms for all the languages covered. These are six in number. In addition to the German English, French, etc., terms, the symbol or illustration of the term is frequently given
The work seems carefully prepared, with few typographical errors, and should be found use fuel by engineers and other technical men. The present volume treats of titles used in meta and wood work, drafting and general terms,
machine design, and general machine-shop machine
terms.
Catechism on Producer Gas. By Samuel S. Dyer, M.E.
Graw $\begin{aligned} & \text { New York: } \\ & \text { Company, } \\ & 1906\end{aligned}$ 24mo.; pp. 42. Price, $\$ 1$.
The author utilizes the effective question and answer method for imparting considerable and its manufacture. Both the questions and the answers, 287 in number, are concisely and clearly stated. The catechism will doubtless be found useful by engineers as well as nontechnical men interested in this subject.
Directory of the Alumni of Stevens
Institute of Technology. Hoboken,
N. J.: Stevens Institute Alumni
Association, 1906. 32 mo. pp. 132
Price, 50 cents.
This booklet should prove useful not on l to the large number of Stevens alumni, but in general to any one desiring the services of an engineer or technical man. The first part
of the text comprises an alphabetical list of the graduates of the Institute, with reference to the following pages upon which these names
will be found. The alphabetical list is followed by a geographical list with county and
stale divisions and urban subdivisions. This is followed by a geographical list of countries main subdivision of the book comprises a business directory, in which the alumni are grouped under the various i
they are actively engaged.
Electricity of Today. Its Work and its Mysteries. By Charles R. Gibson, A.I.E.E. Philadelphia: J. B.
Lippincott Company, 1907. With
39 illustrations. $16 \mathrm{mo} . ; \mathrm{pp} .344$.
In this book Mr. Gibson has given us a in everyday life. In spite of the fact that he has avoided the use of technical language, he which have fallen within the scope of his book with a fair amount of thoroughness discussed may be mentioned electricity in medicine, electric traction, electric heating and wo king, electro-chemistry, electricity from wires, electric telegraphing with and without tricity advanced by modern thinkers. The book is excellently printed and well illustrated.
The Management of Electrical Ma Chinery. By Francis B. Cracker, E.
M., Ph.D., and Schuyler S. Wheeler,
D.Sc. New York: D. Van Nostrand Company, 1906. 12mo.; pp. 223 Price, $\$ 1$.
The simple directions and useful hints for dynamos and motors, contained in this book a prs. Schuyler and Wheeler first appeared as some fifteen years ago. The arrangement is so lately and in proper order, with headings of heavy type to facilitate reference to the subthe basis of a more elaborate treatment of the subject in a future work, but as such will be
found of value. The present edition is, found of value. The present edition is, of
course, brought up-to-date in all its phases.

Polyphase Clements. By Alfred Still. New York: Whitaker \& Co.
12mo.; pp. 352. Price, $\$ 2.50$.
The use of polyphase alternating currents for the transmission and distribution of electric power is becoming so extended, that the presnt volume should prove a welcome addition the literature of the subject. The book treats in a non-mathematical way of the theoretical considerations involved in polywithout the necessary mathematical knowledge required for necessary mathematical knowledge will find the text and illustrations of value in obtaining a clear and comprehensive knownage of the subject. The non-mathematical treatment of polyphase currents has been made possible to a large extent by the author's extensive use of graphical methods.
Perpetual Care in American Cemeteries. Reprinted from Park and Cemetery and Landscape Gardening, with addilions of criticisms, and forms of contracts used by different cemeteries.
Chicago: R. J. Haight, 1906. 12mo.; Chicago
pp. 62.
pp. 62.
ping and Finishing Hardwood Floors. By Frank G. Odell. New York:
David Williams Company,
1906. David Williams Company, 1906.
$12 \mathrm{mo} . ; \mathrm{pp} .50 . \quad$ Price, 50 cents.

INDEX OF INVENTIONS

 For which Letters Patent of the United States were Issued for the Week Ending October 16, 1906.AND EACHBEARINGTHATDATE

Melody.

 ${ }_{c}^{\text {8x\},322 }}$

