mean of all measurements above and below the horizontal, and is the true average candlepower. It is the most difficult to obtain. The "nominal candle-power" is the one oftenest spoken of commercially. It is a value arbitar-
ily taken to correspond to a certain consumption of energy in the arc. Thus an arc taking 450 watts is called a 2,000 -candle-power lamp,
and 300 watts are assumed to give 1,200 candles. These numbers are perhaps near the maximum cande-power of an open arc lamp. A small searchlight may be simply an arc
light so arranged that it can be swung to light so arranged that it can be swung to
throw its light strongly in different directions by attaching to it a parabolic reflector. Such would be good for the purpose SuPPLement would be good for the purpose. projector which may be useful in making a projector which may be usefur in
searchlight. We send it for ten cents.
(9872) F. K. W. asks: Will you please write to me telling me the dimensions for a
smoke box for making rings? I wish to use it simply for experimenting. What substance should be put over the end to be knocked?
What size hole? A. A box for making smoke rings may be of almost any size. One which we have used with success in our lectures for 8 inches square, with a hole about 4 inches in diameter in one end. A sheet of pure rubber
is fastened over the other end with cleats. The advantage of a box of some size is that it contains a large volume of air with which to form rings.
(9873) P. writes: Regarding Answer 9840, I would say J. F. overlooks the essen-
tial point in the question, namely, the ability of a moving body to overcome resistance to
its motion. The two balls of equal size present equal surfaces to the air and experias their velocities are the same. But there seems to be a failure to see that the resistance of the air is a constant resistance which the a moving car must overcome the friction of the brake applied to its wheels. The falling ball must displace air, and the displacement of the velocity of the moving body. The ability of the falning ball to displace air depends upon the weight of the falling ball, since it is mo
mentum which pushes the air aside, and this varies both with the weigitt and the velocity of the ball. The lighter ball cannet push air out of its path as easily as the heavier ball. and the heavier ball will reach the ground first, since the retardation increases as the time of fall increases. It may be accepted as
good authority to quote Wood's "Elementary Mechanics," page 33, sec. 71: "The attraction of the earth being the same on each particle
of a body, a light body would fall as rapidly as a heavy one if there were no resistance to their movements; and this is confirmed by ex
periment, by letting bodies fall in a vacuum. The resistance of the air varies with the sur-
face against which it acts, but in falling bodies the ability to overcome this resistance varies as the weight of the body; hence, heavy
bodies fall faster than light ones in the air. But the velocity of heavy bodies, such as iron, stone, brass, etc., falling from 100 to 200 feet
do not differ much from each other." bodies fell as J. F. reasons they should, rain drops would hit our devoted heads with the velocity of shot falling from the same height often a mile, and would, as shot would, give us a smart blow, to say no more.
(9874) P. C. D. asks: Will you please explain the cause of the light line around dark objects seen against the bright sky, also around
shadows cast by an arc light? It occurs occasionally in photographs, especially those taken at sunset. A. The bright border sometimes seen around a dark object against a
bright surface is due to the sharp contrast oit the object and its background, which also canses, the dark object to seem smaller than it actin object in a photograph seems to be due to film is thicker in one part than in another after it is dried. The place where the film curves from the thick to the thin part acts
as a lens to diffuse the light and make a narrow band where the prin
brighter than elsewhere.
(9875) C. A. R. asks: 1. It is a known fact that weakening the field of an electric motor decreases its speed, and yet it would
stop if the field current was opened. Now, at what point does weakening the field cease to A. If the armature current for a motor is supplied at a constant voltage, strengthening and weakening the field increases the speed the motor, for equal power. This is due to the counter electromotive force generated by the armature of the motor by its rotation. It
makes no difference whether an armature is driven ey electricity or by some other power, an E. M. F. is generated by it in the opposite
direction to that of the same machine as a motor. The current flowing in a motor is weaker the faster the motor runs. This is
well explained y Thompson in his "Elementary Lessons, under motors. We send the book for $\$ 1.50$. 2. Many people think it is a
strange wonder that electricity is used to such an extent and yet no one knows what it is. I
much more wonderful to scientists than that things. To what extent and many othe A. While it must be admitted that all is not yet known regarding the nature of electricity it is certain that much more is known that as Whewell's "Recent Advances," Such a book son's "Electricity and Matter," will give a
fair presentation of the subject. We furnish the first-named book for $\$ 2$, and the second for $\$ 1.25$. 3. How is the speed of gasoline
engines regulated and governed when automatic? A. The speed of a gasoline engine is regulated in one of several ways-by throttling the supply of gas mixture, by stopping the
feed of gasoline for several revolutions, manipulation of the exhaust revolutions, by electric ignition, by cutting off the spark. These changes may be operated by a ball governor o any other device.
ell, or give warning signal by either light, crossings. Each (in) line would have separate device of its (in) line would have a to indicate when the car is coming. Is any such thing in use anywhere ; if not, why not ing the approach of a car to a crossing can be patented, and might be sold to railway people 5. What can you say for the device by which it is claimed a person when telephoning ca see the one talked to? A. We cannot say any thing about a device for seeing a person to
whom one is talking by the telephone and who is at the other end of a line. We have neve seen such a device.

NEW BOOKS, ETC.

A Treatise on Concrete, Plain and Re INFORCED. By Frederick W. Taylor,
M.E., and Sanford E. Thompson,
S.B. New York: John Wiley \& Sons,
1905. 8vo.; pp. $585 . \quad 176$ figures. 1905. 8 v
Price, $\$ 5$.

The present treatise, which is a most com plete one, is designed for practising engineer and constructors, and also for a text and ref process of concreting is described, including classification and use of cementing standard and special tests for cement, strength an composition of cement, mortars, reinforced concrete, mixing concrete, depositing concrete,
effect of sea water on concrete and water fire ard rust wrotection, sidewalks and base ment floors, building construction, foundations and piers, dams and retaining walls, arches
tunnels and conduits, reservoirs and tanks and tmnnels and conduits, reservoirs and tanks and There is little question that this book will be of very great value at the present time, when there is such an interest in the subject of the
Graphic Methods of Engine Design. By
Arthur H. Barker, B.A., B.Sc. Lon
don: Technical Publishing Company
Lta., 1905. $12 \mathrm{mo} . ; \mathrm{pp} .210 . \quad 90$ dia grams. Price, $\$ 1.50$.
The author had a two-fold object in view in writing this book, which is now in its
second edition. In the first place, he attempte to describe and explain clearly a series of easy and practical constructions for use in the
drawing office by young mechanics aspiring to positions in such offices, and having little idea of the sort of mathematical knowledge re
uired in designing engines on correct quired The author's second on orject is to prow the intimate relations necessarily existing be principles of what is called "theoretical" me chanics. The mechanism of the steam engine forms a very complete series of illustrations
of these principles, and the book is intended o make clear their application to practical
work. Examples of almost work. Examples of almost every principle contalned in it, and all principles are treated numerically, besides being also fully described of his work to the snbiect of balancing, and this subject will be found discussed in a very
interesting and easily-understood manner by all who read the work.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Issued
for the Week Ending
January 9, 1906.
AND EACH BEARINGTHAT DATE
see note at end of list about copies of

