
hints to correspondents.

(9955) J. A. . astss $\mathbf{1 .}$ In your issue of March 24, page 258 (9921), you say that
the buoyant power of a tank, open at the bottom, decreases as it is sunk deeper into the water, since water enters and compresses the air into a smaller volume. You say that th
above is true, since the only point involved i the volume of water displaced. Is it not the weight, instead of the volume, of water dis
placed that is involved? Would not the dif ference in buoyancy depend on the comparative difference in density of air and water, at the
surface and at a distance below the surface? surface and at a distance below the surface?
If the compressibility of water is greater than that of air, would not the buoyancy increase with the descent of the tank? Which has th no books which will answer this question for me. If the compressibility of water is less travel a greater distance in water than in air? A. The reply to your inquiry regarding the
compressibility of water and air is that wate is nearly incompressible, and air is compressed to half its volume by an increase of pressure
of 15 pounds per square inch. This increase 34 feet in water. When the box is 34 fee below the surface, the air will occupy only
half the box; the rest will be filled with water, which is of almost the same density as
at the surface. Water is compressed only 44 millionths by a pressure of 15 pounds pe square inch. The velocity of sound in water
is not due to its density. It travels slower in in iron than in water or air. The velocity of sound is produced by the elasticity of the substance, as well as by the density of the substance. The velocity in any substance varies directly as the square root of the elasticity
divided by the square root of the density. See divided by the square root of the density. See
any textbook of physics. 2. In the same ssue, page 258 (9928), the midsummer month of the southern hemis phere. Is not the sun airectly over the Tropic of Capricorn on December 21, and hence is not you call our attention is a slip in the types.
The midsummer in the southern hemisphere is t the same time as the winter in the northern nemispherg. Every one knows that fact, and
no one will be misled by the error, which was no one will be misled by the error, which was (9956) J. P. M. asks: Would you kindly decide this argument: 1. A says you
cannot make water hotter than 212 degrees, as it then becomes steam. B says water can be made hotter than 212 degrees. A. Water can-
not be heated above its boiling point in an pen dish. When the barometer stands
0 inches, water boils at 212 deg. Fahr. the sea level the temperature of boiling wat fluctuates about 5 degrees, due to changes in fair weather. Water in boilers can be heated deg. in steam engine boilers when steam is up 2. A argues that all watches are the same as
far as works are concerned; that is, a $\$ 5$ watch far as worksare concerned; that is, a $\$ 5$ watch
or $\$ 100$ one has just the same amount of orks. We do not mean quality. B argues A. The works of cheap watches are very coarse and rough. Those of fine watches are highly finished, and run with much more perfect regu-
larity. Some watches have more wheels than larity. Some watches have more wheels than
others. This is a question the nearest watch (9957) E. P. writes: of the issue of March 24, 1906 (page 257 , of 5, 6, or 11 years between years having 53
Sundays. In the list of such years you omit the years 1916, 1944, and 1972 . Now these leap years will begin with a Saturday and end 53 Sundays-the two extra days a leap year has over 52 weeks. Should not these years be included in the list, and the interval placed at 5 or 6 years only? A. By some inadvertence
we missed the leap years mentioned by our we missed the leap years mentioned by our
cor respondent from the list of years having 53 Sundays in the present century
(9958) B. W. writes: Query 9916, by
A R., Scientific American, March 17, 1906,
page 238, "Will you account for the universal
idea among seafaring men that ice sinks?" idea among seafaring men that ice sinks?
Answer: The floating or sinking of ice in water depends upon the relative specific gravity of each. Clean ice will always float in water
until it dissolves into water. Ice may become so loaded with other matter as to cause its
specific gravity to be greater than the water beneath it, and it sinks. My business from 1871 to 1878 caused me much travel over the
Missouri River, from Springfield, Dakota, on the north to White Cloud, Kansas, on the south, a distance of about one hundred and ear. The Missouri River water is dirt thick. The Winnebago Indians call it Ne-shuda (shuda,
dirt; Ne, water), dirtwater. The river's wide alley is a windy country, and clouds of fine sand may be seen almost daily passing over
its waters. It is very winding in its course its waters. It is very winding in its course
southward, and has a swift current. Ice upon southward, and has a swift current. Ice upon
its surface sometimes forms four feet in thick its surface sometimes forms four feet in thick
ness, and generally sinks when warm weather comes. The thickness of the ice having then
been diminished by the heat, and the sand and dirt upon and within the ice remaining intact in weight, the specific gravity of the remaining ice becomes greater than that of the water,
and it sinks. The same rule of nature is applicable to account for the sinking of icebergs within southern latitudes. There ice is slowly formed in glaciers, and weighted by sand and
tone ground from the rocks and earth during their gradual descent to the ocean, into which their gradual descent to the ocean, into which
they are dropped. As the iceberg journeys southward into warm latitudes and currents the ice is gradually melted, the stones, sand, pecific gravity of the mass becomes greater han that of the water, and what is left of the iceberg sinks beneath the ocean. "The uni-
versal idea among seafaring men that ice The is correct under certain conditions. The origin of the universal idea cannot be
explained by the fact that it is sometimes true in exceptional circumstances. The editor in resh-water ponds. Every one believed that the ice sank when it disappeared in the spring.
The query referred to asks for the origin o that idea, not for an explanation why ice may sink by becoming heavier than water from
accretions of foreign matter. That is a very different question. The editor thinks the idea riginated from the frequent disappearance of often known it to do. We used sometimes to say it had gone out, sometimes that it sank.
Both phrases are in local use both phrases are in local use. Neither prob-
ably is true. The ice disintegrates, or breaks up into prisms and floats in small pieces, so
that the surface looks to be entirely composed of water, as it largely is. Seen from a dis tance one can see no ice. Where has it gone
"It has sunk," say the native and the sailor while it is really floating just at the surfac in small pieces, too small to be seen.
(9959) E. J. writes: I would like you to answer this: I have a core $5 / 8$ inch
diameter, 7 inches long, made up of No. 22 The primary is wound with two turns No. 18, layers, one on top of another, then insulated them. I did this all through the coil. I used 4 and 5 volts in the primary, and have been
unable to get a spark $8 / 8$ inch long. I made the tinfoil as per sketch. A. A coil made
with a primary with only two turns of wire will not give a spark at all. It should coninsulation between the layers of the secondary unnecessary, and reduces the spark, since it To say that you "used four and five volts in
the primary" means nothing. If you had said you used so many amperes, we could then judge the matter. Two or three good cells
will give current enough for a little coil such as you describe. Probably a quarter to three from it. It is better to get a good book like \$1.00, and follow the directions carefulls in building a coil. Time and money will be saved
bind the directions caref in by first finding out what should be done, and '
afterward doing it.
(9960) A. N. asks: 1. I am winding he secondary of a 1 -inch spark induction coil duction Coils"). Would it increase the insulation in each of these sections to wind the wire paper, or would this heighten the tendency of the spark to jump through it? A. We do no
advise you to change the construction of the advise you to change the construction of the
coil you are making after Norrie's plans. Fol low plans closely. Added insulation between layers in secondary is not needed, else Norrie improve your coil by putting paper between the layers, because you will separate the laylayers will be in a very weak magnetic field if you put the paper in as you propose. Fol
low plans closely. 2 . How far will 1-inch spark send a wireless message with the re
ceiver described in SUPPLFMENT No. 1343 A. A 1-inch spark will send a wireless mes coil only capable of making a spark 1 inch ong. A great coil witn the terminals 1 inch
part will have much more power than a small coil will with its terminals as far apart as it can send a spark. A 1 -inch coil might per
haps send a signal one mile over water, an aps send a signal one mile over water, and
,000 feet over land. 3. In regard to ohms,
would not a fine wire offer less resistance t a small current than a large current? There ing number of ohms resistance? A. The the current which is flowing through the wir An ohm is an ohm without reference to the amperes flowing through the wire. Amperes
should not be stated; if they should, all the books would state them. The writers know
their subject. 4. If a relay is wound for 100 ohms, does that mean it will work through
10 ohms resistance? A. A 100 -ohm relay has 100 ohms of resistance in its coils. It is usua operate, rather than the resistances through which they will work. With magneto ringers it is usual to specify the resistance through
which they will ring. An 80,000 -ohm ringer is one which will ring through that number of ohms. 5. How thick glass will 1 -inch spark
pierce? A. With a proper condenser a 1 -inch spark coil might pierce glass
of an inch thick, though we have our doubts about its piercing any thickness of glass. W have never tried it, and no data exist for
small a coil. 6. In X-rays, do you take
phen phetograph of the image on the fluoroscope or
through a camera, or just let the shadow fall cast by dense objects are allowed to fall a photographic plate which is wrapped i black paper. No camera is used for making
an X-ray picture, or skiagraph. 7. In an in an X-ray picture, or skiagraph. 7. In an in
duction coil, if there is enough current to jump through air, why does not it jump
through the thin insulation? through the thin insulation? A. Parafine,
shellac, and the rest are better insulators than shellac, and the rest are better insulators than
is the air, so that the spark jumps through air between the terminals of a coil rather than Sometimes the insulation is pierced and the coil ruined.
(9961) H. T. asks: The "ion" the ory suggested to me the following little ex periment. Into a drawn-out piece of har
glass tubing of this form put various salt solutions, such as $\mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{Mg} \mathrm{SO}_{4}$, etc., and very small drop of mercury, just large
nough to act as a sort of movable stopper in the capillary tube. In introducing a cur-
rent of about 8 volts, I found that the mercury traveled speedily toward the electrode and back again, when the current was re versed. If the experiment was carried on for
some time, the mercury "thread" seemed to suffer a strain, and frequently broke in two ; polarization of the electrodes may have had something to do with that. Has this experiment been tried before, and is there any reacause of the metallic ions might not be the experiment you send us you will find in Hop kins's "Experimental Electro-Chemistry"
12, which we can send you for $\$ 3.00$. 12, which we can send you for $\$ 3.00$. It was
published a good many years ago, we think, first by Wallace Gould Levison, in the Amer migration of the mercury to the negative p indicates that its ions are electro-positive. The tube used
(9962) A. K. D. asks the advisability of using an electric motor in a barn for
hreshing purposes; to be run by a gasoline engine about 300 feet away, to which a dynamo is attached. The engine develops 18
horse-power. If a 10 -horse-power dynamo were used, what horse-power motor could be suc-
cessfully used? A. We see no reason why an eessfully used? A. We see no reason why an
electric motor could not be used in a barn electric motor could not be used in a barn
for threshing or running any farm machinery. for threshing or running any farm machinery and the danger from fire be made so small as not to be considered. A 10 -horse-power power, or 9 horse-power, to the motor
(9963) C. W. says: Inclosed please find ten cents in stamps in payinent for the explanation of the so-called puzzle of cutting sixty-four squares to make them sixty-five. know that you published the correct solution
within the last few months, but have mislai or lost my copy of the paper, so send for one There are some "wise guys" in this neck of
woods who think they can make the extra woods who think they can make the extra
square out of nothing, and won't believe me ntil they see your paper. A. The paper you issue of July 8, 1905 . We publish your letter seems to die hard, have begun to come into ur office again. We wish our friends would believe that it is impossible to make 8 times anything but 64 .
the human mind.
(9964) S. asks: Will you please tate whether or not it is possible for a man
take without killing him 75,000 or 100,000 volts of electricity? A. The killing of a man of the current at all, certainly not directly pon the voltage. It is the amperes which
estroy life by acting upon the erve centers. The volts simply determine how many amperes hall flow, if the generator furnishes them. equal to volts divided by ohms. Ohms are reistance. Volts are pressure and a mare tity in flow of water in pipes, and the friction of the pipe to oppose the flow of the water.
current at a high pressure the man will be killed by it, but if only a small current can the resistance of the man is large, say 5,000 hms, and the voltage moderate, as say 500 nd that will not instantly kill, but it will give a smart shock. Voltages such as you name are not usually large except upon longery dangerous, since the amperes are usually large also. But the small generators and the lectrical oscillators which have such high current from these is insignificant and harm-解s. From what we have said it is evident t all. They simply push the current, elecricity, along. Men do not take volts of electricity. Men take amperes, and amperes
the work or damage as the case may be.

NEW BOORS, ETC.

The Art of Lead Burning. By C. H. Fay. New York: David Williams
Company, $1905 . \quad 12 \mathrm{mo}$; pp. 144. Price, \$2
The author justly states that the mystery which has always surrounded the work of the oudside of ordinary occupations, dissolves under he light of a full knowledge of theolves under ffects that have a bearing upon it. The uthor has produced a thoroughly practical ook which can be used with advantage by the practical mechanic. The greatest fleld for the
lead burner is in the chemical trades. The llustrations is in the chemical trades. Therous and enlightening.

Lippincott's New Gazetteer. A Complete Gazetteer or Geographical Dictionary
of the World. Edited by Angelo
Heilprin and Louis Heilprin. Philadelphia and London: J. B. Lippin cott Company, 1906 . 4to.; pp. 2,053. Price, sheep, $\$ 10$ net; half morocco,
$\$ 12.50$ net; patent index, 50 cents extra.
A noble book, indispensable in every library public or private, and will be found useful in
any office. This work has been before the any office. This work has been before the
public for just half a century. The present but is a brand new edition, being printed from ew type from cover to cover. This publica tion is an accurate picture of every corner of the globe in its minutest details as it exists in
the twentieth century. Statistics of populaion, production, mining, manufactures, physical history, exploration, general history, etc., have been gathered from the latest official ce, omestic and foreign. Each one of its 100,000
notices, varying in length from a single line to thousands of words, speaks for itself. A vast amount of labor has been expended in search of special information not to be found in of
ficial reports or the ordinary books of refer Technisches und Täglićhes Lexikon.

By Oscar Klinckfleck. Berlin: Boll \& Pickardt, $1906 . \quad$ Pp.
marks per installment.
This technical and practical German, Eng lish and French dictionary is to be published some seventeen installments of about 48 pages each. The author's professional and duce a book which promises to be of great in general only for purposes of translation, but present time the first two numbers have the issued. As the title indicates, the book deals principally with technical terms, includin those of military, naval, and general scientific parlance, but it will undoubtedly be extremely useful in the discussion and translation
many practical industries and arts, as well.

Ventilation of Bulldings. By William G. Snow, S.B., and Thomas Nolan,
A.M., M.S. New York: D. Van
Nostrand Company, 1906.
32 mo .; Nostran Company, $1906 . \quad 32 \mathrm{mo}$.
pp. $83 . \quad$ Price, 50 cents.
Messrs. Snow and Nolan have concisoly and clearly defined the essential principles of ven-
tilation in this practical little book. The metilation in this practical little book. The me-
chanics of the science have not been gone into, chanics of the science have not been gone into
but have been left for another volume in "Sci ace Series." The work deserves wide circula tion, particularly among members of boards o lacking to go thoroughly into the theory and principle of the subject, and where a practical handbook is a first requisite. It also might well be used in medical and engineering schools
where this important subject is not dealt with exclusively as a division of the curriculum. Steam Turbines. By Carl C. Thomas
1906. 8vo.; pp. 287. Price, $\$ 3.50$.

College Cornell Univer

 sity, has produced in this book a theoretical work on the subject of the steam turbine of no little value. The book is well illustrated with diagrams and engravings, and treats the difficult subject in a clear and brief manner trained, practical engineer but is of undoubted value as a text book for theoretical study Prof. Thomas, despite the fact that the de velopment of this particular utilization of steam has been so rapid that many of theproblems involved are still to be solved satis-

