ticles in a casing and automatically delivering one bag at a time upon manipulation of any desired starting device-such, for instance, as
coin-controlled mechanism; also coin-controlled mechanism; also means for
preventing the delivery of more than one package at each operation of the controllin the contents warm at all times,
FEEDER FOR SLGAR-CANE CARRIERS. -L. M. Dill, Avoca, La. The purpose of nomic machine especially adapted for raking cane from a car upon the carrier which conducts it to the sugar-mill and to so construct the machine that the operator can cause the
rake to move forward or backward or be rake to move forward
raised or lowered at will.
Trap.-W. E. Werd, Deer Lodge, Mont. The object of the improvement is to provide details of construction enabling convenient and safe setting of the trap, its easy and rapid
release from a captive, which avoids liability release from a captive, which avoids liability
of maiming the animal or bird caught, and which enables a person accidentally caugh jury to the member held therein.
MEAT ROLLER OR WRINGER.-B. L Packard, Denver, Col. The object of this in
vention is to provide an improved device in which means is provided for regulating the pressure applied to meat when passing through the device and in which means is also provided to permit the separation of the pressure rollers to allow bones to pass between them withou crushing and splintering.

Prime Movers and Their Accessories. CARBURETER FOR EXPLOSIVE-ENGINES. -J. H. Johnston, 145 Rue de la Pompe,
Paris, France. In this patent the invention has reference to a carbureter for explosive-
engines so equipped as to allow of obtaining engines so equipped as to allow of obtaining
ain explosive mixture the richness of which ail explosive mixture the richness of which
will always remain the same whatever may will always remain the same whatever may
be the speed of the engine. In this case the richness depends on the speed at which the air
passes around the orifice of the spray-pipe. HEAT-SCREEN FOR STEAM-CHESTS.-D C. Bailly, Real, Minn. The object of the in vention is to prevent the condensation of steam in steam-chests, due in part to the reduction in pressure in passing from the governor to the steam-chest and the consequent loss of heat and to the further loss of heat due to the
radiation from the steam-chest covering. The radiation from the steam-chest covering. The
invention is intended to prevent this radiation.
LIFT-PUMP.-H. M. Crow, Oakdale, Cal. The aim of this invention is to provide a
pump which may be driven by means of an pump which may be driven by means of an
engine or similar motive power, but which is engine or similar motive power, but which is the well-rod to be attached to the rod of a
windmill. It is especially useful in localities where windmills are used for raising water, but which cannot be depended upon under al weather conditions.

Railuays and Their Accessories

 LATCH DEVICE FOR DUMPING STRUC TURES.-C. F. Shelby, Globe, Ariz. Ter. Thepurpose of the inventor is to provide a latch purpose of the inventor is to provide a latch
device especially designed for normally holding device especially designed for normally holding
the dumping or rocking body of a car in carthe dumping or rocking body of a car in car
rying position on the platform and to so con rying position on the platform and the itch that it is simple, durable, economic, and readily applied. It can be quickly and conveniently discor its kesper when the body of the car
to its normal or carrying position.
SPIKE-PULLER.-T. W. Harber, Dudenville, Mo. One purpose of the improvement is to provide a device for pulling spikes used in
connection with railway-rails or bolts or common nails, even though said articles be headless, and to so construct it that the jaws
may be adjusted to close properly on the articles to be drawn, and so that as it is applied the jaws automatically open and then close as the device is put in withdrawing
actron, tightening their grip correspondingly actron, tightening their grip
to the applied withdrawal force
RAILWAY-SWITCH.-A. A. SHaw, Arkadel phia, Ark. The object in this case is to pro
vide a compact and efficient switch-frog with a view of obtaining a convex track-rail both for the main line and switch or siding, and whether the switch is operated from a switchstation or a tower. It embodies all the essential features of a safe and reliable switch frog, yet is simple in construction, having no complicated mechanism to break or get out of work times, with
minimum.
CAR-COUPLING.-F. Keller, Allentown, and D. Bowers, Emaus, Pa. The coupling comprises coupling-heads practically duplicates
of each other and constructed interiorly to contain and permit of the working organiza-
tion of the inner operative devices of the head. tion of the inner operative devices of the head.
A locking-blocls is used in each coupling-head, combined with which are devices for securely holding same in operative position both when the two heads are in coupled or uncoupled
relation, further devices being employed for relation, further devices being employed for
setting and securing the locking-block in rearone of the coupled cars to be disconnected from the other without the presence of an operator. Action of lock
coupling-head is automatic.

RAILWAY SPIKE AND TIE-PLATE.-T. G peterman, Cumberland, Md. The invention re for railway-rails, the object being teplates spike so constructed as not only to firmly bold the rail, but effectually to prevent the passing of water down the spike to the tie, thus preventing rotting of the wooden tie at
this point and consequent loosening of the pike.
Raillroad-TiE. - J. F. Bailey, Valdosta, Ga. The tie may be formed of a single plate and afterward divided or may be formed of arger size than the pocket and driven there ato, thus providing a firm hold for the spike When the fanges are embedded in the ballast, he tie is restrained both from transverse and road-bed, and by provision of a hinge a tie \cdot is formed free from the objections found in the ordinary metallic tie-that is, lack of resilificient to impair alinement of the rails.
CAR-COUPLING.-F. A. Ramey, Woodstock, a. By this improvement the inventor seeks provide an oscillating draw-head section
nd devices for holding the coupling-knuckle in ocked position when said section is in normal position and for releasing the locking devices is moved laterally in either direction section is moved laterally
its normal position.
ANTICREEPER.
ANTICREEPER.--C. LIEN, Salt Lake City, tah. The principal object of the invention not only to check the longitudinally creepentirely. With this and other objects in view the invention comprises a clamp to be secured to the rail and a fastening device for the camp adapted to engage with a sleeper on the
road-bed to prevent movement of the rail ransverse to the sleeper.
Car-COUPLING.-B. J. Cobb, Leesville, La. coupling is employed of the ordinary link-and-pin type, comprising coupling members, ach practically a duplicate of the other. pecially-constructed coupling member is employed for each of the two cars to be coupled coupling-link, together with a specially-constructed pin-fastening therefor, coöperating with which is a controlling-block of special onstruction located and operated interiorly of the coupled member
SIGNAL SYSTEM.-J. H. LyNCH, Red Bank, N. J. Principal objects of this invention are provide means whereby the passage of a caused to set signals in the rear for the obervation of the crew of any train approaching rom behind, and further, to provide means hereby the setting of these signals will not ion of train in advance, but to automatically stop the approaching train.

Pertaining to Recreation

GAME-CARDS. - C. Warne, Asbury Park N. J. In the present patent the invention has game-cards; and it has for its object to provide a pack of playing-cards with which cerlayed interesting and instructive games may be and other styles of games.

Pertaining to Vehicles.

TRUCK.-D. H. Rowe, Oakland, Cal. The object in this case is to provide a truck which with the same facility as such loads are caried by the ordinary trucks, but which, in addition, shall be so constructed as to enable a heavy load
of stairs.
VEHICLE-WHEEL.-R. F. Martindale Memphis, Tenn. More particularly the invention relates to such vebicle-wheels as are por-
tions of draft-wagon running-gears. ject is to provide a wheel very light, durable, and exceedingly strong, well adapted for convenient repair, and not liable to become clogged with clay or the like when the wagon is traversing muddy roads. It is manufactured of metal, and largely from plated metal cut and stamped into form, whereby it is adapted
rapid and perfect production at a low cost.
MOTOR-VEHICLE RUNNING-GEAR.-R. B
Vaughn, Kingston, Pa. The leading object of he invention is to so construct the running mobile-vehicle as to dispense wholly or in part with the necessity for pneumatic or other cushion tires on the road-wheels. It is also an object of invention to mount the frame and
body so as to permit easy and free movement on the springs, preventing, however, violent
TIRE.-J. C. Raymond, New York, N. Y. In operation the parts, a circumferential cushion,
tire-frame, and a base plate are assembled. The frame bolds the casing, the cushion, and the inner tube and the plate is applied to seand to form a carrier for the parts ready for application to the frame of the wheel. The plate, with the tire in place. can now be applied to secure the parts in place.

AIR-PIN earing Apparel.

Cal. The purpose in this case is to provide a pin that will be effective to support the
hair, will not accidentally slip from place, and hair, will not accidentally slip from place, and
is provided with means for readily and quickly removing the pin from the hair, the handle rangement of the legs of the pin in different planes, so one may readily slide back of the removing the pin.
COMBINED
TESTES-SUPPORTERDERGARMENT AND Jacison, Miss. In the present improvement the object of the inventor is the provision of an
undergarment for a man with novel features of construction that coact with supporting bands for the comfortable support of the found necessary

Designs.

DESIGN FOR A PLATE OR SIMILAR DISH.-A. S. Higgins, New York, N. Y. design patent has been granted to Mr. Higgin for a plate. It is round and the width from
the central depression to the outer edge is broadly wreathed by beautiful chover blossom center of the dish surrounds the head and neck

DESIGN FOR A WOODEN MIVG. -R. P. spooner, Cornwall-on-the-Hudson, N. Y. In this case the mug which is somewhat high for
its width is designed with a rustic body slightly and gracefully widening to the bottom. A rustic handle is inserted at the wooden

DESIGN FOR KNIT FABRIC.-C. H French, Canton, Mass. This ornamental design comprises a field of fabric alternating
with comparatively light and heavy bands. The light bands are the narrowest and quite plain, while the heavigr and broader ones are reinforced by clusters of irregular and unpat
terned forms. Mr. French has also designed another knit fabric wherein the also designed tively wider and narrower. The darker and broader have the appearance of ragged and indefinite transverse stripes. The narrow bands are plain.
DESIGN FOR A COOKING-STOVE.-E. cound fire pot and stove this design includes lar oven mounted upon suitable supports abov the body, the supports being mounted upon the top, the latter being provided with suit able lids and key plates, and the
ing an attractive appearance.

Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each Please state the name of the patentee; title of

Business and Personal WJants.

 every case it is necessary to give the
number of the inquiry. ${ }_{\text {MIUNN }}$ \& co.

Inquiry No. 804.- - Wanted, address of Paris or
United States manufacturer of reconstructed rubies
and emeralds
For logging engines. J.s. Mundy, Newark, N. J.
Inquiry No. SO4.
urer of Cast show case.
"U. S." Metal Polish. Indianapolis. Samples free. unquiry No. 8045.

Handle \& Spo Chagrin Falls,

Inquiry No. ©u46.-Wanted, address of ivory
carving machine manufacturers.
I sell patents. To buy, or baving one to sell, write
Chas. A. Scott, 719 Mutual Life Build ing, Buffalo, N. Y
Inquiry No. 804% - For manufacturers of tinfoil
rolling mills for foil in endiess lengihs.
WANTED.-Patents on bed spring constructions.
Inquiry No. 8048 . - For manufacturers of ma-
chine used in vacuum closed jars.
Fer SALE.-Patent No. 774,043. Self-reversing trolley
pole. W. R. Cooper, $\mathbf{6 4 0}$ Morton A ve., Greencastle, Ind

business. $\$ 2$ per 1.000 .
Inquiry No. \&osemritten Letter Co., St. Louis.
nquiry No. 8050--Wanted.
The celebrated "Hornsby-A kroyd" Patent Safety a
Engine is built by the De La Vergne Machine Compan

I have for sale the U. S. and all foreign rights of new Gatent Improvements in Water Tube Types of Boiler
Great economizer. J. M. Colman, Everett, Wash. Inquiry No. CO5 2.-For manufacturers of malle
able iron thumb scre ws.
Manufacturers of patent articles, dies, metal stmping, screw machine work, hardware specialties,
machinery tools. and wood fiber products. Quadriga Manufacturing Company, 18 South Canal 8t., Chicago. Inquiry No. 8053.-For manufacturers of skees.

Notes and Queries.

HINTS T• CORRESP位DENTS

 his tur

Special Written Information on matters of personal
rather than general interest cannot be expected
without remuneration. Scientific American Supplements referred to may be
had at the office. Price 10 cents each. Books referred to promptly supplied on receipt of
price.
inerals sent for examination should be distinctly
(9944) P. J. L. asks how to make $\begin{array}{lllll}\text { tracing cloth. } & \text { A. 1. } & \text { Boiled linseed } & \text { oil } \\ \text { (bleached), } & 10 & \text { pounds; } ; & \begin{array}{l}\text { lead }\end{array} \text { shavings, } & 1 / 2\end{array}$ (bleached), 10 pounds; lead shavings, $1 / 2$
pound; zinc oxide, $21 / 2$ pounds $;$ Venetian turpentine, $1 / 4$ pound. Boil for several hours, hen strain, and dissolve in the strained commosition $21 / 2$ pounds white gum copal. Reoil from the fire, and when partly cold, add
oil of turpentine (purified), sufficient to it to proper consistence. Moisten the cloth thoroughly in benzole and give it a flowing coat of varnish. 2. Varnish the cloth with Canada balsam dissolved in turpentine, to which may be added a few drops of castor oil, but do not add too much, or it will not dry.
Try a little piece first with a small quantity of Try a little piece first with a small quantity of
varnish. The kind of cloth to use is fine varnish. The kind of cloth to use is fine
linen; don't let the varnish be too thick
(9945) G. O. W. says: I want to build a stereopticon using a 7 -inch Mangin mirror, an acetylene illuminant of six or eight 2 -foot burners giving 100 cande-power each, bunching the burners together as much as possible. 12 inch focus, and a two-third size acter, matic projecting lens whose equivalent achrois 12 inches. A. We would say in reference to your inquiries regarding the arrangement of lenses, light, an mirror for a stereopticon,
that all such instruments are made adjustable, so that the various distances may be altered to adapt the projection to halls of different lengths. You can determine the proper position for each by trial, and make the parts of the ., appazatus. to correspond. It is not possi--
ble from the data you give to make any reble from the data you give to make any re-
liable calculations for the various positions. You say " a 7 -inch Mangin mirror." If this means the focal length, then 7 inches is the
proper distance for the center of the light. If it is the diameter of the mirror, it does not give
any information upon the subject. Proceed as follows: In a darkened room place a candle flame, so that the reflected light emerges as nearly parallel as possible, or so that the
beam can all of it enter your 7 -inch condenser, and come to a focus after it passes the conenser at such a distance from the condenser as to allow the two-thirds lens to take in
most or all of the light. These directions are the best we can do, and give the method we use in the same case. 2. How far the center of place for the flame of a stereopticon is a short distance beyond the focus for parallel rays. You can find this focus by placing the mirror in the sunlight and measuring the focal length-the distance from the center of the
mirror to the focus of the sun's rays. 3. How far the mirror must be from the condensing lens nearest the mirror? A. The mirror should be at such a distance from the condenser that
the beam from the mirror may enter the condenser. Find by experiment. 4. Which would he mole satisfactory-te place the flames so
that they cover the mirror reflector, or place that they cover the mirror reflector, or place
them in liue with the axis of the mirror? The Mangin mirror is concave, so as to throw the rays of light parallel. A. Acetylene flames
are usually placed in a straight line in the are usually placed in a straight line in the
axis of the lenses. We have never soen more a line of flame. Perhaps with so large a mirror and lens the lights might be staggered to advantage. 5. Would it interfere with the intensity of the light to place a thin glass over the mirror, so as to protect it from the heat to prevent breaking the same? A. A
thin glass or a sheet of mica is frequently used thin glass or a sheet of mica is frequently used
to protect the condensers from the heat of the calcium light. You can use such an arrangement. 6. The condensing lenses are placed
so that their corvex sides are together. How far apart ought they to be, measuring from face of the other at the center? A. The lenses of a condenser are placed with their convex surfaces toward each other, and as close to each other as they can be without touching
each other. Distance not important further than this. 7. How far from the plane surface the condensing lens nearest the objective to The distance of the objective from the conenser depends upon the distance of the screen from the lantern, or the length of the hall
in which the lantern is used. The objective
must be movable, since a thick slide may re-
quire an adjustment of the objective to make quire an adjustment of the objective to make
it sharp after it has been thrown upon the screen.
(9946) H. H. H. asks: 1. In central station telephone exchange work, where they
have party lines with as many as four 'phones connected with the switchboard with only two wires, how is the operator enabled to ring any one of the phones she wishes without disturbalternating current for ringing, and that the
'phones are all alike in construction, that any 'phones are all alike in construction, that any
one of them could be used in place of any other one, that is, they are interchangeable,
provided that the connections in the instruprovided that the connections in the instru-
ment are properly changed. Is this right? Of about what potential is the current that ments? A. The methods for selective calling upon party lines of telephones are divided by
Miller into three classes: 1. Those employin step-by-step movements for completing the calling circuit. 2. Those employing currents of
different directions or polarity. 3. Those employing currents of different frequencies for actuating the different signals, a harmonic sys-
tem. These several methods are fully discussed and described for 37 pages in Miller's for $\$ 4$, to which we would refer you for further information. 2. In winding the armature of
D. C shunt D. C. shunt motor, to carry a current o
say ten amperes, is it necessary to select say ten amperes, is it necessary to select a
size of wire that will carry ten amperes with-
out heating, or is one of a five-ampere capacity out heating, or is one of a five-ampere capacity
large enough? Does not the current, on enterlarge enough? Does not the current, on enter-
ing the armature, separate, and flow half around one way, and half the other? And how does the rule apply in the case of a dynamo?
A. In a direct-current motor armature as ordinarily wound and connected, the current divides at one brush and goested, opposite directions, uniting at the opposite side at the other and thus need be wound with wire of a size suitable for half the current. 3 . Can you give
directions for recharging a battery of dry cells! with a dynamo? About how many amperes
would you force through, and for how long? would you force through, and for how long?
Is the voltage of the charging current an essential factor? A. We have had no experi
ence in recharging dry cells with a dynamo or ence in recharging dry cells with a dynamo or
otherwise, and do not think the game is worth the candle. The voltage of the charging cur
rent should be about 2 volts per cell in series
(9947) S. G. B. asks: (1) What strength approximately is required to break an egg held end to end between the palms of the
hands, and why the resistance? (2) Can any living man perform this feat, i. e., is any man
strong enough! I enclose stamp for reply, although probably you answer no inquiries ex cept through the columns of your paper.
A. We have never seen any test of the pressure necessary to crush an egg shell in the direction of its longer axis. It is not prob-
ably very great. Any one trying this with his ably very great. Any one trying this with his
hands is a little uncertain of the result and
does not really press so very hard. Doubtless does not really press so very hard. Doubtless the simple arch of the shell. The force re-
quired can easily enough be determined by quired can easily enough be determined by
making a plaster cast to fit the two ends of the egg, and then applying pressure till the shell gives way. We answer many more ques-
tions by mail than through our columns. Only those thought to be of general interest ar printed.
(9948) S. G. B. asks: In your reply March 1 to a question of mine relative to the
strength of an egg in the direction of its longer axis you say that probably the resist ance is not very great and that many men the ends bands. With a plas the ends of an egg I applied pressure until
the shell gave way. It bore a resistance of 74 pounds. When 7 or 8 pounds more were
added the shell gave way. It is very difficult to balance the pressure satisfactorily, conse-
quently I think that an egg offers a resistance quently I think that an egg offers a resistance
of more than 74 to 80 pounds. My theory is of more than 74 to 80 pounds. My theory is
that a resistance of 15 pounds per square inch (atmospheric pressure) must be overcome be-
fore there is any strain whatever on the eggfore there is any strain whatever on the egg-
shell. An egg probably has from 7 to 10 square inches of surface. Multiplied by 15
this would give a resistance of 100 to 150 pounds. Few men have such strength. Many strong men, local champions, have tried this experiment of breaking an egg between the
palms of the hands and failed. A. Your observation of the breaking strength of an egg shell under direct and equally distributed pres-
sure is very interesting. The figure you give sure is very interesting. The figure you give
does not seem very large, and is probably that the pressure of the air resists the break ing of the shell, since that pressure is upon
the outside of the shell all the time, and is balanced by a pressure from within just as it is upon our own bodies. It has no influence
either way upon the power required to break either wa
(9949) A. G. H. asks how to mend tor-
toise shell. A. Small pieces of good tortoise toise shell. A. Small pieces of good tortoise
shell may be joined so as to form one large apparently seamless piece in the following
manner: Slope off the margins of the shells for a distance of about $1 / 4$ of an inch from the edge. Then place them so that the margins overtap one another; and thus arranged put
become so perfectly united that the joint can
not be seen. The filings and very small scraps not be seen. The filings and very small scraps by hydraulic pressure in metal molds. Pr tracted heating of tortoise sb
and greatly lessens its beauty.
(9950) T. K. asks: 1. Will you kindy explain, in your notes and queries, the mechanism and working of a wattmeter? A.
Wattmeters are instruments which have two coils, one a fixed coil of coarse wire in which the current is proportional to the amperes,
and the other a movable coil of ine wire in and the other a movable coil of tine wire in
which the flow is proportional to the volts. which the flow is proportional to the volts.
The instrument is an electro dynamometer the flow in the coarse coil produces a magnetic field varying with the current in amperes, and made to act upon the index or motion of the indexes upon the dials according to the product of the intensities, of volts and amperes, or watts. 2. How does the feeding and regu lost of the arc lamps regulate the feed of the upper carbon by means of a clutch. When the arc becomes too long the current through the arc is reduced, and the current through the bunt circuit which controls the clutch
comes greater, and the clutch releases the per carbon, which drops a little. Its sliding is stopped by the increase of the current in the ar
(9951) A. L. R. asks how to make fre-proof roofing. A. After the paper is put on nd coal tar and lime (burnt, but not slaked), and boil them together in the proportion of
15 pounds lime to 100 pounds tar. Put it on hot. To pulverize the lime, sprinkle it with a little water and sift it. 'To avoid the tar
boiling over, stir the lime in the boiling tar boiling over, stir the lime in the boiling tar
very slowly. The mixture must always be very slowly. The mixture must always be
heated before putting on. The lime and tar orm a chemical connection, which is fire proof, cannot be melted by sun heat or dis-
solved by steam or hot water, and makes a ooth, glazed roof
(9952) M. C. writes: Referring to inquiry 9916, p. 238, my observation is : On in-
land lakes, where the ice often melts without ind to disturb it, the surface of the lake will appear to have a quite solid covering of
ice, and often will sustain a man's weight after a frosty night, and all disappear in a few hours, which gives the impression that it sinks. ous, and if disturbed will fall into "nails," as often described. This may be seen in a block of ice lying in the sunshine a short time.
Ice in this condition may be a foot or more Ice in this condition may be a foot or more
in thickness, tut a slight disturbance will cause in thickness, but a slight disturbance will cause
it to fall into the small pieces and dissolve in a few minutes. Persons not noticing careolly think . sinks, which of course is impossible. A. The reason given above for the
disappearance of ice on a pond in the spring is doubtless the true one, but the question put the ice sinks when it disappears. This cannot give. We should have accounted for the disappearance of the ice as our correspon-
dent does, but this does not explain the belief dent does, but this does not explain the belief
of some intelligent people that the ice sinks of some intelligent people that the ice sinks
when it disappears. That is evidently another when it disappears. That is evidently another
matter. We answered the question wh ${ }^{\text {ch }}$ was put to us by our correspondent.
(9953) V. R. K. asks: I would be pleased to have you inform me if there is
anything that could be put in water to stop it anything that could be put in water to stop it
from freezing. I have used salt, but find that it fremezes after it gavets a certain amount of it freezes after it gets a certain amount of
cold. It must not contain spirits, so as when beated to cause an explosive gas; it as when fow freely. What action has salt on water against cold? A. Calcium chloride brine, such as is used in cold storage houses for refrigeration, will be what you require. Put 3 to 5 water, and its freezing point will be reduced o 39 deg. below zero Fahr. Salt and water will freeze at a little below zero. The melting point of a mixture of salt and ice is 7.6 deg.
below zero Fabr. Below this temperature the salt and ice are solid; above that point the just as ice has a melting poin melting point, j
of 32 deg. Fahr.
(9954) R. G. H. asks: In answer No. 9915, page 238, you say the months "beginning with Jancary," etc. I have read that the
old year began March 1. I understand that September (7 th), October (8 th), etc., were so called when the year began March 1, and when the change was made the names were left. If that is correct, should you not have said, "be-
ginning with March"? A. Our use of the phrase "beginning with January" had no reference to the beginning of the year now or at any other ime. It happens that the year as ordered by bring the vernal equinox on the 25th order to as it had been in the time of Numa. This the 46 th year before the birth of Christ. We were asked to explain the number of days in the months, and kept strictly to the question
asked. The beginning of the year on January 1 was instituted by England in 1752. Before this time the year had begun on March 25. Scotland had made the change in 1600 , and
France in 1563 . It is not correct so far as the France in 1563. It is not correct so far as the
Julian calendar goes to say that March is the Julian calendar goes to say that March is th
first month. The changes in the length Augustus.

NEW BOOKS, ETC.

Beer Bottlers' Handy Book. By Philip Dreesbach. Wahl-Henius Institute 1906. 12mo.; pp. 765. Price, $\$ 5$. This elaborate book is partially based upon
the lectures delivered at the Wabl-Henius Inthe lectures delivered at the Wabl-Henius In-
stitute of Fermentology, and it is intended to serve as a practical volume to meet the many problems apt to confront practical beer bottlers. The author goes very thoroughly not only into the immediate subject embraced in the title, but in a general way as well into
the science of brewing with its many subdithe science of brewing with its many subdi-
visions. Besides this the business phase of the industry is discussed in separate chapters b competent writers. Even many details of wor bearing on the brewing industry, which are been included in the book, and in general we may say that it is probably the most comprehensive work of its kind that has so far been placed before the public.
Graining, Ancient and Modern. By
William E. Wall. Somerville, Mass.: William E. Wall. Somerville, Mass. Published by the Author, 1905.
12mo.; pp. 137; 50 illustrations. Price, $\$ 3$.
The subject under discussion is unquestion ably one of the most important phases of
modern house painting and decorating, and modern house painting and decorating, and
the author has handled this in as comprehen sive a manner as the importance warrants. The book is splendidly illustrated by full page
cuts, in color, and it will prove of the greatest value to members of the trade. The author's experience in work of this character has fitted him to choose the most necessary matters for
discussion, and to eliminate such as have no discussion, and to eliminate such as have no
practical value for the practical man. Not only is the actual work of the graining fully side of and elaborated, but the mechanica side of the trade, the necessary
brushes, etc., is also discussed.
Modern Dynamos and Batteries fob Amateurs and Sreuesps. By S. R.
Bottone. London: Guilbert Pitman, 1906. 12mo.; pp. 172 . Price, $\$ 1$.

This is the second volume of Electrical has treated, in a simple and accurate man ner, of the construction of many useful appliances required in practical work with current or dynamic electricity. Nearly all the appa ratus and machines described can be made by any one possessed of a little perseverance,
with the tools usually found at home. The book contains full constructional details and working drawings for making dynamos,
motors, battery cells, measuring instruments and other accessories. A carefully selected ist of questions will enable the student to test knowledge at any time.
The United-Otto System of By-Product
Core Ovens. New York: The Unite
Coke and Gas Company, 1906. Quarto cloth, pp. 146, 65 inustrations
It not infrequently transpires that among
the best contributions to scientific literature are the publications of certain of the great panies, publications which, while often prothe pro
capable capable of use as reference or text books of the greatest value, and this work unquestion-
ably must be included in the latter category. The book affords general information concern ing the by-products coke oven and its opera-
tion; and as it is intended primarily for those not familiar with the subject, it avoids to a arge extent all unnecessary details of a purely ject is handled in a most thorough manner, ther subanguage is clear and concise. Among coal, types of ovens, retorts, products, by products and their use and general arrange-
ment of plants. The book is splendidly illusment of plants. The book is splendidly illus-
trated with many engravings, charts, and tables, and is a beautiful example of the print tables, an
er's art.
Practical Pattern Making. Edited by
Paul N. Hasluck. Philadelphia:
David McKay, 1905. 12mo.; pp. 160; David McKay, 1905. 12mo.; pp. 160; 300 diagrams. Price, $\$ 1$
This book contains in a convenient form for
every-day use a comprehensive digest of information given by experienced craftsmen and journal Work. The book goes thoroughly into the construction of foundry patterns, core boxes, and patterns and molds for iron col
umns. Other patterns which are discussed are those for steam engine cylinders, worm wheels, Miscellan, badstocks, poppets, and side rests described, and the book has three chapters on the jointing and finishing of patterns, and the making of those of circular form. The con-
struction of core boxes and the coring of holes in castings is also discussed.

Food and Diet in Health and Disease.
By Robert F. Williams, M.A., M.D. Philadelphia: Lea Brothers $\&$ Co.,
1906. 12mo.; pp. 392 . Price, $\$ 2$. The section of the book devoted to "Food in Health" is interesting as being based upon
the work of the Experiment Stations of the United States Department of Agriculcure. Diadmirably treated. The portion devoted to
"Food in Disease" takes up the subject of diet in a thorough manner. The book will prove of Valve Gears for Steam Engines. By Cecil H. Peabody. New York: John Wiley \& Sons, 1906.8 8vo.; pp.
33 folding plates. Price, $\$ 2.50$.
There can be little question that there is mortance than the valve and the valve gearing. There are many valuable works on this phase of mechanical engineering, which treat the subject thoroughly from a scientific well as a practical standpoint. Among the latest py Prof an the second edition of this one of the best contributions to steam engine design. The work is intended to give enginering students instruction in the theory as well as the practice of designing valve gears. As the vast number of valves and gears proposed and in use at the present time would make an exbaustive treatment in a textbook ather difficult, the author's aim appears to be rather to give the learner a firm grasp of the
principles and some facility in their applicaprinciples and some facility in their applicaoon. for ponstration of principles and for de ign of gear. In an appendix analytical demontrations are given of certain principles that cannot be treated in a complete and satisfacory manner by instruction alone. Common and well-known methods and processes have been used in most cases, though certain features are doubtless original. The changes that have een made from the earlier edition have tended make the book more simple and more easily work to an and than ontinuity in the graphical presentation of the subiect.
das Verzinnen, Verzinken. By Friedben's Verlag, $1906 . \quad 12 \mathrm{mo}$.; 5 illustrations; pp. 228. Price, 75 cents. The covering of one metal with a thin layer of another is of such importance to-day, not cientific, chemical, and electrical uses as well, that a practical and thorough handbook on
this subject is doubtless of value. Recent ears have produced in metallurgy countless mprovements and innovations, and this also ussed by the author. In this, the fifth edi ion of his work be has brought it as nearly as possible up to date, and includes therein the best European practice and methods. Considerable space is given to the discussion of the alloy known as magnalium, a mixture of aluminium and magnesium, and which possesses many remarkable characteristics as yet
ittle known among technical men. Electrometallurgical methods are also thoroughly discussed and developed
American Men of Science. A Biograph-
ical Directory. Edited by ical Directory. Edited by J. McKeen
Cattell. New York: The Science
Press, 1906. Large 8vo.; pp. 364 . This book is doubtless a valuable contribuion to the organization of science in Aperica. fairly complete survey of the scientific activity of a country at a given period. As a refeven more useful in academic circles than
"Who's Who in America." Unfortunately, here scarcely exists among scientific men the recognition of common interests and the spirit co-operation which would help to give science and it is hoped that this in the communty, ice in making scientific men better acquainted with one another and with one another's work. As far as possible each name is followed by a short historical account, which includes the usual biographical data of birth, residence, etc., as well as the best-known work and the chief Glue, Gelatine, and Their Allied Products. Ly Thomas Lambert. Lon-
don: Charles Griffin \& Co.; Phila-
don: Charles Griffin \& Co.; Phila-
delphia, 1905 . 12 mo.; pp. 151. Price,
$\$ 1.75$.
The glue and gelatine industry has made an mmense advance during the last few years.
Old methods of working have given way to Old methods of working have given way to
new, and this changed condition of things, due to a better scientific knowledge of the raw ma terials and their treatment, necessitates a revision of the literature. The work before us
is a good one and deals with the subject from a most practical standpoint.

INDEX OF INVENTIONS
For which Letters Patent of the
United States were Issued
for the Week Ending
April 17, 1906.
NDEACH BEARINGTHATDATE

