recently patented inventions.

 APPARATUS FOR LAYING ELECTRIC CONDUCTORS.-S. P. HATFIELD, New York, N. Y. The object of the invention is to pro-vide an apparatus for laying and burying elecvide an apparatus for laying and burying elec-
tric conductors on tand and under water simply tric conductors on land and under water simply
and inexpensively to prevent the conductors from being fouled by the anchors of marine vessels and to prevent the conductors from be-
ing easily detected or ing easily time of war.
wireles
WIRELESS TELEPHONY.-A. F. Collins,
New York, N. Y. The invention relates to New York, N. Y. The invention relates to
the art of transmitting and recelving articulate the art of transmitting and recelving articulate
speech between two or more stations without connecting-wires, but employing the earth or other medium as a means of propagation; and it relates more particularly to transmission of impulses into the earth or other medium by means of a direct or alternating current hav-
ing a higher voltage and greater amperage ing a higher voltage and greater amperage than it has been found possible to employ and their amplification and intensifications at the receiving-station.

Of Interest to Farmers.
LaWN-MOWER.-H. P. Terry, Elizabeth, N. J. A supporting frame or yoke is provided
for the structure, in which is supportid for the structure, in which is supported a
shaft for the main driving-wheels of the structure and combined with which is a rigid or stationary cutter or knife, together with a reciprocating cutter or knife, special means,
being employed between the aforesaid shaft and cutter or knife by which the latter is operated in the ordinary propulsion of the machine over a lawn or other surface.
BROOM-CORN-CUTTING
BROOM-CORN-CUTTING MACHINE-C. R. Huckleberry, Paris, Ill. The design in this
case is to provide a machine which may be case is to provide a machine which may be
drawn across a field by a team to rapidly cut drawn across a field by a team to rapidiy cut
the broom-corn, and the machine is so constructed and arranged as to even the varying
lengths of the cut-off brush ends and trim off the superfluous butt-ends of the stalks of the ; the same length before being delivered to the binder, which binds them in bundles.
RAKE.-W. W. Irwin, Juneau, Alaska. The invention pertains to rakes, and particularly
to those mounted upon wheels for operation to those mounted upon wheels for operation
by draft-animals. Its principal objects are to by draft-animals. Its principal objects are to provide a strong and simple apparatus in
which the teeth may be readily operated to which the teeth may be readily operated to
release the accumulated material and in which release the accumulated material and in which to clear the
said teeth may be raised bodily the piles when bunching.

of General Interest.

SHOW DEVICE.-C. E. ISACke, New York,
Y. The device is intended to be constructed N. Y. 'The device is intended to be constructed of paper or cardboard and to be used for ad
vertising and display purposes, the object be ing to provide a cheap means of representing tised and for furnishing adjacent thereto o as a part theref a card or surface on which the advertised matter may be produced. APPARATUS FOR TREATING TEXTILE Fabrics.-O. Obermaier, Lambrecht, Ger-
many. This invention refers to an apparatus many. This invention refers to an apparatus
for treating textile fabrics, as in dyeing, exmeans of circulating liquids. It produces means of circulating liquids. It produces not
only a pressure, but also a powerful vacuum, only a pressure, but also a powerful vacuum,
in such a manner that during passage of liquid through the receptacle for effecting the treatment the vacuum acts by pulling on one side,
while on the other side the pressure acts by pushing upon the liquids.
Drill.-L. W. Baney, F. E. Baney, and J. Osterhelt, Platteville, Wis. With this im-
provement the turning of the drill to the right causes an outward movement of the debris,
the stroke of the drill assisting this the stroke of the drill assisting this move-
ment, each lug moving the debris outward to ment, each lug moving the debris outward to
a sufficient extent that it may be engaged by a sufficient extent that it may be engaged by
the succeeding lug on the next stroke. In its broadest sense the invention comprises a drin-
shank having a series of projecting lugs spirally arranged on the shank.
STAYING DEVICE FOR SLIDING DOORS. the improvement is to provide a device more especially designed for use on heavy slidingdoors, freight-car doors, and the like-and ar ranged to insure an easy sliding of the door to prevent rubbing of the door on the wall or door-casing, and to prevent snow or ice from
locking or holding the door against movement. locking or holding the door against movement.
SHOT-FEED FOR DRILLS.-K. BRe日Ks, New York, N. Y. Automatically feeding shot or grinding material to drins and similar toots is accomplished by this simple and economic
device, and it is particularly adapted for feeding shot to rotary drills employed in boring
wells. It is automatic in its action and means for regulating the quantity of material delivered by the device, the feed being
while the invention is in operation.
CORNET.-Z. A. Meresith, Tahlequah, Ind. Ter. This invention is an improvement in cornets and similar valved instruments, and
has for an object to provide construction and arrangement of the tubing and air-passages whereby to avoid short bends or angles; also,
to dispense with the usual second slide and to dispense with the usual second slide and
introduce in lieu thereof a second bell through which the tone is emitted in all instances
when the second valve is depressed.

Machines and Mechanical De

ROTARY CUTTING DEVICE.-T. B. Wil
ms, Orange, Mass. The invention has ref rence more especially to band-operated de -stacth, for instance, as ordinarily em-
ployed for dressing or resurfacing the seats of valves, faucets, and the like. The principal object is to provide an extensible bearing-sup port for a rotatable spindle, located exteriorly to the structure and capable of being length
ened or shortened in proportion to the diferen longitudinal adjustments of the spindie found necessary to be made under varying conditions of use of the structure
MOLDING-MACHINE.-C. Reed, Portland, Ind. This inventor provides efficient and rapid adjustment of the machine's working parts; provides for pressing the molding materials from two opposite directions, so as to make
the article solid and material completely fill corners and spaces around the cores; provides neither product nor any part of the machine neither product nor any part of the machine
will have to be lifted betore molded article is completed; provides for delivery of article to a truck by which it can be taken away from
the machine, and provides for making all tinds of articles movable by machinery and es pecially all kinds of building-blocks.
piano-action.-F. B. Leng, Los Angeles, Cal. The object of the invention is to provide such new and useful improvements in
piano-actions whereby the flanges for the ham mers, dampers, or other parts of the action are not liable to become loose and rattle on
playing the instrument or by reason of the playing the inst
PULLING-MACHINE FOR STEAMBOATS, ETC.-F. W. HAyes and C. A. Billings Wending, Cal. The invention is an attach use as an aid or accessory for propelling them up swift streams or rapids, where the usual means of propulsion are insufficient. The invention is also adapted for use as the sole means of propulsion of boats or sco
canals or sluggish and shallow streams.
STAMP-AFFIXING DEVICE.-M. R. Burr॰wes, Sarnia, Canada. The object in this
invention is to produce a device which will invention is to produce a device which will
operate to moisten the parts and apply the stamp with great rapidity and in a certain sense automatically. It comprises a magazine
in which stamps or labels are contained and beneath which the envelop or other article may be thrust. As the envelop passes beneath the stamp-magazine it is moistened automaticism is then operated to affix a stamp in required position.
Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each. the invention, and date of this paper.

Business and Personal <Uants.
READ THI COLUMN CAREFULLY.- You will in consecutive order. If you manufacture these goods
write us at once and we wwill send you the name and
address of the party desiring the yonformation. In
every case it is necessary to give the
number of the inquiry. Man CO

Inquiry
amps for lighting g994.-W anted, mantled alcohol
Inquiry No. 7995.- Warted, the name and ad
Inquiry No. 7995.- Warted, the name and ad.
dress.of the maker of
ment." Gardner's Handle \& Spok
Inquiry No. 7996.- Wanted, the name and ad.
ess of the manufacturer of the glass tombstone or Manufacturers' Agent is open for a few good lines. Inqurry No. 7997. -Wanted, palvanized tanks to
stand 122 pounds test. cold water, with manhole on side $1 \times 7 \mathrm{mck}$ es; oval, 25 inches lung, by 16 inches.
1 sell patents. To buy, or having one to sell, write
Chas. A. Scott, 719 Mutual Life Building, Buffalo, N. Y.
 ives, dynamos, motors and tops. St. Louis

Stil क्ell, $\mathbf{7 0 9}$ Pine St.
Inquiry No. 7999.- $-W$ anted, ma kers of
iron thumb screws. with ball and cap ends.
The celebrated "Hornsby-Akroyd " Patent Safety Oul Engine is built by the De La Vergne Machine Company.
Foot of East 188 th Street, New York.
Inquiry No. Soco. - Wanted sparatus for remov.
ing the overburden (cr covering wen from 5 to 35 feet
in thickness, overla $i n k$ a mineral deposit.
Metal Novelty Works Co., manufacturers of all kinds of light Metal Goors. Dies and Metal Stampings our
Specialty. 43-47 S. Cana! Street, Chicago. pecialty. 43-47 S. Cana! Street, Chicago,
Inquiry No. 8001.-Whnted. makers of balloons,
intes. arial toys, machines and aerial nuvelies of
atility.
Manufacturers of patent articles, dies, metal stymping, screw machine work, hardware specialties,
machinery tools, and wood fiber products. Quadriga Manufacturing Company. 18 South Canal St.. Chicago. Inquiry No. 8002.-Wanted, the makers of the
Butchet motor.
Juquiry No. 800:3.-Want ed, manufacturers of
water stills and compressed air apparatus for aerating
Inquiry No. SOO4.-Wanted, makers of automa.
matioc cam cuating machines for cutting large cams up
to 20 inches in diameter.
Inguiry No. B005.-Wanted, manufacturers of
pillow ventilators,

The Development of Honse Painting. The art of painting for decorative purposes is as old as civilization. In the fragments of Babylonian, Assyrian, and Egyptian literature that have come down to us there are frequent allusions to this form of decorative art, and the writings of Theophrastus, Pliny, Vitruvius, and others contain many interesting details regarding the nature of the colors so employed. In the ancient Egyptian monuments we still find the remnants of decorative coloring, especially on mummy cases which have been preserved from the air. There are remnants of flat color on the friezes of the Pantheon, etc. buried statues from the antique world show traces of tinting, and the walls of the exhumed buildings at Pompeii are notably rich in wall paintings.
These colors have been examined by several chemists, notably Sir Humphry Davy, and the results lead to the conclusion that the pigments at the command of the ancient artists and artisans were chiefly natural products, such as gypsum, chalk, bitumen, ochers, siennas, iron oxides, carbon blacks, manganese oxide lead oxides, arsenic and mercury sul phides, the copper carbonates and silicates, etc., with a few simple animal and egetable dye colors.
It is remarkable that while both Pliny and Vitruvius describe the production and use of white lead, no trace of such use has been found in these analyses, though red lead (which occurs as a natural color) has been encountered frequently.
During the first sixteen or seventeen centuries of the Christian era also the use of paint was predominantly for decorative and artistic purposes, and the development of the technical side of paint and color making up to the eighteenth century was largely along these lines. Part of the stock in trade of the great painters, even down to the days of Sir Joshua Reynolds, Vandyck, Rubens, Velasquez, and the rest was their secret formulas and processes for preparing col ors, oils, and varnishes.
The reason for the slow emergence of the idea that paint could be used for protective as well as for decorative purposes is not far to seek: Mediæval, Renaissance, and in England, even, Georgian architecture was the art of designing and construction in stone or its equivalent, bricks and mortar. In early times every man's house was literally his castle-his stronghold-and he whose position in life would not maintain a defensible stronghold was not a man but a villain, sub ject to the commands and dependent for protection upon his more fortunate lord The houses of the better classes were therefore stone fortresses; those of the lower classes, flimsy hovels, huts, or cabins. The castle needed no paint; the peasant's shelter was not worth it.
With the rise of the common people into the stature and privileges of human beings, however, wood became gradually a recognized building material, the preservation as well as the decoration of the wooden house became important, and the demand rapidly stimulated the development of paint, making it a commercial industry.
The earlier industrial paint makers naturally looked to the artists for their knowledge of paint; consequently we find the original house paints to be merely adaptations of artists' colors, gradually modified to permit of production on a commercial scale. Thus, the early process for producing white lead, for exam ple-the old Dutch process-was merely an expansion of the artists' method of making "flake-white," a trench in the earth, charged with manure, being substituted for the hole in the artist's back yard. So, also, the older paint chemists -Scheele, Diesbach, Chaptal, Davy, Girardin, Vauquelin, and others-concerned themselves largely with investigation of the pigments then in use and the simplification of the methods and materials used in producing them. This fact can be verified by a glance at the pages
of a comprehensive book published less than fifty years ago-the celebrated "Practical Treatise on the Manufacture of Colors for Painting" by the French authorities, Riffault, Vergnand, and Toussaint. Large space is given therein to the production of Prussian blue from animal offal, of lakes from vegetable dyes, of Turner's yellow, orpiment yellow, and uranium yellow, of quicksilver vermilion, of the arsenical and copper greens, etc The chromate yellows and greens were then comparatively new pigments, as was French process zinc; much space is devoted to weird processes for making white lead, which have long passed out of memory; the coal-tar pigments and lakes were still far in the future; there was no American process zinc, no sublimed lead, no "zinc-lead," no "quickprocess lead." And this book was the latest word on the subject by the leading European authorities at about the close of our civil war.

It is not overstating the facts to say that the introduction of ready-prepared paint making as a separate industry marked the first real impetus in the technical study of paints and the popularization of paint-using for protective as well as for decorative purposes. It began in this country about 1860 , and has since developed so rapidly that a competent authority has estimated the consumption in 1900 at $60,000,000$ gallons. A natural sequence of the American tendency to simplify, to systematize and to economize time and labor, it placed protective and decorative paints within the reach of all and made this country pre-eminently the paint-using country of the world.
There are now in this country something like two hundred and fifty paintmanufacturing concerns, properly so called, ranging in size from a small plant with an output of a few thousand gallons per year to single concerns operating a dozen or more plants, with their annual output running into the millions.
The demands of these factories have stimulated the production and diversification of pigments, until the list is almost endless; and the study of the paint chemists employed by them has thrown a flood of light upon the properties of paints undreamed of by the older color chemists. The result has been a rapid diversification and specialization of products, until at the present time we can obtain from any paint factory, ready for use, a paint. for almost any purpose; exterior and interior tints and colors, floor paints, roof paints, barn paints, porch paints, carriage and wagon paints, enamel paints, car paints, locomotive paints, bridge paints, etc., in limitless variety.
Every manufacturer is constantly pushed by each of his competitors to produce something better and cheaper, and the result is that to-day's formula is displaced by to-morrow's discovery. In the pigments used there is much diversity and constant improvement; but after temporary experiments along other lines the entire trade has apparently come to an agreement that for the present, at least, here is no satisfactory substitute for pure linseed oil; consequently, he who examines these paints of the better grades will find, outside of the volatile hinners and the liquid "dryers" used, practically the entire liquid contents to be simply linseed oil.
Columns could be devoted to this unique vegetable oil; but it is enough to say that the United States annually consumes about $20,000,000$ bushels of flaxseed in producing it, and that nothing has yet been discovered that so satisfacorily fulfills the requirements of house painting.
A great deal has been said and written against prepared paints-chiefly in the interests of painters, who cling to their ancient tradition and perquisites of hand mixing, or by those who cater to this trade; but the incontrovertible fact remains that the consumption of these products after a half century's experience is increasing steadily. This fact alone is sufficient answer to all objectors; nothing
that does not serve a useful purpose can permanently succeed. Frauds may flour ish for a time, but their season is brie
G. B. Heckel.

 816,005
816,237
816,416

Engine and Foot Lathes

INDEX OF INVENTIONS
For which Letters Patent of the $\begin{gathered}\text { BLAKE for for catalogue. } \\ \text { P. o. Box 1054, \& JOHNSON, } \\ \text { WATERBURY, CONN }\end{gathered}$

for the Week Ending March 27, 1906. advise if possible where same can be obtained.
A. We do not know the composition of the driftwood powder. You can, however, make
driftwood for yourself, which will give a color equal to any, by dissolving chloride of copper in water. Cse a wooden pail for tis, since
it will corrode a metal pail. Place pieces of
wood endwise in the solution, and allow them to soak till they are well saturated. Then dry
them, and throw some pieces upo them, and throw some pieces upon a bright
fire. They will show the colors of the burning copper. A pound of copper
make a great deal of driftwood.
(9938) F. S. J. asks: 1. Can you tell me what a wattless current is? How is it
caused? A. The socalled "wattless current" is the component of the total current which is
in quadrature with the energy current. It may be found explained in Sloane's "Elec-
tricians' Handy Book," which we send for $\$ 3.50$. 2. Why do telephone companies always
ground on a cold-water pipe? 1 know of ground on a cold-water pipe? I know of a
case where a lineman carried the ground wire past a bot-water pipe to a cold-water pipe.
Why not ground on a gas or steam pipe? They are all connected to the ground. A. We
cannot tell why telephone companies "always cannot tell why telephone companies "always
ground on a cold-water pipe," since we have the hot-water pipe. It is not proper to infer that a thing is always done in a certain way
because we have never happened to notice it done in any other way. There is no reason or grounding on one pipe rather than the
other. Gas pipes should not be used because of risk of setting tire, if a break occurs. 3. Is
there any point on the American coast there is no ebb or flow of tide? If so, where is it? A. We do not know any place where
there is no tide. There are places so situated that a tide flowing one way meets a different very small change of tide results.
(9939) T. W. B. asks: As it is an accepted fact that an electric current can be
caused to flow between the poles in a circuit connecting two metals such as bismuth and antimony when the point of juncture is beated,
I should like to know what voltage and amperage can be produced or caused to flow if the ends of two rods $1 / 4$ inch in diameter, on
of bismuth and the other of antimony, b joined together and heated in say $\leftrightarrows 00$ deg.

