(9920) A. R. Van H. asks: 1. Will a four or a five inch spark of an induction
coil penetrate a piece of glass or a piece of
hard coil penetrate a piece of glass or a piece of
hard rubber $1 / 32$ inch thick? If it will, will
it penetrate the same, $1 / 16$ inch thick? A. The electrical energy of a spark four inches long through the air would probably pierce a thin glass, or a piece of thin hard rubber. We have
no figure for the thickness. The discharge no figure for the thickness. The discharge
points should be brought close to the glass on opposite sides, and the discharge be made as
suddenly as possible. 2. I read in one of your suddenty as possible. 2. I read in one of your
papers of the number of pounds of water that papers of the number of pounds of water that
flows over the Niagara Falls a second, but I flows over the Niagara Falls a second, but I
cannot find it now. Would you please tell me the number? I think it was 213,000 , but I am not sure. A. The commonly accepted vol-
ume of water passing over Niagara Falls is ume of water passing over Niagara Falls is
224,000 cubic feet per second. This is 14,224,000 cubic feet per second. This ing 160 feet it
000,000 pounds per second. Faling
gives about $7,000,000$ horse-power continually.
(9921) H. M. asks: Does the buoyant or floating power of a tank filled with air vary
in accordance with the depth to which the tank is submerged? For example: Would the lifting power of this tank be greater when the top of the tank would be one foot below the
surface of the water than it would be if the surface of the water than it would be if the
top of the tank were ten feet below the surface of the water? If you could refer me to any literature which dwells on subjects of this kind, your kindness would be most highly ap-
preciated. A. A tank closed airtight and submerged in water is buoyed up by the weight of the water it displaces, that is by amount
equal to the weight of a volume of water equal to the weight of a volume of water
which is the same as the volume of the tank. which is the same as the volume of the tank.
This is independent of the depth of submerThis is independent of the depth of submer-
gence. If, however, the tank is open at the bottom, so that water enters it, its buoyant power decreases as it is sunk deeper into the
water, since water enters and compresses the air into a smaller volume. The only point inprinciple is called Archimedes's principle, which may be found in any text-book of physics.
Trobably 'Kent's "Engineering Pocket Book," price $\$ 5$, will give you the most assistance in matters of hydraulic engineering
(9922) P. C. G. asks: Will you please describe to me just what is "denaturized" or
"denaturalized" alcohol, that is now before Congress for entry free of duty? A. Denaturized alcohol is common alcohol to which some substance has been added to render it
unsafe for its natural use; that is, if a small unsafe for its natural use; that is, if a small
percentage of wood alcohol be added, the mixpercentage of wood alcohol be added, the mixmaking any liquors for drinking, but it can
still be used for mechanical purposes, or in the arts. There are other substances which may be added to alcohol with like effect. The
word denaturized is not in the dictionaries as ye
(9925) W. E. B. asks: In your issue of February 3, in an article headed "New
Conceptions in Astronomy" by Prof. Edgar L. Conceptions in Astronomy" by Pror. Edgar L.
Larkin, he says: "A trillion is a million mil-
lion." Webster's unabridged says: "A million lion." Webster's unabridged says: "A million
million is a billion." Can Notes and Queries million is a billion." Can Notes and Queries
throw any light? A. You surely do not read your Webster as we read ours. Ours states under "Billion; according to the French and
American method of numeration, a billion is a thousand millions, or $1,000,000,000$; according to the English method, it is a million
millions, or $1,000000,000000$." The English method places six figures in each period; the French, three figures in a period. A trillion in a book published in England is 1,000000,-
$\mathbf{0 0 0 0 0 0 , 0 0 0 0 0 0 ; ~ i n ~ a ~ F r e n c h ~ o r ~ A m e r i c a n ~ b o o k ~}$ a trillion is $1,000,000,000,000-$ only a mil-
lionth part of an English trillion. Prof. Larkin is an American and names numbers tionary, under "Numeration," states the matter clearly; so, also, does it under "Billion"
and "Trillion." We follow the French or American method of writing and reading numbers
(9924) A. C. asks: We had a discussion in our shop, and as we cannot try it I
would like you to decide:. Weigh a tubful of water and then put in a 10 -pound fish and if the fish does not touch the bottom will it
weigh any more? A. If a fish alive or dead is put into a tub of water and no water runs over, the tub and fish will weigh as much more than the tub weighed before as the
weight of the fish. That is because the fish, is added to the contents of the tub. If a
live fish is put into a tub entirely full of water and the fish floats in the water without resting any weight on the bottom of the of the fish will flow over as the fish enters the water, and the tub, fish and remaining water will weigh the same as the tub and
water weighed before the fish was put into water weighed before the fish was put into
the water. Every body submerged in a liquid is buoyed up by a force equal to the weight of the liquid displaced. If the fish sinks to
the bottom and bears any part of its weight the bottom and bears any part of its weight
on the bottom of the tub, the tub will weigh more with the fish in it than it did befor the fish was put into the tub.
however, rarely if ever the case.
(9925) L. R. asks: What is the expansion of a zinc bar 40 inches. long, during
a variation of five degrees-say from 100 to a variation of five degrees-say from 100 to
105 deg. F.? Is there any metal or alloy that will give a greater expansion? If so, what

Fahrenheit is a trifle more than three ten
thousandths of an inch. Cadmium will ex thousandths of an inch. Cadmium will ex-
pand slightly more than zinc, about in the (996) to 29.
(9926) R. T. asks: 1. How many amperes does a 110 -volt incandescent lamp reabout one-half an ampere. 2. What is the principle of a pedometer
moved by the rocking motion of the body in walking. It will register by the same motion when one is not walking. The motion of rocking chair may make it run. 3. How lon will a storage battery retain its full charge? A. A storage battery does not lose charge by
leakage. So far as that goes the charge will retained indefinitely
(9927) G. A. R. asks: 1. A spark cannot be passed between two electrodes separated by a vacuum. Are we to infer from
this that a vacuum is a perfect insulator? this that a vacuum is a perfect insulator? sulator. 2 . The distance separating two par
ticles can be halved. This second distance can then be halved and so on-according to
mathematics, infinitely-which would require infinite time. Yet practically it can be ac complished in a finite time. How is this explained? A. It is quite true that mathemat-
ical zero cannot be reached by the successive division of a number by two, or by halving a certain space. But that need disturb no
one. It is easy to reach a value less than one. It is easy to reach a value less than
any assignable value, and that is practically zero. Thus in the case of our money. When reduced to less than one mill, the process
must end, since there is no denomination in which to express the value. Practically the problem you present is a logical quibble, of
interest only to a mathematical quibbler There ought always to be common sense back of logic, but u
plainly visible.
(9928) A. A. F. asks: 1. How do they get this very low zero you speak of in February 10, 1906, No. 9887: A. Absolute
zero is computed from the ehavior of gases when computed from the mehavior of gases
when belief among scientific men that all heat to 459 deg. F. below zero. 2. What is the lowest artificial cold yet produced: A. The lowest thermometer reading ever reported upon the earth is from a self-registering thermometer which was left for a number of years
in the Arctic regions. It showed 95 deg. F. below zero. Previous to this the lowest ob-
served was at a place in Siberia, 90 deg. F. on page 879 asks: How many fifteens can be $4 \times 3 \times 2 \times 1 \quad 24$
A. The formula you give for fifteens to be made from four fives is the ordinary formula
for combinations demonstrated in algebra. for combinations demonstrated in algebra.
You will find it in any large algebra. 4. Why is it colder at the south pole than at the
north? A. The southern hemisphere is north? A. The southern hemisphere is largely
covered with water, hence it is colder. The earth is farthest from the sun in July, which isphere. This makes the summer there little colder than the northern summer.
(9929) E. H. asks: Would you kindly nform me where I could find a good description of Marconi's magnetic detector which is
used in connection with a Wheatstone re corder? How are the inductance coils that are used in both the receiving and sending
station wound and what size wire is used What is the resistance of the choke coils used in the receiving circuits? A. You will find Maver's "Wireless Telegraphy," which we can send you for $\$ 2$. Several sizes of choke coils
are also described in the same book, as also are also described in th
are the induction coils.
(9930) J. D. writes: I have purchased some selenium for the purpose of makhave read so much in technical papers. I think it must go through some sort of a pro cess before it can be used, for I find it to
be a poor conductor of electricity. With a 1,000 -ohm telephone ringer not the slightest effect is produced upon so delicate an appa-
ratus as a telephone receiver. A. Selenium is not a conductor of electricity in any condi-
tion. It is a better conductor after it has been prepared than in the ordinary condition. it is kept for several hours at a temperature over the space between parallel wires, better wound upon a porcelain tube, so that the two
wires are quite near together. When it has cooled it is in the sensitive state. The cur-
rent sent from one wire to the other will be ent sent from one wire to the other will be
ncreased by allowing light to fall upon the selenium cell, as it is called. The resistance will be several hundred ohms probably at the lowest. We would advise you to apply to th
professor of chemistry or physics at the Univer
sity in your city. These men are always glad (9931) A. R. asks: Does a cannon
ball fired from a cannon follow the tangent of the barrel a short distance after leaving the the barrel a short distance after leaving the
mouth of the cannon or does its path de-
scribe an arc with a diminishing radius be-
ginning at the mouth of the cannon? as it clears the mouth of the gun, and falls in the same manner as far as distance and velocity is concerned as if it were to fall
from rest with no forward motion. It does not follow the tangent of the barrel at all. (9932) R. S. McF. asks: Would you kindly explain how I could use a 100 -volt in-
duction motor on a 110 -volt current? I tried ne way by connecting a 10 -volt lamp in series with it, but had no satisfaction. A. A small
resistance coil placed in series with your resistance coil placed in series with your
motor will take up the extra ten volts and enable the motor to run with safety. The wire must be of a size which will carry the
current without heating too much. The small current without heating too much. The small
lamp you used was not able to carry the curlamp you used, was not able to carry the cur
rent required. Its filament had too high a resistance to allow current enough to flow for
the motor, and so the motor did not get current enough to turn it.
(9933) C. W. asks: In your issue of February 10, 1906, page 137, Notes and zero is -459 deg. Is it a fact that scientists
have accepted this as absolute zero? On what is it based? How was it determined? and how is it measured? What does absolute zero mean? Is it a condition of temperature at
which no heat whatever exists or is radiated: which no heat whatever exists or is radiated: scientists accept 273 deg. C as absolute zero, or the temperature at which molecular motion would cease, all heat would be gone from emperature of the spaces outside of the earth's atmosphere. 'The degree we gave,
-459 deg. F, is the Fahrenheit equivalent -459 deg. F, is the Fahrenheit equivalent of
-273 deg. C. The idea of absolute zero is based upon the fact that all gases at the freezing point of water expand and contract by the same amount if the temperature is
changed one degree and this amount is 1,273 of their volume if the temperature is changed
one degree Centigrade. Since the volume of gas is dependent upon its temperature it is evident that the cooling of a gas degree by till if it is cooled 273 degrees its power to shrink will be gone also; that is, all the heat will have left the gas. This reasoning is not
weakened by the fact that the gas would hange to liquid before the absolute zero is reached. Dewar has gone within a very few liquefy helium. The absolute scale was devised by Lord Kelvin and is very freguently papers. It is the only scale in which the papers. It is the only scale in which the
degrees have a direct quantitative relation.

NEW BOOKS, ETC

High-Tension Power Transmission. By the High-Tension Transmission ComElectrical Engineers. New York: McGraw Publishing Company, 1905. 8vo.; pp. 466 . Price, $\$ 3$.
the American Institute of Electrical Engineers on September 26, 1902, the resolution was of collecting data on present practice in elecof collecting data on present practice in elec-
tric transmission at high voltage. The work covered a large scope, including data upon line construction, insulators, insulator pins, and ferent voltages and under different climatic conditions, also conditions attendant upon the
switching of high-tension circuits, and data respecting lightning and static disturbances, and the use of grounded protective wires. The ork of this committee brought out much valu able information, which is here collected in a very valuable addition to engineering literaWireless Telegraphy and Telephony. By Prof. Domenico Mazzotto. Trans Macmillan \& Co., 1906 . 16 mo .; pp. 16; 253 illustrations. Price, $\$ 2$. The object of this work is to present to the
reader in as simple a form as possible the principles on which the to describe the anp ratus required. It also follows step by step the progress of different inventors who have ogically the progress made in wireless tele raphy from the first experiments of Marconi at Bologna to the last results of transatlantic

Taschenbuch der Kriegsflotten. ViI Jahrgang, 1906. Mit teilweiser Be nutzung amtlichen Materials heraus-
gegeben von B. Weyer, Kapitaen leutnant. Mit 410 Schiffsbildern. Muenchen: J. F. Lehmanns Verlag.
Cloth, 16 mo.; pp. 392 . Price, $\$ 1.75$. This year's annual of the world's navie dited by Capt. Weyer, shows considerable improvement over last year's volume so far as
the amount of material published is concerned. Furthermore, the number of pictures of vessels actually in commission has been increased.
There is hardly a single type of vessel that is not illustrated both by photographs and by
are the records of the Russian loss and Japanese gain in naval power. An admirable programmes of the various countries. Capt. an appendix in the month of June, which will contain whatever modifications have been made Lectuaves of the world since January, 1906 Burr Van Vathematics. By Edward Burr Van Vleck, Henry Seely White $\begin{array}{ll}\text { Frederick Shenstone Woods. New } \\ \text { York: Macmillan Company, } & 1905 .\end{array}$ York: Macmillan Company
12mo.; pp. 187. Price, $\$ 2$.
This book is published for the American Mathematical Society, and contains the papers subjects covered are Linear Systems of Curve on Algebraic Surfaces, by Mr. White. Form Non-Euclidean Space by Mr. White; Form Selected Topics in the Theory of Divergent Series and
Van Vleck.
The World Almanac for 1906. New York: Press Publishing Company. - Pp. 569. Price, 25 cents.

The 1906 edition of the World Almanac and differs little from its predecessors of othe years, beyond the usual addenda, corrections, and enlargement necessitated by the occurrences of the past twedve months. The book is so well
known and so largely used by many of the known and so largely used by many of the
reading public that it needs little recommenda ion at the hand of the reviewer. It will reference works of a general character, for the comprehensive information contained in its pages is of necessity concise and brief. Par ticularly varied and brief are the facts relative to New York city and vicinity, and this portion of the publication forms an excellent guide
book and directory, not only for the stranger, but for resident New Yorkers as well. The arrangement of the major part of the genera information in tabular form, together with th is of great assistance to the reader in locating any of the data in the book.
Congress of Arts ant Science. Univer sal Exposition at St. Louis, 1904. Ed ited by Howard J. Rogers, A.M. I. History of the Congress by the
Editor. Scientific Plan of the Congress by Prof. Hugo Muensterberg Boston and New York: Houghton Mifflin Company, 1905. 8vo.; cloth pp. 626. Price, $\$ 2.50$
To the readers of the technical press, the
papers which constitute this first volume of the papers which constitute this first volume of the Proceedings of the Congress of Arts and
Science, which met at the Universal Exposition of St. Louis, 1904, are more or less familiar of St. Louis, 1904, are more or less familiar. assuredly gives them the permanence which they deserve. Among the more important papers which were contributed may be mentioned
Prof. Simon Newcomb's "Evolution of the Prof. Simon Newcomb's "Evolution of the
Scientific Investigator"; Prof. Ladd's "DevelopScientific Investigator"; Prof. Ladd's "Develop-
ment of Philosophy in the Nineteenth Cen ment of Philosophy in the Nineteenth Cen
tury"; Prof. Ostwald's "Theory of Science" and Prof. Poincare's "Principles of Mathemat1cal Physics.'
Weltausstellung St. Louis, 1904. Die Chemische industrie (Unter Rück sen). By Dr. Paul Cohn, Alfred Höl sen). By Dr. Paul Cohn, Alfred Hol Buchhändler. Vienna: 1905. 4to.; pp. 112.
In this monograph Dr. Cohn has presente a very comprehensive view of the chemical ex After a general introduction in which of 1904 . eral scope of the chemical industry is set forth, and its relation to expositions explained, he passes to a discussion of metallurgy and an
organic industrial chemistry. The progress of the industry in each country is discussed in fuel at some length dye-making in various coun tries. The third division is devoted to phar maceutical operations, essential oils and per candles, glycere fourth division, fats, soaps, The fifth division is a special treatise on edu cational work and scientific instruction. summary closes the monograph
The Pennsylvania Railroad System at the Louisiana Purchase Exposition Locomotive Tests and Exhirits.
Philadelphia: The Pennsylvania Railroad Company, 1905. 8vo.; pp. 734 road Company, 1905.8 80.;
800 illustrations Price, $\$ 5$.
This valuable work is a compendium of the elaborate series of tests carried out by the
Pennsylvania Railroad Compa is connection with their exhibits at the Louisiana Purchase Exposition at St. Louis. This plant was the erected and the tests of the eight locomotives that were submitted were made with every re onement known in the art of carrying out me chanical tests of this character. In planning the plant, it was laid out with sufficient ca varying types and dimensions. It was intended originally to present the plant merely as a remove it to the Pennsylvania Railroad's prop erty; but it was ultimately determined to carry
on at St. Louis a series of tests and enlist
the interest of the engineering profession and
railroad company in making them as compre-
hensive as possible. In all, eight locomotives,
of widely varying character and design, were
tested, and the results are embodied in the
present volume. After a description of the
general exhibit of the company, the testing
plant is described and illustrated in great de-
tail, working drawings being given of all the
parts. Then follow chapters on the formation
of the advisory committee, and on the plan,
scope, and method of recording the tests. Each
of the eight locomotives is taken up in its turn,
detailed working drawings being given of each
one, and a mass of tables and diagrams which,
considering the high professional skill with
which the data have been gathered, are unique
in the history of the locomotive. This work
will prove invaluable to everyone who has to
do with the design and operation of the steam
Alternating Currents: Their Theory, Generation, and Transformation. By
alfred Day, D.Sc., M.I.E.E. New Alfred Day, D.Sc., M.I.E.E. New
York: The D. Van Nostrand Company,
In the present volume Mr. Day has at ciples, construction, and use of alternating cur rent measuring instruments, generators, motors attention has been given to methods of test ing. The book is clearly and concisely writte and many matters which are not generally un derstood, or which are of too recent origin ar thoroughly gone into. The book is very practical in character. It is illustrated by no less current motors and dynamos, as well as the latest form of motor operating upon either
direct or alternating current, are described ซith the aid of the diagrams. The book goes into the theory and practice of alternating cur

The Most Popular Home Songs. New York: Hinds,
Price, 50 cents

This is a very complete collection of secular

 in this country at all periods of its history Besides well-known English and American songs, some of those of other nations are included.
Year Book of the Pennsylvania Socie TY, 1905. Edite by Barr Ferree, sec
retary. New York: The Pennsyl vania Society, 1905. 8vo.; pp. 208. The Pennsylvania Society was organized
seven years ago with the purpose of collecting historical material relating to the State of Pennsylvania and keeping its memory alive The present volume is the fifth year book issued by the society. It contains much hisvanians and is illustrated with half-tone plates of old houses, historical events, etc. A full re which commemorated the 117th anniversary of the ratification of the Constitution of the
United States by the Pennsylvania Convention, and which was given in honor of Senator
Philander C. Knox, is fully reported in this Faulty Diction, or Errors in the Use of the English Language and How
to Correct Them. By Thomas H Russell, LL.D., editor-in-chief of Web
Ster's Imperial Dictionary. Chicago: 150 ; bound in leather Price 50 Pp.
150; beu in leat \& This small vest-pocket aid to the use of cor
ect English will be found both interesting rect English will be found both interesting
and useful to all those who desire to speak
correctly. The words are arranged in alphabetical order The errors which are discussed are those of grammar, construction, or faulty
rhetoric. and unauthorized words. The corect pronunciation of words which are some times mispronounced is also given in many in-

Violins and Other String Instruments,
Paul N. Hasluck. Philadelphia: David
McKay, 1906. 16mo.; pp. 160. Price,
50 cents.
This book is compiled by the editor from the columns of Work. It contains explicit directions for the making of violins, violoncellos, mandolins, guitars, banjos, zithers, and dulcimers. The introductory chapter treats of the instruments, while other chapters are devoted to the making of violin molds, the varnishing and finishing of violins, Japanese one-string violins, and a double-bass violin. The book in a small space.
Handsook on Reinforced Concrete. By
Dstrand Company 1906. 12mo.; pp. 271. Price, $\$ 2.50$.

This handy little volume is intended as a reference book for architects, engineers and
contractors who have to do with the designing of concrete structures. The work treats of a general form of design rather than any one
particular system. The treatment of the many phases entering the design has been carried out upon well known formulæ based upon the
theorg of elasticity, and not upon empirical

INDEX OF INVENTIONS
For which Letters Patent of the United States were Issued
for the Week Ending March 13, 1906.
ANDEACHBEARINGTHATDATE

n_{ng} air, making nitric,	

 Alkyl-oxacetyl-cyanamid and making same,
Heitmanu
 Apple box press, W. L.
Atomizer, W. H. Wood
atomotile,

Bott
Bott
Bott
Bott
Bow
Bot

Casting mechanism,
Cat guard, F. H. Palmer.....
Catalogue, card, H. F. Moses.

814,738
815,74
814,898
815

814,738
815,74
814,898

Mustard \& Company

Engine and Foot Lathes

Nichet Plate Road Azain Sellipy Colons
 Hich

Stipmbu

ROTARY PUMPS AND EN GIN ES,
 ? ${ }^{0}{ }_{3} \Sigma^{\circ}$ Automatic Machines
814,776
884,88
815,233
8

sitnox ex.er

Americall万omes and Gardens
BOUND-VOLUME ONEProfusely Illustrated. Large Quarto. 426
Pages. Grean Cloth Covers Pro-ages. Green Cloth Covers PrA Beautiful Book.Beautiful Bo
Price $\mathbf{\$ 3 . 5 0}$

815,300
815,290

He:$\underset{\substack{\text { Gay } \\ \text { Gar } \\ \text { Gar } \\ \hline}}{ }$
E. A. Toussaint
Gas
Gate
Gene
Gene
MUNN \& CO, Publishers of the Scientific American

