

References to former articles or onsmerert should give
date of paper and page or number of

 Special Written Information on matters of personal
rather tun than
witbenat int interest cant cannot be expected Scientific Ameri can Supplements referred to ma
had at the oftice. Price 10 cents each.
Books referred to promptly supplied on receip
Books referred to promptly supplied on receipt of
price.
Minerals. for examination should be distinctl.
marked or labeled.
$\begin{array}{ll}\text { (9903) } & \text { J. L. A. asks: I would like to } \\ \text { et some information looking to the making }\end{array}$ get some information looking to the making
of a good dry battery for gas engine ignition, one that is up to date. I have an instruction
book on the subject, but there are two or three book on the subject, but there are two or three
things I would like to know before making any of the cells. Is the ordinary sheet zinc, as used
for lining baths and such uses, suitable for the making of dry cells, and can it be used at once as bought, or should it be put through any process, such as amalgamating it? May gas
carbon, as procured at the gas works, be used for the powdered carbon, and to what degree
should it be powdered, and should the finer particles be sifted out? May old battery car-
bons be used? To what degree of fineness should the black manganese be brought, and
hould this be free of very fine portions? should this be free of very fine portions? Is
this latter likely to be impure, and how can one test it for purity? Should the blotting paper be of a very porous nature, or just the ordinary white blotting paper: Would there be
any advantage in using a felt for the ab sorbent material? Will the ordinary gas car-
bon be the best material for the carbon element, bon be the best material for the carbon element,
and what proportion in diameter should it bear to the diameter of the cell: I understand round carbon is the best. Is this so A . The
ordinary sheet zinc is suitable for the cases of wash out the inside with dilute hydrochloric acid before packing in the materials, since this will bring a pure zinc surface to contact with the active materials of the ecll. It cannot be
amalgamated. since the mercury will cut its amalgamated. since the mercury will cut its
way through sheet zinc in a very few minutes, way through sheet zinc in a very few minutes,
and it will crumble to pieces. It matters little whether the gas carbon comes from gas works as coke, or from old battery plates or electric
light carbons pounded to pieces ; any of these are all right. If it had been essential to use a
particular form, your instructions in the book would have stated the form to be used. Use
the manganese dioxide as it comes from the the manganese dioxiae as it comes from the
dealer. It may be a powder, not necessary to sift it. If you buy chemically pure manganese
dioxide, the cost is greatly increased. The ordioxide, the cost is greatly increased. The or-
dinary commercial article will serve all purposes. Only the oxygen of the dioxide is used
in the battery. Any porous material will an in the battery. Any porous material will an-
swer to be saturated with the solution. If only thin blotters are to be had, take two layers of the paper. It is not necessary to use felt or
paper. You can make a dry cell in almost any way in which active material comes into contact with zinc, and get your result, although
one arrangement is by no means as good as one arrangement is by no means as good as
another may be. A cylindrical carbon is to be preferred, since it has a larger surface, and all its exterior surface is near the zinc on the
outside, so that the internal resistance is much lower than if a tlat plate of carbon is used. We have pubished in our SUPPLEMENT, Nos.
1383 and 1387 , full and very plain instructions as to making dry cells. We send these for ten
cents each, and you would do well to have them cents each, and you would do well to have them and dimensions of all parts. A "semi-dry" cell is one from which if upset liquid will not run out. Some absorbent material is used-even
sawdust has been used-to retain the liquid.
(9904) H. E. B. says: What will re move tarnish from gold? What chemical fumes
will tarnish gold? The bows of my gold glasses have become tarnished, and the only thing it might have come from that think of is from some of the fumes in the chemical laboratory.
Is the percentage of injuries from railroad accidents in the United, States a quarter or less proportionately to those in England? In startsistance in series with the armature? A. Silver polish will probably remove the tarnish from the gold rims of your spectacles. If these
are plated, it may not be the gold which has been tarnished. Show them to your professor,
and he can doubtless tell you the cause of the and he can doubtless tell you the cause of the
discoloration. Many more people are injured dissoloration. Nany more peopere are in inured in railway accidents in America than in Eng.
land. A resistance is put in series with the
armature of a shunt-wound motor upon starting it, because the resistance of the armature is so
low that an undue amount of current would rush through the armature were the current
turned upon it while it ts at rest. As it picks turned upon it while it is at rest. As it picks
up speed the counter E. M. F. cuts down the up speed the counter E. M. F. cuts down the
current in the armature. Hence the resistance
(9905) W. J. S. asks: 1. How can I construct a conerer that will receive impulses
from a transmitter situated about fifteen hun dred miles distant? I would also like to know
at what altitude I am to place the aerial con. at what altitude I am to place the aerial con-
ductor in order to get the best service from the above-mentioned coherer. A. The coherer con sists of a small glass tube filled with metal
filings. It may or may not be sealed, but if sealed by fusing the wires in at the ends, it is prolong the life of the filings. The details of making a coherer, which cannot well be given
in a letter, may be found in an article in our SUPPLEMENT, No. 1361, which we send for 10 cents. 2. Is it possible to "step up" a very
low voltage to one of infinity in the following manner of transformation? Place a small cell of battery in series with the primary coil of
the Ruhmborff type, connect the secondary terminal of this coil with the primary of an inue this mode of procedure until a sufficien number of coils are used to get the required voltage. Would this method, if practicable, be
better than using a strong battery and one highbetter than using a strong battery and one high-
capacity induction coil? A. It is not possible to use a small cell on a small coil and have the secondary of this act upon the primary of a larger coil, and so on until an "infinite volt-
age" is reached. You get out of the second coil no more than the small cell can put into the rst, less losses, and if this is stepped up
mperes become smaller until there is only infinitesimal current, and hence no effect at all.
(9906) W. H. R. asks: While the question of lubricating the sides and bottom a ship by forcing air under the ship is being
iscussed permit me to describe an experiment I made in this line a few years ago. When this idea of air lubrication first came to me
thought perhaps I had made a great discovery and would have to build a small ship to prov it, but I soon found an easier and cheaper way
of proving the value of air lubrication. I made proving the value of air lubrication. I made small holes in the bottom of the pendulum disk; then I fastened a rubber tube on the end water. The pendulum was set in vibration, and the time noted that it took to come to a complete standstill. Then it was again set in vibration while air was being blown through the ube into the disk, and bubbling out through the small holes in the bottom of the disk, and
the time was noted that it took for the pendulum to come to rest. The apparatus was very show any marked advantage of air lubrication in fact, as well as I remember, the pendulum would stay in motion just as long without atr
lubrication as with it; at any rate, the difference was so slight that one could not detect without a timepiece, and I did not think it would warrant me in going to the expense
of building an experimental ship, especially when the extra power consumed in forcing air
under water was considered. I wish someone
periment with every scientific precaution, and let your readers know the exact value of air lubrication. There is also another experiment him make a searchlight that can be revolved very rapidly, and then determine the candle power it would produce in all horizontal direc pared with its original pared with its original candle-power in on direction, when not revolving; also the amoun
of power consumed in revolving it at the var ous velocities. An impression of light is said to remain in the eye one-eighth of a second, and therefore if the searchlight turns fast
enough, its light would seem continuous, and enough, its light would seem continuous, and
have a certain definite candle-power. I have nade some experiments with a whirling card disk, having a perforation in it through which
the sunlight passed. The area illuminated through the perforation was not as bright as the area illuminated by continuous sunlight not it this reason I do not knowe the candle power of a lamp by putting its energy in the
form of a rapidly-revolving scarchlight these of a rapidly-revolving scarchlight. If
theriments have not already been performed, I hope someone will try them, and publish the results. If they have been performed,
and results published, will the Scientific merican kindly advise as to where such in whether air lubrication of a vessel moving through the water on a small scale would fur nish any data of value regarding its use on a would prove beneficial enough to pay for its cost. The principal resistance to the motion a ship through the water is not the friction weight of water equal to that of the ship ut of the path every time the ship moves its candle-power of electric measurement of the meters are constructed to measure while the lamp is in rotation, as our correspondent proany angle desired, and thus the mean spherical candle-power be determined. We do not know any spectal publication of such measurements,
since they are in common use in lamp factories for the rating of incandescent lamps. Arc han by candle-power.
(9907) C. J. A. asks: I have several al-ammoniac batteries which I charged accordusing the directions. After doing so I began
which I allowed for the sal-ammoniac to dis-
solve. They were not used very much, so I solve. They were not used very much, so I
know I did not use all their strength. They gradually became weaker and weaker.
them and stirred them up, and they
them and stirred them up, and they were as
strong as ever. What had I best do with them to keep the sal-ammoniac from settling and not dissolving as it ought
ve any undissolved sal-ammoniac in your cell. Dissolve nearly all the water can hold
and fill the cell with this liguid. The cell will then run its best. This cell, we presume you are aware, should not be used for continuous
service. It is only to be used for interrupted service. It is only to be used for interrupted
service, such as ringing bells, telephone work, etc. It will not run a motor for any length of
time. When crystals form on the zincs, these not sal-ammoniac at all
(9908) J. B. asks: 1. Would you let me know through your paper the formula of a solution acting upon carbon and zinc, whic what will be the amperes of the current? A. No zinc-carbon cell can give four volts. The best to be had give about two volts. These are the chromic acid cells. See Supplement
792 , price 10 cents. 2. The name and price or a book which gives different formulas and the method of determining the volts and amperes of a cell, by ordinary arithmetic, for beginners.
A. Cooper's "Primary Batteries," price $\$ 4$, is ery full upon the subject.
(9909) H. asks: Can you explain to me simply and in a few words why the trade winds in the northern hemisphere are deflected are deflected toward the east? A. It is by no means easy to explain in a few words why the
winds of the earth blow as they do. The subject occupies much space in the physical geog raphies, to which we would refer you. It may be said that the trade wind is a constant flow of air from north to south, because of the heat ing from a region of slower to a region of mor rapid rotation of the earth, it follows that the air has a slower eastward motion in the place
to which it has come than the surface of the earth beneath it has. This causes the air to reasoning applies to the prevailing westerlies since these are return currents from the northeast trades. The air is moving from south to north, and has thus a more rapid easterly motion than the earth under it, which causes the air to seem to come from a more westerly direction than it actually is flowing.
(9910) E. H. W. asks: 1. What are peciflcations for winding 20 -ohm Morse sound ers? Is cotton or silk single or double covered
wire used? A. A 20 -ohm sounder is usually wound with No. 25 B. \& S. single silk-covered wire, 14 layers to 67 convolutions to each layer.
See Maver's "American Telegraphy," page 69 , price \$2. 2. How could a Eureka sounder (5 hmms) be rewound to 20 obms resistance, hav ing about 1,880 convolutions of wire? A. A
Eureka sounder, 5 ohms, can be rewound to 20 hms as in last question. 3. What kind and should be used on a telegraph line with two 20 -ohm sounders, and a line resistance of 16 ohms? How many gravity cells should be used separate a sounder to give a good, audible click, about one-quarter ampere is found neces saty. Your line has 56 ohms, to which the shows 16 gravity cells to be needed, although a smaller number may work the lines with suf is the most satisfactory for such uses. Of open-circuit cells some form of the Léclanche type is formed, and of these ten cells will fur-
nish you the necessary current, when they are

## good condition.

(9911) M. F. C. asks: 1. I have a mall induction coil, the condenser of which is 26 sheets of tinfoil, sixe $2 \times 4 \mathrm{in}$. These are
the words of Avery's "Elements of Natural Philosophy": "One object of the condenser is to prevent the spark otherwise produced at the
break-piece of the primary circuit." My coil sparks heavily at the break-piece, which is a file and a piece of steel. Is my condenser too small. Try making it twice as large. One who is building a coil should have a book to go by. Norrie's "Induction Coils" is a reliable book, which we send for $\$ 1$. 2. Can a Leyden jar $1 / 4$ inch spark? If so, how? A. Small Ley den jars can be charged with a small coil Connect the outside of the jar to one pole of the coil, and hold the discharging rod tipped ar. Sparks will jump across showing the harging of the jar. 3. Can a jar be charged from an electrophorus giving a $1 / 2$-inch spark of negative electricity? A. It would be very slow
and tiresome work to charge a Leyden jar with an electrophorus. It is perhaps possible, but not profitable. You will find our Sopplements
$278,279,282$, price ten cents each, very valuble upon these matters.
(9912) C. R. S. says: You give a method of measuring the width of a river without use of any instrument except measuring tape. Let me give you a better method. I
refer to 9850 , page 491. It requires a geometrician to remember your rule, while mine can
be easily remembered, is more exact, and can ven be used without the use of a measuring tape if one can step off distances with a fair
degree of accuracy. Rule: Select a tree on
the opposite bank as at $A$, and place a stake he opposite bank as at $A$, and place a stake
on the near bank as $B$. From $B$ measure off a distance in a line perpendicular to the line
$A B$, say a distance of one A $B$, say a distance of one hundred steps or one hundred feet, and place a stake at this
point $D$, then continue in same direction for

ame distance to $F$. Then walk from $F$ until he stake at $H$ is in line with stakes $D$ and $A$ (Line $B D F$ does not have to be perpendicular o $A B$, but may be in a convenient direction nearly perpendicular. The only error of any magnitude is the measuring of distances and getting line $F H$ in the same direction (i.e. par-
allel) as line $A B$. Remember the distance allel) as line $A B$. Remem
[Editorial Note: The rule which you give ingly simple and is correct The only dificulty with simple and is correct. The only difficulty by not getting the lines $A B$ and $F H$ exactly parallel. The rule which we previously gave is somewhat more complicated, but it is also more ror.]
(9913) T. W. McK. asks: Please how, in your Notes and Queries, by a figure rhombus whose angles are $6 \oplus$ deg. and 120 deg. A. To inscribe an ellipse in a rhombus of 60 deg. and 120 deg, proceed as in the figure
below. Describe the rhombus and its diag.

onals. Draw $A G$, making an angle of 45 deg. with $A B$, and let fall the perpendicular from $C$ upon CG. With $C G$ as a radius, describe dlipse. Draw $H I$ parallel to $A D$, and $I C$ is the semi-minor axis of the ellipse. From these pse may be constructed.
(9914) J. W. C. asks: Is it a fact hat when a ship at sea appears "hull down" to the naked eye, all of the ship can be brought fact, although many believe it to be, that a fact, although many believe it to be, that a elescope, that is, hull up again. We have ften watched ships sailing hull down when at edge that a ship disappears below the horizon as if over a round earth, as it really is. What
then is the basis for the other notion? For such an idea could not be established unless there were some reason behind it. It would seem to e.this, as we surmise: The telescope makes distinctly visible the edge of the water and the which are not distinctly seen by the unaided ye at such a distance, several miles at least. Thus it seems as if one were seeing farther
down the hull than when looking without the aid of a glass.
(9915) P. H. W. asks: Kindly state why the months of the year are numbered, some
with 31 days and some with 30 , February with only 28? A. The arrangement of the days of ur months is due to two Roman emperors, Julius and Augustus Cæsar. Julius Cæsar re-
vised the calendar, making the common year to ave 365 days, and every fourth year to have 366 days. The days of the year were distribated among the months, so that the odd nd the beginning with January, had 31 days ng February, which had 29 days in common years and in leap years had 30 days. He also gave his name to the month of July. The months following were named from numerals. Augustus Casar followed Julius, and gave his
name to the sixth month, August, and in orer to get 31 days for it, so that it should be ay from July, named for Julius, he took a This brought three months with 31 days together. To remedy this Augustus changed September and November to 30 days and October
nd December to 31 days. Thus our peculiar arrangement of days in the months is because
(9916) I. A. R. asks: Will you please ccount for the universal idea among seafaring substantiate the opinion, but two out of every three people will declare that they have seen ice sink. Many intelligent men have voiced this same opinion-men who know that ice is
lighter than water. Any information you may ive will be greatly appreciated by myself and others who are interested in the discussion.
A. We can not suggest any reason for the idea that ice disappears by sinking, which is prevalent among sallors.

