tioned 20-horse-power gasoline engine. The rudder which is worked through a spur-wheel and curved rack, is so arranged that the steering gear can be instantly disconnected from the rudder head, and the rudder hoisted out of the water by means of a fixed purchase, thus allowing the craft to be steered by the oars when entering broken water where steering by rudder would be dangerous.
The motor, which drives an 18 -inch propeller at a rate of 400 revolutions per minute, is located in the after air chamber, and a watertight door in the bulk head gives easy access thereto. The necessary attachments for the engine are protectively secured in casings to the outside of this air chamber bulkhead, where they are always within reach of the man in charge of the motive power. The motor is provided with an ingenious device which instantly stops it in case of an upset. This attachment, which is of very simple construction, consists of two pairs of rings suitably mounted in a vertical position, the lower halves being of metal, while the upper halves are of insulating material. A metal ball can roll freely between these rings, and as the device is included in the ignition circuit of the motor, this ball permits the flow of current as long as it maintains contact between the conducting portions of the rings. However, should the boat keel over to a certain degree the ball rolls onto the non-conducting halves, thus breaking the current and this is followed by the instant stopping of the engine. The latter can be started again when the boat is righted, as soon as some member of the crew is able to reach the starting crank. The main fuel tank, capable of holding 75 gallons, is in the bottom of the forward air chamber, while a 25 -gallon auxiliary tank is placed in the upper part of the same case, fuel being umped from the ower to the upper ank as required. The feed from the atter to the motor is by gravity through a brass pipe let into the outside keel.
The boat was re cently tested in the most thorough manner, and very satisfactorily answered all the requirements as to speed, endurance and carrying capacity. In pursuance of its usual pol icy in this connee tion, the governmen has spared neither expense nor labor to make these lifeboats of the highest utility and efficiency, and it s believed that in this craft the lifesaving service possesses a boat as ompletely equipped or its purpose as
is possible at present to make it, and as thoroughly trustworthy as the danger and gravity of its uses demand.

WIRELESS TELEGRAPHY IN SOUTHWEST AFRICA.

OUR BERLN SOUTHW

In the beginning of the Herero uprising, the German troops used heliographs for signaling whenever the existing wire connections failed. This service was satisfactory in clear weather, except for the drawback that the communicating stations had to "seek" each cther beforehand, a feat possible only in case the ap proximate position of each is known.
It was accordingly decided to use wireless telegraphy The Gesellschaft Für Drahtlose Telegraphie, of Berlin supplied the apparatus, which was mounted by the aerostatic battalion. Three stations were organized, viz., two wagon detachments and one cart detachment, the staff including four commissioned officers, four noncomissioned officers, and twenty-seven men. Gas bal lcons were used to raise the antennæ.
These stations were first used in practical operation in connection with the attack made against the Hereros near Waterberg. Each of the three detachments was provided with a wireless station, and though the men were not very well trained in the limited time allotted, the troops nevertheless succeeded in maintaining a permanent mutual communication. For transmission un to about 100 kilometers (62 miles) recording telegraphs were used, whereas for greater ranges up to 150 kilo meters (93 miles) the Morse signals were received by telephone. The latter course was exclusively adopted later on. While the antennæ were 200 meters in length (656 feet), the men did not always succeed in raising the full length of the wire, the drift of the balloon being mostly too small, owing to the considerable alti-

WIRELESS TELEGRAPHIC BATTALION OF THE GERMAN ARMY. BALLOONS CARRY THE ANTENNE TO A SUITABLE

THE ROYAL MUSEUM OF NATURAL HISTORY

 BRUSSELS.The Museum of Natural History of Brussels, one of the most interesting institutions of its kind in Europe has lately enhanced its collections with new specimens, some of which have excited the admiration of the naturalists of the entire world. Some of these recent additions have completed certain of the collec tions, that of the iguanodons, for example, and hence the government has been induced to make material alterations in the museum and to provide it with certain special installations, among the latter a gallery set apart exclusively for the splendid iguanodon groups described below. Heretofore few museums have com pletely carried out, architecturally, the objects for which they were constructed, and the rational distribution of the exhibitions has often been neglected. In the new galleries of the Brussels institution, on the other hand, these very points have been taken into consideration, and the halls constitute, as it were, great glass show cases designed to contain the collec tions arranged in advance in scientific order.
The arrangement and dimensions have all been so calculated as to be directly proportional to the num ber and nature of the objects to be exhibited. The fundamental division of the edifice is according to the geological chronology which may be regarded as defi nitely established. Moreover, since the zoological dis inction between the vertebrates and invertebrates is very sharply defined with regard to organization as well as size, and since the methods of exhibiting the two categories of beings must of necessity be entirely different, the national galleries designed to contain the products of the scientific exploration of the Bel gian soil comprise two great superposed halls, the lower of which is for the vertebrates and the upper for inverte brates, fossil plants, and minerals
The vertebrate hall, which has jus been opened to the public, is nearly 280 feet in length and 100 feet in width and owing to the slope of the ground has been divided into four great landings, each separated from the next by a flight of three steps. The landing or division corresponding to the present entrance in the reconstructed building is that of the Quaternary Epoch, which also includes the modern period. The others, in the order named

or America, while the country is absolutely devoid of

 any resources for repairing the apparatus.
The carrent supplement

The opening article of the current Supplement, No. 1576, is entitled "Mining for Fossils," and explains the methods which paleontologists employ in obtaining the specimens which they prize so highly. An article of great technological value is that on Valuable Alloys, describing as it does how many metallic compounds are made. Philip M. Wormley's article on "Cement Mortar and Concrete: Their Preparation and Use for Farm Purposes," is continued. "Producer Gas and Gas Producers" is the title of an excellent discussion of a subject of great importance to the modern engineer. Jacques Boyer writes entertainingly on Snail Culture in Bergundy. The report of the Isthmian Canal Commission favoring the high-level canal is also published. This gives a detailed account of the work which will be performed at the Isthmus in excavating one of the greatest ship canals of the world.

One of the largest steel ingots that has ever been made was recently cast at the Manchester foundries of Sir W. G. Armstrong, Whitworth \& Co. The ingot weighing 120 tons was cast on the well-known fluid pressure system of this firm. The molten metal, representing 120 tons in weight, was poured from the melting furnaces into a huge ingot mold-box weighing 180 tons. When the run was completed the mold-box was placed in a hydraulic press, the ram of which is 6 feet in diameter, and subjected to a pressure of 6,720 pounds per square inch. The ingot is for the machinery of the new turbine Cunard liner now in course of construction on the Clyde.
are the Tertiary, the Upper Cretaceous, and the Lower Cretaceous divisions. While it has not been necessary to construct the Jurassic and Primary floors, these have nevertheless been provided for. The accompanying engravings illustrate respectively the hall of verte brates as a whole, and the splendid group of mounted iguanodons at the rear of the last landing.
Among the important groups, which are all sup plemented by charts, drawings, etc., are: On the Quaternary floor, those of the magnificent fauna of the great herbivores and that of the no less important great cave carnivores, as well as the innumerable series of prehistoric industries collected both in the alluviums and in the caves; on the Tertiary floor the great cetaceans of the Upper Tertiary of Antwerp, the sirenidæ of the Oligacene and the reptiles of the Eocene, as well as certain remains of primitive mammifers of very great interest; on the third floor, the Upper Cretacean, are found the great marine saurians of Maestricht and Ciply, the latter from the explora tion of the phosphate chalk; on the fourth landing the Lower Cretacean, the iguanodons of Bernissart and the contemporary animals and plants. Ten iguanodons are mounted upright on a large platform while fourteen others are placed in a large pit in the positions in which they were discovered. The engraving gives us an idea of the splendid effect of these mountings. The back wall and one of the sides of the hall are provided with a gallery which contains the large collection of the fossil fish of Belgium. Of all these the most remarkable group is unquestionably that of the iguanodons, those prehistoric reptile giants which have so long puzzled paleontologists.
In 1822 Mantelle discovered in the Wealden of Til ate Forest, England, the isolated fossil teeth of a reptile which he named iguanodon because of the re-

