
Abstract

Prime Movers and Their Accessories EXPLOSION-ENGINE. - R. O. Le Baron Pontiac, Mich. The object in this case is to provide a gas, gasolene, or the like explosion engine arranged to utilize the expansive powe of the gas to the fullest advantage and t allow running the engine with the greatest self to the number of pairs of cylinders the same may be varied and two or more tha three pairs may be used and connected wit fach other for producing the desired result. DRAFT-DRIVEN GENERATOR. - W. H engines, the inventor's more particular objec being to economize the draft thereof in suct manner that when the draft is excessive it may be used to operate machinery, thus utillz ing a certain amount of power otherwise wasted. It is of peculiar value upon locomotives, where under certain conditions rotary engine.-J. p. Bruyere, Pas saic, N. J. A purpose of the inventor is to prove an effective construction of rotary enuse of stean. A further purpose is to so con struct the engine that a piston is located in a casing, both of which parts may be employed as drivers, and wherein each is mounted to revolve relatively to the other. Another is to provide the engine with a simply-applied and readily-effective reversing mechanism an cut-off.

Railways and Their Accessories.
oncrete railway-tie.-G. S. Miller, Eurlington, Vt . The purpose of the improve ment is to provide an economic form of tie in which the devices for seating and securing the
rails consist in box structures having chambers to reccive spikes and means for removably holding the spikes in said chambers in firm clamping engagement at their heads with the flanges of the rails, it being possible to ex
peditiously and conveniently replace any damaged spike without disturbing the rails or an adjacent spike.
FOLDING RXTENSION-STEP. - J. S.
Coxey, Aberdeen, Wash. The intention in this Coxey, Aberdeen, Wash. The intention in this
case is to away with the small tool or box case is to do away with the small tool or box
employed to facilitate the landing of passenemployed to facilitate the landing of passen-
gers from railway-coaches at stations where plish such result by providing an auxiliary bottom step having folding or swing connection with the lower step of the usual series
fixed to the platform of a coach, and to con trol the movements of the auxiliary steps by means of a series of levers conveniently op-
erated throagh a hardle member located at the erated throigh a hardle
platform of the coach.
ventilating medium for cars.-C P. Bennett, New York, N. Y. The aim the inventor is to provide means for ventilat ing cars in a thorough manner and without
subjecting the occupants to drafts, and in the construction of the eppliance to provide means for-regulating the amount of air to be aderated from the interior of the car, and furthe to so construct the upper portion of the car that the foul air will be sucked out from the interior and fresh admitted.

Pertaining to Recreation.
APPARATUS FOR INDICATING THE SCORLES OF PLAYERS IN SUCH GAMES AS
lililiarDS OR THE LIKE.-C. S. OAkES and J. A. Manton, Parramatta, New South
Wales, Australia. The invention refers more particularly to a mechanical device for ind cating the score of players in the game of bil
liards, and has for its object to provide liards, and has for its object to provide a
simple scoring-board which may be easily read and understood from a distance, so that the players, as well as the onlookers, may be kep
advised as to the state of the game as it progresses, while at the same time it is
capable of easy and accurate manipulation by capable of eas
the marker.

Pertaining to Vehicles.

reeling Device.-C. A. Hadland, Ben use in reeling wire and the like and is designe to be mounted upon a wagon-body, so tha the wire may be reeled or unreeled as the
wagon moves. The principal objects are to provide means for removably attaching the device to the body of a wagon, to provide for
securing the reel in operative or in inoperative position, and tor manipulating a guide for the
reel, and for operating these devices conveniently from the seat
HITCHING-WEIGHT HOLDER.- HI H. Ternill, Lockport, N. Y. This invention has
reference to improvements in devices for supporting a horse-hitching-weight on a delivery wagon or other vehicle, an object being to
mrovide a supporting device of simple connot in use may be suscended from the when board or other portion of a vehicle in such manner as to be readily lowered to the ground
with a row of small circles, the whole giving
a very clean and pretty ornamental effect.
Note,-Copies of any of these patents will ef furnished by Munn \& Co. for teu cents each Please state the name of the patentee, title of the lnvention, and date of this paper.

Business and Personal KJants.

 MUNN \& CO.

Marne Iron Works. Chicaago. Catalogue free.
Juquiry No. 7075 .-For makers and dealers
rovelites and nem19 patented artices.
©. S." Metal Polish. Indianapolis. Samples free. Inquiry No. 7076.-For manufacturers of self
propelling invalid chairs. 2d-hand machinery. Walsh's Sons \& Co., Newark, N.J. Inquiry No. 7077.-Fnr dealers in colored cellu-
oid goods, also celluloid in the crude state. l'erforated
Co., Chicago.
Inquiry No. 7878.-For makers of rubber goods. Handle $\&$ Spoke Mchy. Ober Mfg. Co., 10 Dell st Chagrin F
Inquiry No. 7079.-For manufacturers of springs
wound by a key and run for five or ten minutes. Adding, multiplying and dividing machine, all in one Inouiry No. 7oso.-FFog manufacturers of and
deaiers in hydraulic rams for use in shallow wells or
ponas. Wanted.-Bids for making an
afety pin. Box 337. Blairsville,
Inquiry No. 7081. For makers of machinery
used in manufacturing dynumite, stumping powder,
stc
Sawmill machinery and outfits manufactured by the Inquiry No. 2082.-For makers of ice-making ma-
Marketers of meritorious inventions and specialties
throughout the world. Tatem Mfg. Co., Buffalo, N. Y. Inquiry No. 7n83.-For manufacturers of sm
pringmotors, such ak used in toys and novelties. I sell patents. To buy them on anything, or baving ing, Buffalo, N. Y
Iuquiry,
The celebrated "Hornsby-Akroyd" Patent Safety Oi Engine is built by the De La Vergne Machine Company
Foot of East 138thStreet, New York. Inquiry No. 7 O85.-Wanted, second-hand, smal
rail for miniature railroads. Gut strings for Lawn Tennis, Musical Instruments, and other purposes made by P. F. Turner, 46th Stree and Packers Avenue, Chicago, ill.
$\underset{\text { Itock whips. No. 7US6.-For makers of "Buffalo" }}{\text { Ind }}$ Manufacturers of patent articles, dies, metal stamp-
ing, screw machine work, hardware specialties, wood aber machinery and toois. Quadriga Manufacturing Company. 18 Soutb Canal Street, Chicago
Inquiry No. 7087.-For makers of face masks.
Absolute privacy for inventors and experimenting moderate terms from the Electrical Testing Labor tories, 548 East 80th St., New York. Write to-day
Inquiry No. 7088.-
known 2 c parlor croquet.
Manufacturers of all kinds sheet metal goods. Vend ing, gum and chocolate, matches, cigars and cigarettes amusement machines, made of pressed steel. Send
samples. N. Y. Dieand Model Works, 568 Pearl St., N. Y Inquiry No. 7089.- For manufacturers of road
maliing machinery, rocik crushers, etc. W ANTED.-To buy ideas or patents for new articles
to manufacture as a side line. Will consider all propo sitions. but prefer articles commonly used by the popuiace. Briefly give f
Co., Grand Rapids, Mich.
Inguiry No. 7090.-For makers of machinery for
nanufacturing wood screws. ACATION TRIPS.
If you are going away this summer be sure to send for "Mountain and Lake Resorts," a beautifully illus-
trated publication of one hundred and twenty-eight
 pages, just issued by the l,ACKA WANNA RAIL-
ROAD. The Jersey Hills, the Pocono Mountains, Delaware Water Gap, Richfield Springs, Lake Hopatcong
and other delightful summer resorts are described in a and other delightful summer resorts are described in a
way that will tell you how you can go, where you can tay, what you can see It will be sent for ten cents in stamps addressed to T. W. LEE, General Passenger Agent New York City.
I rquiry No. 7091. - For makers of raw rubber, Inquiry No. Yo91.- For makers of
such as used by maliers of rubber stamps. Inquiry No. 7092.-For dealers in gold leaf for
for git woodwork. Inquiry No. 7093.-For makers of painted satin
canvas or perfume boxes or bags. Inquiry No. 7094.-For makers of town clocks. Inquiry No. 7095.-For makers of motor canoes,
motrrs, fire engines, or fire pumps, without horse Inquiry No. 7096.-For machinery to cut metal
in thin strips like tinsel. Inquiry No. 7097.-Wanted, wholesale powdered
aluminium and barium peroxide.

Inquiry No. yo98.-For the Fairy Floss candy machine.

Inquiry No. 7o99.- Wanted, machinery to manu-
acture granular effervescent salts, for druggists' use. Inquiry No. 7100.-For an etching fuid for use
with rubber dies, formaking polished steel. Inquiry No. 7101.-For makers of all kinds of
hin ues in large quantities, also for makers of all kinds
of boxes.

xame ixisi io mexase vesis

 (9699) L. F. P. says: In your highly development of motive power from the windmill. Would you be kind enough to answer the following through your columns: Is it
necessary that rudder area should be greater than blade area? If not, why would not the mill turn around on the transmission shaft to hoid the mill against the wind, and also against its own force, and consequently the rudder area plus its leverage must be greater
than blade and power area? We will assume there is a five-horse wheel and five horse-power is being consumed through the transmission
shaft. What holds the mill against the transmission shaft? If it is the rudder, does not A. Windmills are constructed in a great many ways, some transmitting the power from the others by by crank and connecting rod motion there is no reaction from the driven shaft tending to move the windmill out of a plane
at right angles to the wind. Such windmills require very small rudders, as the force of th wind is balanced on the vanes of the mill, and
the rudder is only necessary to turn the mill, the rudder is only necessary to turn the mill,
so that it will always face at right angles to the direction of the wind. Where, however,
the power is transmitted to a vertical shaft by the power is transmitted to a vertical shaft by
means of a single pair of beveled gears, there is a reaction tending to turn the mill from the plane at right angles from the wind equal to the force tending to rotate the mill mul-
tiplied by the leverage. In such a case, the force of the wind on the rudder multiplied by
(9700) K. H. L. says: Will you please give me the numbers of your recent papers that have an explanation of the Edison
three-wire system of electric lighting? Also the numbers that have its history and recent
application? Will you please also give me the numbers of papers that deal with the subject of electrical heating? A. We can furnish you
with two papers, Supplement Nos. 309 and 737, containing valuable articles about the Edison three-wire system. We do not know
any recent application of this system. It is being very rapidly superseded by the alternat ing-current systems of lighting, since it cannot
be used very far from the central station be used very far from the central station.
The number of articles relating to electric heating is very large. We name Supplements 1419, 1420, 1421, 147, 1112, 1182, 1374, 1375, furnished at ten cents each. New Suppers are ue sent on request.
(9701) H. B. M. asks: Is there any way that one can change an alternating cur-
rent of 110 volts to 20 or 25 direct suitable rent of 110 volts to 20 or 25 direct suitable
to run small motor? A. Alternating current can be transformed to direct by means of a rotary transformer, wound to give any voltage
desired or a Cooper-Hewitt mercury are converter can be used. 2. What changes would have to be necessary in a magneto
generator to furnish current to operate an induction coil giving a 1 -inch spark? A. The changes needed to fit a magneto to run a 1-inch We do not think the ordinary telephone call magneto can easily be made to to this. How many times does an ordinary door bell make and break with three dry batteries? A. We can only guess how many times a bell
a second when three dry cells are attached to the circuit. We guess three times. If you
will count a bell for a quarter of a minute, you can find out if we have guessed right coils? A. F'or small coils a vibrating interinterrupter is sometimes used, and sometime an os
used.
(9702) C. C. B. asks: Will you please tell me through your paper whether the zinc tubes or cups used in making the dry battery
described in the Supplement No. 1387, August 2, 1902, on page 22225 , can be used more than action of a dry cell, the electricity is produced oy the solution of the zinc in the sal-ammoniac. If there are no holes eaten through the zinc
whon the other materials are zinc cup of a dry cell may be refilled and used
for another charge.
(9703) J. L. W. asks: Will you kind ly inform me as to the relative speed of light
and electricity? A. Electricity travels in space with the speed of light. Indeed, light is simply an electromagnetic disturbance of the electricity travels with other lower velocities See Watson's "Physics," price $\$ 3.50$; Thomp on's "Electricity and Matter," \$1.25, or $\$ 1.50$.
(9704) H. A. K. says: I have a hol low cylinder $11 / 4$ inches diameter by 3 inches
high. How many cubic inches of air will be high. How many cubic inches of air will be
compressed into it at 100 pounds pressure per nch? At 200, at 300 , at 400 , at 500 ? If he height of the cylinder is cubic at the same pressures? What is the rule for finding the volume of air compressed into a given space at subject. A. Your cylinder contains 3.68 cubic feet of air at atmospheric pressure. At 100
pounds pressure it will contain 3.68 times $\frac{114.7}{}=28.8$ cubic inches. At 200 pounds pe:
square inch it will contain 53.8 cubic inches. At cubic inches. At 400 inch it will contain 78.8 will contain 103.8 cubic inches. At 500 pound per square inch it will contain 128.8 cubic inches of air at atmospheric pressure. If you
halve the height of the cylinder, you will halve the amount of air that it will contain. is about 14.7 pounds per square inch. When the pressure is increased, the volume of each ratio that the pressure is increased above 14.7 In working these problems it is necessary to remember that pressures as ordinarily meas pheric pressure. To obtain the absolut pressure or true pressure, it is necessary to add 14.7 to the pressure given by the gages, as has been done in working the example with the following book relating especially to the subject you refer to: "Compressed Air Hiscox, price $\$ 5$ postpaid.
(9705) L. H. N. asks: Where is the north magnetic pole now located? A. The 1831 to be on pole was found by Ross in 1831 to be on Boothia Felix near Hudson's determination. It is not probable that the same point is the pole now. 2. Is it moving, A. in so, in what direction and how fast A. The pole is probably not at rest, though nothing is known as to the rate of its motion. An expedition is now engaged in making a
new survey to determine the north magnetic new survey to determine the north magnetic pole. 3. How many degrees east or west of needle point for central lower Michigan? A. 1902 the needle pointed 2 minutes west 26 north in Michigan. In 1896 it pointe The line of no variation passe into Michigan almost in the center of the southern boundary of the State in 1902. 4. Is there any easy metho by which a person can tell the time to within a few seconds where telegraphic ser be best determined by a sundial in the absence (9706) O. D. asks: In the type o open-circuit battery listed in catalogues as
"National No. 2." how much black oxide of manganese should be put in the porous cup: with the pulverized carbon to make the cel give the best results? In mixing the sal
ammoniac solution in quantitles, how mucn sal-ammoniac should be used for each gallon of water? A. For all sal-ammoniac cells with peroxide of manganese and coke broken into small lumps. A mixture of equal parts may be used. For the electrolyte take from 1 to 2
pounds of sal-ammoniac to a gallon of water. A saturated solution is not desired, since any crystals left in the bottom of the jar tend to will weaken the action of the battery.
(9707) M. A. asks: 1. Will a primor through any part of the human body? The writer has failed to detect such passage with fifteen Samson cells. A. If your galvanometer is sensitive enough, there is no difficulty in detecting a current which passes through the human body. Connect the wires to a piece of zinc and one of carbon or copper. Dip the and the water, and take the zinc vanometer will show a deflection, due to a cur rent produced by the hands. So will it if two
pieces of zinc were used as above. Let several pieces of zinc were used as above. Let several
persons wet their hands in clear water and join hands, the outer persons taking the zinc and carbon, as above, and the galvanomete: need a number of cells. You need a more sen sitive galvanometer. 2. If a mixture of gas and air confined in a tight cylinder was fired by electric spark or otherwise, a disastrou explosion would be the result. Why does no:
the same occur when firing the mixture in a the same occur when firing the mixture in a gas engine cylinder? A. If a quantity of gas
and air mixed are exploded in a cylinder
strong enough to withstand the explosion, the cylinder will not break. This is what is done
in a gas engine. If the cylinder is not strong enough, it breaks. The gas-engine cylinder is strong enough.
(9708) W. G. asks: Could you tell me how I can determine the positive and
negative side of a live wire, not tracing it to the station or to the lamp or motor, etc.? Is it tric current in a wire may be told by a
compass needle placed so that the current flows along the needle, that is, lengthwise of
the needle as the needle stands north and south. In this case the needle will be turned more or less across the wire by the magnetic
action of the current. To determine the diaction of the current. To determine the di-
rection of the current, hold the open right hand over or under 'the conducting wire, but needle, so that the palm of the hand is toward the needle, and so that the thumb is extended in the direction in which the north or marked
end of the needle is deflected; the fingers will point in the direction of the current.
(9709) E. B. E. writes: In your paper for April 15 is given a rule for the
approximate extraction of square root. The first part of the rule is a well-known method and applies quite generally and not merely to
and
numbers within the limits given. The second numbers within the limits given. The second
part seems rather obscure, and is not easy to remember. The best rule is perhaps that given
by Charles Hutton, a prominent mathematician by Charles Hutton, a prominent mathematician of the eighteenth century

A. The rule given above is far more simple than the one formerly printed in this column.
If one needs an approximation for the square root, we should advise that this rule be copied and employed.
(9710) E. R. MacP. says: 1. Re inquiry 9615 , under date April 15 : I quite
follow your reply, but I think that your correspondent must have been thinking of the in fluence of wind. on a bullet; for it is a well the same direction as a bullet (or any pro jectiley it has a tendency to elevate the bullet
above its usual trajectory. And just the reverse happens when the wind is against the
bullet. 2. What is the formula for measuring rain? It runs something like this, I think quire so many cubic inches in order to measure of rain in cubic inches, it is necessary to have as many cubic inches of water as there are square inches in the "catchment area." A bet-
ter way of determining the depth of rainfall is to use a rain gage. The United States Weather
Eureau rain gage is a metal dish about 8 Bureau rain gage is a metal dish about 8
inches in diameter at the top. The rim is of heavy copper turned to a sharp edge. This
opens below into a narrow dish, whose sec opens below into a narrow dish, whose sec
tional area is exactly one-tenth of the area of the upper dish, and whose depth is 20 inches
It is obvious that the water will be ten times as deep in the lower dish as it would be if
retained in the upper dish. The rain caught is measured in the lower dish, and the depth divided by ten gives the rainfall. Two inches
of rain would fill the lower dish. 3. Is it possible to calculate an "angle of safety" for
a circular cycle track? For instance, I want a circular cycle track? For instance, I want
to luild a circular track 50 feet in diameter. What would be the angle of safety for that?
When I use the term "angle of safety," I mean Then I use the term "angle of safety," I mean be inclined without the rider being thrown off,
granting of course that he is riding at a high granting of course that he is riding at a high rate of speed-say 15 or 20 miles an hour.
A. The "angle of safety," as you term the angle of inclination of a track on which there would be no tendency for a bicycle to slow in
going around a corner, will vary with the speed going around a corner, will vary with the speed
of the rider and also with the radius of the track. If the track is W feet wide, the proper be found from the following formula:

Elevation $=W \times \overline{32 R}$

Where $z^{2}=$ the velocity of feet per
and $R=$ the radius of the track in feet (9711) T. A. B. asks: There are two grounded telephone lines-entirely separate150 feet apart. A conversation on one line may be distinctly heard on the other. One
line is private, and the other runs to a switchboard. A. Wherever two telephone lines interfere with each other, the cause is always
the induction of the current in one line upon the induction of the current in one line upon
the other line. It can be remedied by the use
of a metallic circuit, with twisted or crossed
(9712) E. M. B. says: If an Archi medean screw is placed so that the opening in
the lower end is under water during its entire the lower end is under water during its entire revolution, will the screw raise a continuous
stream, or will the flow from the upper end stream, or will the flow from the upper end
be intermittent, and wty: A. If an Archimedean screw is placed so that the opening in
the lower end is under water during its revolution, the flow from the upper end will be continuous, provided the conditions are such that there is any flow at all, if the pitch of the screw is uniform, and the speed of rota
tion is uniform; otherwise, it will vary. If the angle of the screw is too great, or if the pitch of the screw is too great, or if the speed
of rotation is insufficient, there will be no flow of rotation is ins
of water at all.
(9713) F. De M. asks: About what is
the resistance of the dry cell in common use,
standard size $21 / 2 \times 63 / 4$ round, such as the Mesco, Columbia, New Standard, etc.? A. The internal resistance of dry cells is not constant,
and must vary during the life of the cell. and must vary during the life of the cell.
Since the E.M.F. of these cells is not high, the nternal resistance should be low. Some mak 0.15 to 0.25 ohm . This quantity is dificult of measarement because these cells polarize very rapidly,
reason.
(9714) W. F. W. asks: 1. There is widely prevalent belief that a razor by being kept in constant use loses its good shaving,
qualities, and that by allowing it to "rest" for a while unused it will recover its original shaving qualities. Has that belief any real
foundation? If so, please explain the cause foundation? If so, please explain the cause
for such remarkable metallic peculiarities. A. The only suggestion we can give you as a foundation for the belief that allowing a razor
to rest would improve its shaving qualities is as rest would improve its shaving qualities is
as follows: The literal edge of a razor is only of microscopic thickness. This edge, when exposed to the atmosphere, oxidizes rapidly. The tendency of "rest" therefore would be to pro-
duce a jagged edge, which when very much magnified would look somewhat like. the edge of a saw, and it is well known that a rough
edge, when keen, will cut better than an edge which is too smooth and uniform. We believe, just described, which may have improved the cutting qualities of razors in a few exceptional instances, that imagination, which plays all
kinds of freaks with things too small to be seen, is the real foundation for the belief to
which you refer. 2. Why do blacksmiths pour which you refer. 2. Why do blacksmiths pour
water upon the burning coals in the forge? I have never been able to get an entirely satisfactory explanation from the blacksmiths
themselves. A. Elacksmiths pour water on their forges in order to control the size of their fires. As a rule, they wish to heat their iron only for a limited distance along the bar, and therefore must control the diameier
their fire. The water also serves two other useful purposes. It tends to make the coal cake in such a way as to be nearly impervious to the blast. Thus a nearly air-tight ring or
chimney may be formed around a fire, which chimney may be formed around a fire, which
will help to concentrate the air from the blast will help to concentrate the air from the blast
at the point where it is most needed. This at the point where it is most needed. This
caking of the coal helps in the process of which condition it forms a better fuel and produces a better fire than could be obtained from green coal. From this last reason, black-
smiths will often be found wetting their coal smiths will often be found wetting their coal
to aid in the process of manufacturing coke, when wetting the fire would not be necessary for the particular job they have at hand.
3. What are wash drawings, and how are they 3. What are wash drawings, and how are they
made? A. "Wash drawings" are ordinary India-ink drawings on paper which have been tinted with water-color paint, to make them object for which they are made. Architects' drawings are often prepared in this way, and the practice was common with engineers a
generation ago. 4. Please explain how the "parallax stereogram" pictures were made which were exhibited at the St. Louis Expo-
sition. Portions of the objects projected for sition. Portions of the objects projected for-
ward, appearing to be in front of the frame and other portions appeared to be considerably farther back. A. Parallax stereograms are constructed of sets of lines, so that each set forms its part of the scene represented. Some as supplements, so that now they are very
(9715) H. H. S. asks: Please let me nnow through the Scientific American how
to find the gage of wire. In other words, of a certain piece of wire of known diameter in fractions of an inch, what is its number?
A. There is no way of finding the gage of a wire except by the use of a wire table, which gives the number of a wire and its diameter
in thousandths of an inch. Nor is a wire known unless the name of the gage by which
it is measured is expressed as B. \& S., Stubs, or some other. The whole matter of gages is in
a bad condition, and some unification should be made. The best would be to denote a wire
(9716) J. M'cL. asks: In Supplement No. 1215, page 19474, you have an article
advising the use of dilute phosphoric acid in water to ward off old age, etc. I have seen a warning in some book to not use more than 15
drops of dilute acid in water three times a
article referred to, and would ask if it woul
not be a good idea to print same in Screntrfic American soon, with the warning to notic more than 15 drops of the acid in water three the teeth of using same, or if any hollow teeth were present would it affect the jawbone? and if one's physician prescribes it, we should certainly advise you to take it. We should not advise anyone to prescribe for himself
even a most excellent remedy. Let medicines alone till some one outside of yourself orders yond simple is goosehold advice for anything beyond simple household remedies, such as catnip
tea and the like, which do no harm when they do no good. When phosphoric acial is to be phosphate or phosphite. The soda fountain drink orange phosphate, so popular of late, is simply an acid phosphate with orange syrup added. As to the action upon the teeth we
cannot pronounce, since the doctors have not decided just what causes the necrosis of the bone in the case of workers in match factorics. We cannot advise one whether to study meshould study the one he likes best and can do the work
his hand. trades, and a good man can get a living at either, though he will not get rich at either working on a salary.

NEW BOOKS, ETC.

Cams and the Principles of Their Con struction. By George Jepson. Cam 1905. 8vo.; pp. 59.

Cams are one of the most important parts of nearly all machinery; and a clear and con-
cise work on their design and construction will be found valuable to all mechanical engineers. This little volume is such a work, and we heartily recommend it to the engineering fraternity. It is largely filled with exceed ingly clear drawings of different kinds of cams
used for various purposes, and there are sevused for
eral half
machines.
Cellulose, Cellulose Productis, and Ar tificial Rubber. By Dr. Joseph Bersch. Translated from the German
by William T. Brannt, Editor of "The Techno-Chemical Receipt Book. Co., 1904. 8vo.; pp. 345 . Price, $\$ 3$. This work is a very complete treatise on Cellulose as is well ways, its use extending from the preparation
of nitro-compounds to the manufacture of of nitro-compounds to the manufacture of
artificial silk and distillation of alcohol. All these uses are gone into and fully described in the present volume. The author first tells how cellulose is prepared from wood or straw,
and how parchment is manufactured from it. He afterward describes the methods of obtaining sugar, alcohol, and oxalic acid from this the production of viscose, the nitro-celluloses and cellulose esters, artificial silk, celluloid, rubber substitutes, oil rubber, and factis. The
work is very complete, and will be found of work is very complete, and will be found of
great value to all who wish to gain a knowledge of the uses and nature of this substance.
Flora and Fauna of the Bloo. By Ra and Fauna of The Bloò. By
Henry G. Graham, M.D. Chicago. This is a very interesting little pamphlet,
he result of six years of hard labor, descriptive of the infusoria contained in human blood. It illustrated with two colored plates, showing these microscopic animals as they appear under
varying conditions. The book is well worth the perusal of all interested in the wonders of the human body. It is written in a popular manner, and may be understandingly
Stair Building Made Easy. By Fred T.
Hodgson. New York: The Industrial Publication Company, 1904. 12mo.; pp. 160. Price, $\$ 1$.
The third edition of this small volume will and even by those of greater experienters, the building of stairs and stairways. It gives a full and complete description of all kinds of
staircases, and instructions for designing and erecting the same. It is fully illustrated with over 100 engravings, and is provided with a glossary and index, which make
mation it contains easily obtainable.
Maciine Tools and Workshop Practice
for Engineering Students and Ap-
York: Longmans, Green \& Co., 1905
8vo.; pp. 444 ; ill., 550 . Price, $\$ 4$.
The aim of this textbook is to explain the construction and use of machine tools in a
connected form. The book covers a large range of subjects, and will be found especially helpful to the practical worker, as it will enable he uses, and give him hints on how best to tools are calculated to perform. The book contains, among its many chapters, several on Measurement ; Turret Lathes; Grinding; and Milling, which have been prepared and illus-
trated in great detail, on account of their im portance to the student and practical worker. line cuts. They are both in half-tone and line cuts. They are numerous, a
greatly in instructing the student.

Lloyd's Register of American Yachis,
1905. Published from New York of 1905. Published from New York of 15 Whitehall Street, New York. Pp 542, colored plates 42. Price, \$7.50. With the opening of the yachting season Register for 1905 , published American Yacht Register for 1905, published by Lloyd's Reg-
ister of Shipping. Though only in its third ister of Shipping. Though only in its third
season, this book is already well known in all parts of the United States and Canada as the standard work of reference for yachtsmen. The Register is a book of 542 pages, with 59 signs, and owners private signals, the latter to the number of 1,440 . The total number of yachts listed is 3,389 , of which 2,130 are sailing craft and 1,259 are propelled by steam or
some other power. The tendency of the times some other power. The tendency of the times
is shown by the fact that while but a year ago the sailing yachts made 67 per cent of the Among the power yachts the new gasoline conspicuously, this trom 30 to 80 feet figure servedly popular from its great utility, its adaptability to all waters, and the comparaIn addition to running.
In addition to the main list of yachts, giving engines, there are lists of signal letters, af former names of pachts, of builders and of signers of the United States and Canada, and very complete list of over 3,100 yacht
owners, with addresses and clubs, as well as the yachts owned by each.
Outline of Industrial Chemistry. A textbook for students. By Frank
Hall Thorp, Ph.D., Assistant Profes-
sor of Industrial Chemistry in the
Massachusetts Institute of Technol-
ogy. Second edition, revised and en-
larged, and including a chapter on
Metallurgy by Charles D. Dew York: The Macmillan Co..
pany, 1905 ; 8vo., pp. 618. Price, $\$ 3.50$. has been used more or less constantly by the Editor of this journal ever since its publication in 1898. The practical use to which the volume has been put during those seven years
has enabled him to form a more just estimate of its technical value than can possibly be attained through the cursory reading which is
usually alloted by the reviewer to a newlyusually alloted by the reviewer to a newlypublished volume. The work has proved itself in excellent handbook of ready reference on ences to bibliographies at the ends of divisions have more than once proven of value. In this new edition, Prof. Thorp has included an account of the more important advances made in the chemical industries during the last seven
years, and has therefore considerably improved he technical value of his volume. Mr. Charles emond's elementary chapters on metallurgy onstitute a feature which, as far as we know, but which we venture to state is likely to be found in them ere long. This metallurgical review, although necessarily brief, nevertheless gives one a very good idea of the elementary
chemical principles that underlie most modern chemical principles that underlie most modern

Duality of Thought and Language. An Outline of Original Research. By
Emil Sutro. New York: The Physio-
Emil Sutro. New York: The Physio-
Psychic Society, 1904. 12mo.; pp. 300. Psychic Soci
Price, $\$ 1.50$.
Starting with Gladstone's utterance, "The cientific investigation of the spiritual is the most important subject before the public to-
day," the author endeavors to prove the supremacy of spirituality over matter, in man. His theories, from our present-day standpoint, are nothing if not peculiar, but he is nearly
always interesting, and at times helpful and always in
inspiring.
Lecture Notes on Some of the Business
Features of Engineering Practice.
By alex C. Humphreys. Published by
the Department
ing of Stevens Institute of Technol-
ogy, $1905 . \quad 8 \mathrm{vo} . ; \mathrm{pp} .187$.
This book has been written by Prof. Humhis tuition by giving them a résumé of the lectures delivered in the course on business engineering. All the matter included in the
course is not found in this volume, but that which is most difficult to comprehend is given, and will be found of great aid to the student. The book also contains notes on the law of contracts by Howard E. White, Esq., and the
Commencement address delivered by Walter C. Kerr to the Class of 1904

Steam Pipes: Their Design and Con Struction. By William H. Booth. New York: The Norman W. Henley
Publishing Company, 1905. 8vo.; pp. Publishing Company, 1905. 8vo.; pp. 187. Price, \$2.

This book forms a practical treatise on the principles of steam conveyance, and the means
and materials employed in practice to secure and materials employed in practice to secure well illustrated, and gives many useful ideas with regard to the making of pipe joints, expansion offsets, flexible joints, and self-contained sliding joints for taking up the expansion of long pipes. The chapters on the flow steam and expansion oi pipes will be found
extremely useful to all steam fitters. The pressure strength of pipes and the method of of all kinds, flanged joints and their proper

