Designs.
DESIGN FOOR A CHAIR.-W. F. Wittich, Cody, Wyo. In this instance the designer has produced a new, original, and ornamental ar-
rangement of a chair in a very skillful and graceful manner. The whole frame is made up of antlers. The seat and back upholstered, and the latter shaped like an inverted shield,
in the upper part of which a circular clock in the upper part of which a circular clock
is inserted.
DESIGN FOR A ROSARY.-H. F. Nehr, New York, N. Y. The ends of the main length,
of this beautiful article, are brought together of this beautiful article, are brought together
and fastened in a heart, pendent from which and fastened in a heart, pendent from which
is a short continuation of the above mentioned length holding at its extreme lower end a neat length holding at
and chaste crucifix.

Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each the invention, and date of this paper.

Business and Personal Cuants.

Marne Iron Works. Chicago. Catalogue free. Inquiry No. F570.-For
tinuous distilling apparatus.
Inquiry No. 7571 . - For manufacturers
moe
m Drying Machinery and Presses. Blles, Louisville, Ky. Handle \& spoke Mchy. Ober Mfg. Co., 10 Bell St. Inquiry No. $7573 .-$ Nor
doing pressed metal work.
and outfts manufatured by the Lane Mfg. Co.. Box 13, Montpelier,

$\underset{\text { wagon wheels. }}{\text { Inquiry }}$

WANTEP.-Patented specialties of merit, to manu-
factureand market. Power Specialty Co.,Detroit, Mich
 The celebrated "Hornsby-Akroyd" Patent Sarety Oil
 I sell patents. To buy, or having one to sell, write
Chas. A. Scott, 719 Mutual Life Building, Buffalo, N. Y. Inquiry No.
covered casters. 5\%\%.-For manufacturers of rubber-WANTED--Purchaser for Monazite, Molybdenit
Wolfram. Apply Monasite, Box $i 73$, New York. Inquiry No.
vacuum pumps.
FOR SALE.-U. S. Patent Right No. 730,757. Rotary roasting oven for drying grain or vokin: cereal foods.
Address J. B. Galbreath, Decatur, Mich.

Inquiry No. 7 N79. and colored door k nobs.

A practical man wishes to invest $\$ 2.000$ in a well-estab
lished machine shop. Must bear investigation. Invest. ment, Box 773, New York.
Inquiry No. 7580.-For manufacturers of blanch
ing machines. I have for sale the patent of a Folding Umbrella sure
to sell at sight. Offers solicited. Mrs. A.'Studams, 732 to sell at sight. Offers solicit
Federal Street, Camden, N. J.
Inquiry No. $7 \boldsymbol{5}$. 81 . - Wanted. address of parties
who handle repairs for swiss music boxes. WANTED.-Ideas regarding patentable device for
water well paste or muciage bottle. Address Adhesinquiry No. Y. 58 s. - For manufacturers of practi-
cal rotary or turbine gas engines. For SALE.-Paying up-to-date metal working plant
Best location; good building. $\$ 75,000$, or will sell large interest to right man. Chance, Box 773, New York. Inguiry
ting paper.
I have for sale the U. S. and all foreign rights of new Great economizer. J. M. Colman, Everett, Wash.
Inquiry No. 7584.-For manufacturers of lenses
such as are used in miniature cameras. WANTEX.-A Young Man familiar with drafting to
assist superintendent in an iron casting plant. Good assist superintendent in an iron casting plant. Good
opportunity for advancement if capable. Draftsman,
Box 773, New York. Box 1 Inguiny No. V.
making machinery.
mat. For manufacturers of chainManufacturers of patent articles, dies, metal
stamping. screw machine rork, hardware specialties, machinery tools and wood fibre products. Quadriga
 Absolute privacy for inventors and experimenting.
A well-equipped private laboratory can be rented on moderate terms from the Electrical Testing Labor
atories, 548 East 80th St., New York. Write to-day.

Manufacturers of all kinds sheet metal goods. Vend amusement machines, made of of pressed steel. Send
amples. N.Y. Die and Model Works, 508 Pearl St., N.Y Inquipy
ventilators. No. 9588 . - For makers of rubber pillow WANTED.-A man of experience; capable of running
factory that is manufacturing heavy machinery. Should have $\$ 25,000$ to invest in the business which can be shown to be proftable. We don't want the money without the man. The experienced man is the first
essential. Address Heavy Machinery, Box 117. Station A. Hartford, Conn.
Inquiry No. \%589.-For makers of typewriter
parts. such as machine parts.

 nquiries not answered in reasonable time shonld be
ropaeated sorresponentens will bean in mind that
some answers
 $\underset{\substack{\text { hite } \\ \text { his tur } \\ \text { uners wis }}}{\text { tise }}$
 he same. pecial Written Information on matters of personal
rather than general ionerest cannot be expected
without remuneration
 Books rieferred to promptly supplied on receipt of
Mineraile sent for examination should be distinctly
marked or labeled.
(9849) W. C. N. asks: 1. What is quarry water (or sap)? What effect has it on
stone, and how it it gotten rid of? A. We
would say that quatry water or sap is the

water or moisture which is absorbed in stone ow the level of the ground water in the territory surrounding the quarry. Many kinds of stone are sufficiently porous to absorb a con-
siderable quantity of water in this way. Quarry water may be got rid of by allowing the stone to season or dry out by exposure to the
atmosphere. 2. Also define these terms used in, construction: ". "Needles," "chases," "staggered." ised to support or jack up a wall temporarily when the underpinning is taken out. "Chases",
are cavities or recesses left in walls to receive are cavities or recesses left in walls to receive
pipes or wires. The term "staggered" is used to describe methods of spacing different articles, such as the rivets in a riveted joint of a poiler. When each rivet in one row comes op-
posace between the rivets in the adjoining row, the rivets are said to be "stagwhich are not staggered. Fig. 1 shows thre rows of rivets which are staggered.
(9850) L. L. says: Some years ago the Scientific American gave a very simple a river without any other instrument than a measuring tape. A. Select a tree or other con-
spicuous object on the farther bank of the

river, as A. Select another tree or stake on
the near bank of the river, as B. Measure off any convenient distance-say one or two hun
dred feet-from B to the point C, which shal be in the line $A B$. Select a third tree or stake, as D, and complete on the ground the parallel-
ogram $B C E D$. Then find the point F on th ground which is in line with $E C$ and also in line with $D A$, and measure the distance from
E to F. Then $A B$ will equal $B D$ multiplied by E to F. Then $A B$
$B C$ divided by $E F$.
(9851) D. L. asks: 1. Kindly explain through your magazine how, by experimenting
with a pendulum, it has been calculated that the gravity force of the earth is 289 times as
great as the centrifugal force at the equator. A. The force of gravity at any place is determined from the time required by a pendulum of known length at that place to make one oscilla equator is determined from the length of the day, or the velocity of rotation of the earth at
the equator. This gives the value of centrithe equator. This gives the value of centri-
fugal force as 0.1112 of the mass of a body a fugal force as 0.1112 of the mass of a body at
the equator, which makes the body lighter by this amount. The force of gravity at the equa fugal force, the weight of a body would be the sum of these two, or 32.2014 , which is the real mass of the matter of the body. Hence centri-
fugal force lightens a body $0.112 / 32.2014$, which equals $1 / 289$ very nearly. You can find all these matters demonstrated in the library of the university of your city. The librarians will assist you to find what you need, or the
professor of mechanics or astronomy will advise you Watson's "Theoretical Astronomy" will
contain it. 2. From an infinite or very distance, in an astronomical sense, ©ur earth
will attract a body with an ultimate velocity of 7 miles a second at the moment it would
strike the earth. How can I find the corresponding velocity with reference to the sun and
the moon? A. You will find the solution of the problem of fall from infinity in Watson as above, or in Young's "General Astronomy," Sec-
tion 429. We can send you the book for $\$ 3.25$. tion 429. We can send you the book for $\$ 3.25$. and through its center (or 8,000 miles long) then letting a body fall into it, what would be the maximum velocity, and at what point in
the tunnel would that velocity be attained? A. A body falling through the earth as you A. A body falling through the earth as you
describe will have its highest velocity at the
center of the earth. The finding of the velocity is a problem earth. The finding of the velocity we refer you. 4. If a bullet sent out from a rifle and in a perpendicular direction will reach a height of one mile, how far would it go at
an angle of 30 degrees with the horizontal an angle of 30 degrees with the horizontal
plane? A. If a bullet will rise a mile in a plane? A. If a bullet will rise a mile in a
vertical direction, it will rise to the same disvance when rising at an angle of 30 degrees to the horizon. 5 . What would be the weight of cubic foot of water at a depth of 8 miles?
The compressibility of sea water is 44 milliont per atmosphere at 12 deg . C.; that of pur
water at the same temperature is 47 millionths, while at the freezing point it is 50.3 millionths
The temperature would vary considerably as we descend in water. Upon this datum you can
calculate the density at a calculate the density at a depth of 8 miles.
We must say that your questions remind us of We must say that your questions remind us of liked to take examinations.
(9852) F. L. J. asks: 1. In your issue of August 5, 1905, Query 9722, there is spool. I have tried this carefully several times, but without success. Kindly give me more complete directions. A. Your failure with the spool and cent experiment is perhaps due to the spool when you begin to blow. The pins should be driven into the spool so that the cent is less than a sixteenth of an inch from the spool. When you blow, the cent will then be pushed up against the spool and held there cally down. A disk cut from a calling card and as large as the end of the spool or larger will be drawn up from a greater distance below the spool. 2. How can I make a small transformer for transforming 110 -volt alternating current to direct current of about the same voltage? A. A transformer of the ordinary sort will not change an alternating to a direct purpose, if you wish to obtain any considerable current. For small currents you may use an electrolytic rectifier. 3. Why are permanent tro-magnets are made of soft iron? A. If an electro-magnet is always to be magnetized in
the same way, and it is not necessary to demag the same way, and it is not necessary to demag-
netize it suddenly, the core is not made of iron but of stcel. Many dynamos and motors have the field cores of steel. When an electro-mag-
net is to be demagnetized suddenly, as when the armature is to vibrate like that of when graph sounder, the core should be of soft iron in order to demagnetize it suddenly, and make
the click quick and sharp. 4. Why are elec-tro-magnets always wound with a great deal of fine wire? A. Electro-magnets are not always
wound with many turns. They are wound with the calculated number of turns to produce the 5 . Would they not give as good results if ided the number of ampere turns was the proin each case? A. Electro-magnets are not
wound with any coarser wire than can be avoided, in order to keep the current as low
as possible for the work to be done. The heatas possible for the work to be done. The heat-
ing is in proportion to the square of the current, hence with twice the current there will larger number of turns of finer wire reason a than a smaller number of turns of coarse wire 6. Can the speed of an induction motor be owered with a resistance in series with it? A. The speed of an induction motor may be altered in a number of ways. One of these is by a controller similar to that of a trolley car in
the motor circuit. These methods of control are quite fully explained in Oudin's "Polyphase Apparatus and Systems," which we can send
you for $\$ 3.00$.
(9853) J. C. H. writes: I saw an article No. 9806, page 306, dated October 14,
1905, in which R. L. I. asks a question about potential energy, and your editor says about not know the definite answer. The following solution is the most plausible when the coiled spring is placed in the tube and acid put on, a certain portion is dissolved, say the millionth part of a cubic centimeter. This ives a millionth part of a cubic centimeter n which the remainder of the spring can uncoil and exert its energy. In this way the issolved portion is always giving room for more expansion. The questioner asks whether in heat in the coiled spring is greater than
an uncoiled one. This difference is small and would amount to such an infinitely small amount, that it could be left out of question. A. If the explanation of the case of the coiled spring dissolved in acid as given bove satisfies our correspondents, we are quite satisfied that they should adopt it. It is a
case for quoting Mr. Lincoln's famous certifiase for quoting Mr. Lincoln's famous certifi-
cate of recommendation of something which
of a thing a man would like, this is just the thing he would like." We should not expect
the spring to behave that way. We should expect it to grow weaker as it became thinner during its solution till at last it would have no elas ticity left with which to uncoil. Its reaction against the band which held it would diminish till nothing of the steel was left.
(9854) W. B. S. says: In the edition of your paper of July 15, 1905, question No.
9693, F. L. asks whether a bullet dropped $9693, \mathrm{~F}$. L. asks whether a bullet dropped
from the muzzle of a rifie would reach the ground quicker than one fired from the rifie at the same elevation with the rine held per thereto but to my mind it does not explain all the factors entering into the problem. For in stance, the bullet fired from the rifie is acted upon by two forces, i. e., the propelling force of the powder which forces the bullet in a
direction diagonal to the pull of gravity, and direction diagonal to the pull of gravity, and
the pull of gravity ; whereas the bullet dropped the pull of gravity; whereas the bullet dropped
from the muzzle of the rifie is acted upon by the one force only, i. e., the pull of gravity It thus seems to me self-evident that when the bullet is fired from the rifie there is a force behind it which in a degree counteracts the pull of gravity, that is, this horizontal force would tend to keep the bullet in the air longer than would be the case without this force. direction would consume the in a horizonta sary to con consume the extra time neces the bullet dropping from the muzzle would have only the perpendicular direction to the earth. Why would it not then require less time for the bullet to travel the perpendicular than the oblique distance? Would the speed of the bullet fired from the rifie or the resistance of the atmosphere enter into the problem a rifie ball h. The problem of the motion of a rifie ball shot horizontally and another dropped vertically is a very old one, and there is
no disagreement among scientific men regarding it. All the books say the same about it, that both balls keep in the same horizontal plane as they move. The force of the powder drives the bullet horizontally and has no infiuence upon its downward motion. It falls by gravity alone, just as the one dropped vertically does. As you say, there are two motions in the bullet dropped This statement makes one which is ter plain. The writer has performed the experiment probably thousands of times, and never with any deviation in the result. Both balls strike the ground at the same time. Neither the difference in the speed of the two bullets nor the resistance of the air is con cerned in the motion of the bullets. Gravity
draws each down the same distance in the draws each
same time.
(9855) O. F. N. writes: Question No. 9806 , asked by R. L. I., about the energy of a coiled spring, seems to me to be of great importance. The energy must be somewhere, That is my opinion. I have formed theories about that which 1 hesitate to advance, as am inclined to believe that would not against your own judgment that nobody knows it. A. We are not looking for theories as to the energy of the coiled spring dissolved in acid, but for facts. Has anyone measured the recovery of the energy during solution, to tell as what becomes of it? One speculation is oo better than another if given by a person
who has not experimenetal evidence to offer in support of his inference. It is not a question of our own judgment, but one of experimental evidence. Anyone having experimental evidence on the matter can have a hearing.
(9856) G. B. asks: In projecting a lantern slide upon a screen with a single when viewed close to the screen, within a foot or two, give the colors of the rainbow. If, however, the observer goes back ten or twenty feet more from the screen all this color effect im-
mediately disappears. Will you please explain why this color effect is not equally visible at this distance. I understand, of course, if a color effect. What I do not understand is why, rhen you see it so plainly at a foot a way, although all the other parts of the picture are equally visible at either distance. A. The lines of a picture are visible to the eye when a line subtends an angle at the eye of about a minute without This is the limiting angle of vision one foot from the screen on which is a picture with lines projected by an ordinary convex ens, the lines fill more than this angle. So
also do the interference fringes on the edges of the lines. At 20 feet distance from the quired a space twenty times as broad is re-
qull the same angle as was filled by a line at one foot distance from the screen. All which is in the wider space is combined same size as was occupied by the line at 1 foot. The color fringes then are combined into If one uses an opera glass at 20 feet the as at the 20 feet divided by the magnifying power of the glass. If a glass magnified five een at the lines and fringes appear as when of the colors by the opera glass constitutes
rather a pretty optical experiment.

