RECENTLY PATENTED INVENTIONS.

 Electrical Devices. COMMON-BATTERY LOCK-OUT TELE-PHONE.-M. P. Boone, Peru, Ind. This in-vention consists in the novel construction and arrangement of the electromechanical parts and their coöperating circuits, in which when
the line is clear and no party is talking lock-out electromagnet at a subscriber's sta tion connected between the earth and a wire
leading through an impedance-coil to one side of the battery will be inoperative; but if a circuit be established between the two lines
(through a telephone bridged on the line, for (through a telephone bridged on the line, for instance) then all the subscribers' lock-out
electromagnets connected as described become operative to lock-out.
ELECTRICAL BINDING-SCREW OR TER-MINALL-M. BoUCHET, 22 Rue Alphonse de to an electrical binding-screw or terminal designed to facilitate the insertion of the con-
ductor, and to completely protect its stripped ductor, and to completely protect its stripped
end, to insure a perfect electrical contact, and end, to insure a perfect electrical contact, and
to resist any stress to which the conductor may be accidentally subjected, the device if made principally of insulating material being capable of insuring a connection completely
insulated from its surroundings whatever may be the diameter of the conductor clamped be the
therein.

Of Interest to Farmers.

PLOW.-J. Beard, Westport, Cal. In the present patent the invention refers to plows,
and more particularly to the shape given to the same in order to enable it to cut a comparatively wide furrow with small draft upon
the horse and without liability to foul when used in sticky soil. Upon actual trial Mr. Beard
has found that the plow cuts as claimed above has found that the plow cuts as claimed above
and without additional fatigue upon the part and without additional fatigue upon the part
of the horse or other animal drafting the plow.

Of General Interest.

METALLIC Window.-S. U. Barr, New York, N. Y. In the present patent the object
of the inventor is the provision of a new and improved metallic window which is simple and
in compact in construction, completely air-tight and dust-proof, and arranged to permit
venient opening and closing of the sash. SHOE-LACE FASTENER.-C. Delano, Va paraiso, Chile. In the present patent the invention relates to boots and shoes and its ob-
ject is the provision of a new and improved shoe-lace fastener arranged to securely hold the ends of the shoe-lace or tie-string in position
without requiring the tying of knots. fend
Fence.-J. C. Chiber, Texas, Wis. The
fence comprises the combination, with a basefence comprises the combination, with a base-
piece having a series of holes in its side, and piece having a series of holes in its side, and ing in opposite directions from the post and
lapped upon the same, an eyebolt passing through the panels and the post and serving to secure them together, and a brace pivotally
connected with the eyebolt and having its free end bent laterally at a right angle, whereby it is adapted to engage the holes in the base-
piece.
copy-holder.-Iөne Hartley, Nashville, Tenn. The invention in the present patent
relates to devices for holding copy, and has relates to devices for holding copy, and
for its principal objects the provision of a holder which will efficiently support copy in
various forms and which may be readily adjusted to permit this or to meet the particula requirements of the user.
HOSE-SUPPORTER.--E. S. NORMAN, Plain-
field, N. J. The aim of the inventor is to profield, N. J. The aim of the inventor is to pro-
vide a supporter made entirely out of metal and in two pieces only, the construction being such that it is light, durable, and economic and will automatically fit to any leg without alteration or adjustment, and also to provide
a device which will be cool when worn, and a device which will be cool when worn, and
which will in no manner interfere with the circulation of the blood.
ORE-ROASTING KILN.-J. MCNAB, Catonsville, Md. In the present instance the inven
tion is an improvement in ore-roasting kilns, tion is an improvement in ore-roasting kilns, extracting sulfur from pyrites in the manuextracting sulfur from pyrites in the manu-
facture of sulfuric acid. The slabs forming the arches of the fire-places may be made of fire-clay, soapstone, or similar material.
HARMONICA OR MOUTH-ORGAN.-H. H. Neilson, Perth, Ontario, Canada. The inven-
tion refers more especially to harmonicas or mouth-organs of that type in which a lengi-tudinally-slidable mouthpiece is employed upon the instrument for the purpose of facilitating
the playing as well as preventing soreness of the playing as well as preventing soreness of the lips with portions of the instrument in the act of playing thereon. This class has many
disadvantages and objections, such as, too much friction between instrument and mouth-
piece, unpleasant tingling of the lips in playpiece, unpleasant tingling of the lips in playMr. Neilson's invention overcomes.

Hardware.

NUT-HOLDING WRENCiI---A. Schurr, Jr. Lloyd, Mont. An object of this inventor's improvement is to provide novel means for un-
screwing the nut from an axle-spindle, so that the vehicle-wheel thereon may be removed for a lubrication of the axle-spindle, and also for spindle without directly handling the nut, thus
avoiding soiling of the hands with the lubri-

Household Utilities.

BEDSTEAD.-C. H. G̃asau, New York, N
. This invention hos reference to improvements in bedsteads, an object being to provide
a bedstead of novel construction that may be readily adjusted as to length, that may be quickly changed to form a crib, and that may be compactly folded for storage or transpor
tation.

Machines and Mechanical Devices.

 Machines and Mechanical Devices.APPARATUS FOR CUTTING PLASTIC Material.-W. Niebur, Jr., New York, N Y. This device cuts plastic material into blocks or' cakes. It is especially intended for
cutting small cakes of butter from a large mass, and by means of the improvement cakes of any size may be rapidly cut without handling the cakes in any way. This is a decided
avantage over the devices heretofore commonly employed for the purpose, since when the small cakes are formed handling of the cakes may tend seriously to misshape the cakes
of butter. The present is a continuation of of butter. The present is a continuation of
this inventor's copending application formerly this
filed.

TraNisom-Lifter.-J. W. Neff, Morgan town, W. Va. The object had in view by Mr. Neff is the provision of means and devices
adapted for working or lifting transoms which may not only be cheaply manufactured, but may not only be cheaply manufactured, basy
simple in construction and effective for eas
working of pivoted or swinging transoms and windows in general having similar modes of attachment to their support.

Prime Movers and Their Accessories.

WAVE-MOTOR.-F. S. Keyes, Warre Mass. In this patent the invention relates to apparatus for utilizing the energy of such
movements in large bodies of water as waves. movements in large bodies of water as waves.
Its principal objects are the provision of an Its principal objects are the provision of an
apparatus of this character in which the inapparatus of this character in which the in-
termittent movement will be transferred into termittent movement will be transferred into continuous force by integrating the energy
of successive waves and different parts of the ame wave.
STARTING-CRANK FOR EXPLOSIVE-EN-ines.-W. H. Schoonmaker, Montclair, N This crank is adapted especially for use in manually starting or "turning over" the same. Heretofore a common disadvantage and danger have existed in the backward turns of the engines, due to premature explosions during the starting operation, thus causing the crank or
starting device to be violently torn from the starting device to be violently torn from the him. The invention overcomes this by providing. The invention overcomes this by provid automatically releases its connection with the ne or so that the engine-shaft may perform crank with it.
STEAM-BOILER.-G. O. Sturtevant, Athol, Mass. Mr. Sturtevant's invention is an improvement in steam-boilers, and with his construction of boiler and support he is able to secure a maximum of heat, since all the radiation from the furnace-wall is utilized in boiler is also utilized to a considerable extent.

Railways and Their Accessories.

Railroad-track.-E. F. Seider, Upper Sandusky, Ohio. The inventor's object is to provide together with other improvements,
novel devices for securing the rail-fastening pikes in connection with a metal rail-support ing plate. He is able to fasten a rail to a metal tie or sleeper, the latter to be a substi-
tute for the wooden tie now generally employed. The tie prevents rails from spreading and rails may be laid more readily and uniformly, and require no gage in order to get proper width of track and keep it in line. Balast can be packed around the tie so it will not creep or slide. Tie is made of any length, made any lengths and fasteners applied to any part of top plate to secure the rails.
SPEED AND DISTANCE INDICATOR.E. Schultz, Berlin, Gerfany. This invention consists in alternately and at equal intervals of time coupling and uncoupling a pointer to and from a rotating shaft, speed of the shait being proportional to speed of traveling to be measured and the said pointer being adjusted under spring-pressure or by gravity or the like. ase they are preferably so operated that on ise they are preferably so operated that one
is coupled to the shaft at the moment at which is coupled to the shaft at the moment at which
another pointer is uncoupled from the latter. It may be used on railway-vehicles or other vehicles, also as a tachometer, or in cases tilinear or circular movements rising from and falling to zero again.

Pertaining to Recreation

toy.-O. Hammarlund, New York, N. The inventor provides a number of blocks hav
ing magnets therein. The blocks are prefer ably placed in a box, closable at will. In conunction with the box he employs a device,
detector-tube," which comprises a tubula ody with a freely-mounted magnetic needle therein. By placing the blocks in the box and
holding the detector over the same the needle
will be actuated by the variously-positione magnets in the box, and if the positions of the
needles which correspond to the needles which correspond to the particular
blocks has been memorized he can tell the locations of blocks within without removing the cover of the box.

Notes and Queries:

Pertaining to Vehicles.

DUMPING-WAGON.-C. Carroll, Chicago, Ill. In this case the invention is an improvement in dumping-wagons, and has for an ob-
ject, amg others, to provide a novel construction for supporting the screws and the traveling nuts for operating the lifting-rods connected with the body. The construction
avoids exerting the weight of the load upon the screws in such manner as to bend the same do
fectual.
wheel-P. J. Caesar and E. Schell, St. Paul, Minn. The object in this instance is to construct a resilient wheel which will wholly or partly avoid the necessity of springs on the
vehicle with which the wheel is used. Thi end is attained by a certain peculiar connec-
tion between the spokes and rim of the wheel which involves a spoking or cushion and which results in
and rim.
Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each the invention, and date of this paper.

Business and Personal <UJants

Marine Iron Works. Chicazo. Catalogue free.

Inquiry No. 7243.-For manufacturers of spring
For mining engines. J. S. Mundy, Newark, N. J.
Inquiry No. 7244.-Wanted, the names of a few
exporters of rosin.
o. 9245 . - For makers of key ring ta
and dies for markiug the same.
Inqniry No. 7246. - For manufacturers of paten
ed, mailable household articles.
k, N.J.
Inquiry No. 7247.-For manufacturers of liquid
Perforated
Co., Chicago.
Inqniry No. Y248. - Wanted, the addresses of ma-
nufacturers of window sash locks.
Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell st
In Inity yo.
Adding, multiplying and dividin
gas miniry No.
Sawmill ma
Box 13, Montpelier, \mathbf{V} t.
Inquiry No. \%25.
machinery makers.
I sell patents. To buy, or having one to sell, write
Chas. A. Scott, 719 Mutual Life Building, Buffalo, N. Y.
Inquiry No. 7252.-For manufacturers of paper
bag machinery.
WANTED.-Patented specialties of merit, to manu-
factureand market. Power Specialty Co., Detroit, Mich, Inquiry No. Y253.--For manufacturers of furni-
ture, also of goods which can be sold by mail. The celebrated "Hornsby-Akroyd" Patent Safety Oi
Engine is built by the De La Vergne Machine Company
 Gut strings for
Gut strings for Lawn Tennis, Musical Instruments, and Packers A venue, Chicago, Ill.
and Packers
fill canniry.
Manufacturers of patent articles, dies, metal stamping, screw machine work, hardware specialties, wood fber machinery and tools. Quadriga M
Company, 18 South Canal Street, Chicago.
Inquiry No, V256. - Wanted, the name and ad-
dress of the makers of the steel termed "Invar."
Absolute privacy for inventors and experimenting.
A well-equipped private laboratory can be rented on A well-equipped private laboratory can be rented on
moderate terms from the Electrical Testing LaborInquiry No. ${ }^{2} 257$ - For makers of a collapsible
box or barrel to be used for crockery in large packages. Wanted.-The patents or sole agency for Britain
and France, of new machines and articles used in the Brewing and Allied Trades. Highest references give and required. State best terms with full particulars to
"Wideawake," care of Street's Agency, 30 Cornhill,

Inquiry No. 7258.-For manufacturers of heavy
felt, such as felt shoe soles are made of.
Inquiry No. 7959.-For manufacturers of large
springs, such as are used for large music boxes, clocks,
 Ho ituixe mice Inquiry No. Y961. - For dealers in the Feheards
ley Axple Cutter, or the Beardsley Axle and Threaut
Cutter. Inquiry No. 72632.-For a machine for making
round toothyicks.
 Inquiry No. 7264
bons and yondants.

HINTS To CORRLSPONDENTS.
Names and Address must accompany all letters or
no attention will be paid thereto. This is for
our information and not for publication.
 his turn.
Buyers wishing to purchase any article not adver.
tised in our columne will be furnished with
addresses of bouses manufacturing or carrying the same.
special Written Information on matters of personal
rather than general interest cannot be expected
without remeneration. Scientiffc American Supplements referred to may be
had at the office. Price 10 cents each.
Books referred to promptly supplied on receipt of
price. price.
$\begin{aligned} & \text { Minerals } \\ & \text { marked or for examination should be distinctly }\end{aligned}$
sabed.
(9763) W. A. W. asks: Will you lease inform me what number of watts will be consumed per hour by one T. H. constantcurrent series open arc on 50 volts and 9.6
amperes? A. A lamp consuming 9.6 amperes at 50 volts will in one hour consume 480 watthours (9.6×50) A watt-hour is one watt exerted for one hour. Your lamp uses 480
watts all the time it is lighted. Meters genwatts all the time it is lighted. Meters generally register watt-hours; 480 watts for one
hour are 480 watt-hours. The question as you put it cannot be answered. Watts alone do
not imply time. The time must be specified. not imply time. The time must be specified.
Your lamp consumes 480 watts for any time it s lighted. In one hour it therefore consumes
880 watt-hours of electrical power. See Swoope's "Practical Electricity," page 218, (9764) A. A. B. asks: I wish to ask through your paper if it is not possible for he manufacturers of incandescent light bulbs the little. sharp point on the rounded end $?$ A. oint upon the large end. They may be had from dealers in electric supplies.
(9765) C. L. H. asks: Can you tell me if any one makes an electric arc that could diagram sent. I wish to use it to melt small
amounts of platinum. A. It is not difficult to arrange an electric arc blowpipe for melting metals, or soldering, in the manner your sketch shows. We should use the current which
passes through the carbons for the magnet. passes through the carbons for the magnet.
Put the magnet of a few turns of wire in eries with the carbons. Adjust the number
f turns of wire and the distance of the magnet rom the arc to produce the blowing power required. The apparatus is so simple that no special instruction is required for setting it up or operating it
(9766) J. W. M. says: Would be glad to have you publish a decision of the following dispute: One party claims that a piece of iron, stone, or a piece of wood water-soaked until heavy enough to sink below the surface, would sink to the bottom of the ocean, no mat-
ter what the depth is at the point the object is ter what the depth is at the point the object is
placed in the water. The other party claims hat they would remain suspended in the water at varying depths from the surface depending n their specific gravity, the iron even not
reaching the bottom in the deeper parts of the reaching the bottom in the deeper parts of the
ocean. A. A body which will sink at all in water will sink to the bottom. Sea water is
compressed but 44 millionths by one atmoscompressed but 44 millionths by one atmosphere, and at higher pressures it is compressed less. Metals are more compressible
than water. Hence it is seen that a piece of than water. Hence it is seen that a piece of
metal will have its density increased more as t sinks than the sea water will, and it will
(9767) C. H. B. asks: Will you please tell me whether or not the angle formed by the sun's rays with the earth's surface at directly above the equator, is forty-five degrees? ask this question to settle a difference is vertically over the equator its rays make an angle of 45 deg. at noon with a horizontal lane; but not at any other hour of the day.
(9768) J. E. B. asks: Please answer the following questions. They are of great
mportance to your reader. 1. Is force an in importance to your reader. 1. Is force an in-
herent property of matter? 2. Is life a force, differing from gravitation or chemical affinity only in degree? Or is it an entity, separate nd form identical? If not, what is the difference? 4. Is the brain the reasoning organ or the organ of that which reasons? 5. Is it the quantity or the quality of brain, or both
quality and quantity of brain combined, that are responsible for the degree of reasoning
power possessed by the individual? 6. Can animals be hypnotized: If not, why not? A. The questions which you submit are truly of classed as scientific questions in a physical sense. They' are rather metaphysical or philo-
ophica:, and oness answers would be very owerfully influenced by his general views upon philosophy. We should hesitate to project a since when one has given his answer, his an.
such a way that. they may be tightened by
means of screwing up a bolt from the pulley.
means of screwing up a bolt from the pulley
One of the arms is extended a considerable dis
tance, so as to allow its farther end to rest
 is generally held that force is not inherent in
matter, since the same amount of matter can have different quantities of force at different times. For example, water in the forms of
ice and steam possesses very different amounts lute zero matter has no heat energy. It is life, that it is similar to ordinary forces, bu that the brain is the organ of a being wh for which he is held responsible both in law and morals. This view seems to us to be funda-
mental to the existence of the state and nation as well as to morality. So too we should say quantity, although very small brains are usually indicative of low intelligence. No balance pletely, any more than a scalpel can separate
or dissect life from the living being, and say "I have found it." We believe that animals
can be hypnotized.
(9769) J. W., writes: I always like to read the Scientific American, but I must the Congo, of August 5. I cannot see how
you can use such apodeictic statements regar
ing the long-exploded ing the long-exploded theories of evolution. American. Again, we have had now ad nause am about reasoning cats. Animals (brutes) cannot reason, simply because they have no
rational soul. The brain can think no more of itself than an ax can chop of itself-both are but instruments in the hands of an indi gret your criticisms of certain expressions in a recent article regarding pigmies, and also of
the letters from correspondents showing re
markable instances of intelligence in animals markable instances of intelligence in animals.
The printing of a letter from a correspondent does not in any way commit the paper to an
indorsement of the views contained in the leterty of the correspondents, and very frequently personally most emphatically dissent. It seems to be the inalienable right of Americans to an are uite willing to grant some space to such
free expression. We feel sure that good comes of it. However, with reference to the remark
able instances cited, we simply ask why deny to a uadruped a mode of action whic cumstances. If a young child jumps up an out any instruction, we should call it remark not far to seek. The cat goes no further; the child does. Animal reason is narrow in range the child's, for that matter. But the human
limitations are far beyond those of the animal, We believe that our view is shared by many scholars. As to the hypothesis of evolu
tion, while we do not elect ourselves defender of it or of any other special mode of the pro we must say that our acquaintance with the colleges and the professors of biology in them them the right to an opinion about it than i biology who is not an evolutionist. Doubtless the pendulum of thought in this direction is
not yet at rest, and will swing to and fro so ong as mind remains active, but it seems cer hold upon scholars that they had previous to the publication of the "Origin of Species" by Mr. Darwin. We are not biologists, but think we rightly represent the state of presen (9770) J. B. A. says: In "Notes and ueries" No. 9544 asks for rule for calculat ing power of gas engines, and the answer gives
the rule which answers a question that I would have asked sooner or later, but I wish to go a
little farther and ask: How do you procee in making the "actual brake test" for horse power in gas engines? I bought an engine rated at $21 / 2$ horse-power, and they wrote me
after shipping, that the engine developed near y 4 horse-power actual brake test. A. In der to make a brake test of an engine, it engine a Prony brake, which acts on the prin ciple of the one shown in the drawing. Two

the arm exerts on the platform scale is
weighed, and the number of revolutions whiclthe engine makes per minute is counted. Dur
ing the test it is often necessary to have somemeans of applying water to the pulley to pre
vent its becoming too hot. The horse-power is

$$
\begin{aligned}
& \text { pounds times the length of the arm measure } \\
& \text { from the center of the pulley to the knife edg }
\end{aligned}
$$

$$
\begin{aligned}
& \text { from the center of the pulle } \\
& \text { in feet, times the number } \\
& \text { minute, divided by } 33,000
\end{aligned}
$$

$$
\begin{aligned}
& \text { Oil of mirbane sufficient to perfume. } \\
& \text { Pulverize and mix, zo proportioning the palm } \\
& \text { cil }
\end{aligned}
$$

$$
\begin{aligned}
& \text { oil and vaseline that you have a liquid suffi- } \\
& \text { ciently "thick" to hold the powders in suspen- } \\
& \text { sion. We would remind vou that the nrenara- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ciently "thick" to hold the powders in suspen- } \\
& \text { sion. We would remind you that the prepara- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { tion of polishes, simple as it seems, is an art, } \\
& \text { and, like every other, requires a certain amount } \\
& \text { of nractical exnerience as well as a knowledge }
\end{aligned}
$$

$$
\begin{aligned}
& \text { of practical experience, as well as a knowledge } \\
& \text { of the materials entering into the composition }
\end{aligned}
$$

$$
\begin{aligned}
& \text { of the materials entering into the composition } \\
& \text { of the polishing mixture used, and of their pre- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { of the polishing mixture used, and of their pr } \\
& \text { paration for use. To attain a high and ur } \\
& \text { form grade of polish, the materials must be }
\end{aligned}
$$

$$
\begin{aligned}
& \text { form grade of polish, the materials must b } \\
& \text { duced to a very fine and uniform powder. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { duced to a very fine and uniform powder. } \\
& \text { single grain of the material larger or shar }
\end{aligned}
$$

$$
\begin{aligned}
& \text { single grain of the material larger or sharper } \\
& \text { than the rest will produce scratches that in- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { terfere with the finish given the metal. } \\
& \text { make sure of your jewelers' rouge being fr }
\end{aligned}
$$

$$
\begin{aligned}
& \text { make sure or your Jewelers rouge belng ire } \\
& \text { from dust and grit, prepare it fresh, as follows } \\
& \text { Nake }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Make a solution of iron sulphate (copperas } \\
& \text { and another of oxalic acid. Add the latter }
\end{aligned}
$$

$$
\begin{aligned}
& \text { the former, as long as it throws down a pre } \\
& \text { cipitate. Filter off the liquid, and wash th }
\end{aligned}
$$

$$
\begin{aligned}
& \text { residue on the filter with repeated charges of } \\
& \text { water, and dry. When dry, place in a suit }
\end{aligned}
$$

$$
\begin{aligned}
& \text { able container, and heat gently. It soon ig } \\
& \text { nites and burns until only an impalpable pow. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { nites and burns until only an impalpable pow- } \\
& \text { ider is left. This is the polishing material. } \\
& \text { The infusorigl orth }
\end{aligned}
$$

$$
\begin{aligned}
& \text { The infusorial earth must be freed from sand, } \\
& \text { grit, etc., and reduced by grinding to a con- } \\
& \text { dition similar to that of the iron noroxide }
\end{aligned}
$$

$$
\begin{aligned}
& \text { dition similar to that of the iron peroxide. } \\
& \text { The rotten stone and acid must alse be pow- } \\
& \text { dered. If care and attention be given to these }
\end{aligned}
$$

$$
\begin{aligned}
& \text { dered. If care and attention be given to these } \\
& \text { details, you can scarcely fail to get good re- }
\end{aligned}
$$

(9772) L. L. L. asks: Why do all dummy advertising clocks in front of jewelry time on the dummy watches used by jewelers is the exact
assassinated.
(9773) F. B. W. asks: Can you ex-
\qquad

$$
\begin{aligned}
& \text { rora Borealis. The most we can do is to state } \\
& \text { the view held by the best scholars concerning }
\end{aligned}
$$

$$
\begin{aligned}
& \text { it. To begin with, highly heated metals. or } \\
& \text { carbon send out numerous minute particles }
\end{aligned}
$$

$$
\begin{aligned}
& \text { with high velocities. These particles are called } \\
& \text { corpuscles, or electrons. They are known to }
\end{aligned}
$$

$$
\begin{aligned}
& \text { corpuscles, or electrons. They are known } \\
& \text { carry charges of negative electricity, and } \\
& \text { It }
\end{aligned}
$$

$$
\begin{aligned}
& \text { move with a very high velocity. It is reason- } \\
& \text { able to regard the sun and other stars at their }
\end{aligned}
$$

$$
\begin{aligned}
& \text { enormous temperatures as sources of such par- } \\
& \text { ticles, which move in mighty streams through }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ticles, which move in mighty streams through } \\
& \text { the celestial spaces. When such particles } \\
& \text { the } \\
& \text { strike a rarefied gas they render it luminous, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { the celestial spaces. When suct partices } \\
& \text { strike a rarefied gas they render it luminous, } \\
& \text { as is seen in vacuum tubes. Such luminosity }
\end{aligned}
$$

$$
\begin{aligned}
& \text { as is seen in vacuum dubes. Such luminosity } \\
& \text { is associated with the discharge from the nega- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { tive electrode of these tubes and has a name, } \\
& \text {-"cathode rays." In the upper air these } \\
& \text { corauscles from the sun may well be consid- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { corpuscles from the sun may well be consid- } \\
& \text { ered to produce luminous effects, such as the } \\
& \text { auroral light. Arrhenius first suggested this }
\end{aligned}
$$

$$
\begin{aligned}
& \text { auroral light. Arrhenius first suggested th } \\
& \text { theory of the aurora, but it is now quite ge } \\
& \text { prally adonted. Duncan's "NN Knowled }
\end{aligned}
$$

$$
\begin{aligned}
& \text { erally adopted. Duncan's "New Knowledge," } \\
& \text { price \$2, page 238, gives it in some detail. It } \\
& \text { is also to be found in Thomson's "Conduction }
\end{aligned}
$$

$$
\begin{aligned}
& \text { is also to be found in Thomsons } \\
& \text { of Electricity through Gases," price } \$ 4 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { of Electricity through ases, price } \$ 4 \text {. } \\
& \text { (} 9774 \text {) J. W. says: As a subscriber } \\
& \text { of your paper for a number of years, I take }
\end{aligned}
$$

$$
\begin{aligned}
& \text { of your paper for a number of years, I take } \\
& \text { the liberty of asking a few questions in regard }
\end{aligned}
$$

$$
\begin{aligned}
& \text { the liberty of asking a few questions in regard } \\
& \text { to the Corliss engine. First, what power would } \\
& \text { be developed with a } 24 \times 36 \text { cylinder with } 90
\end{aligned}
$$

$$
\begin{aligned}
& \text { be developed with a } 24 \times 36 \text { cylinder with } 90 \\
& \text { pounds steam pressure, speed } 90 \text { revolutions } \\
& \text { nor minuto? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { per minute? Also, } 100 \text { revolutions per minute; } \\
& 115 \text { revolutions per minute; } 125 \text { revolutions per }
\end{aligned}
$$

minute? Same size cylinder and steam pressure

$$
\begin{aligned}
& \text { to govern in each case. It has also been stated } \\
& \text { by one of our leading manufacturers in thas }
\end{aligned}
$$

$$
\begin{aligned}
& \text { by one of our leading manufacturers in this } \\
& \text { city that the above engine equipped with an } \\
& \text { inertia shaft governor and double eccentric, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { inertia shaft governor and double eccentric, } \\
& \text { running at a given speed per minute with } 100
\end{aligned}
$$

$$
\begin{aligned}
& \text { running at a given } \\
& \text { pounds steam pressure would develop } 300 \text { horse- } \\
& \text { nower : while the same engine equipped with a }
\end{aligned}
$$

double eccentric and an ordinary flyball Corliss

Do You Use Chucks?
you. Sent
New
Nizes. New styles.
Liberal discounts.
ThE CUSHMAN CHUCK WORHS
 WOLVERINE IREVERTING AND Gasoline Marine Engines 3 to 18 horse power. . Launches
18 to 7 ft. Write for cataloutue.
wo Grand Rapids, Mich., wors.

PALMER MOTORS

\qquad

The WONDER DYNAMO-MOTOR

 ELECTRIC LAUNCH MOTOR - THE

power? A. The horse-power which an engine
of any given size will develop at a given boiler pressure and speed will depend entirely upon he friction of the stroke during which steam is beirg admitted to the cylinder. It is possible
to have the cut-off to have the cut-off sp early that the average
pressure in the cylinder during the stroke will be nearly zero. On the other hand, it is pos
sible to have the cut-off so late that the averwill be approximately equal to the boiler pressure. The maximum economy with the Corliss engine is attained when the cut-off is about 30 or
under maximum load should not be later than 40 per cent or 45 per cent of the stroke when
an economical engine is desired. With cutan economical engine is desired. With cut-
off at one-third of the stroke, the main effective pressure in the cylinder would be about
$4-10$ of the boiler pressure or, in the instance that you mention, 36 pounds, and the horsepower at 90 revolutions would be
$\frac{22 \times 24 \times 24 \times 36 \times 2 \times 36 \times 90}{7 \times 12 \times 2}=265$ horse-power. At other speeds, the power would be in proportion to the speed; thus: At 100 revolutions, horse-power equals 294; at $\mathbf{3 1 5}$ revolutions, horse-power equals 368 . At the steam pressure of 100 pounds, and the cut-off mentioned above, he horse-power would be 11 per cent greater estimated above, the mean effective pressure would be greater and the horse-power corre-
spondingly greater. It is, therefore, perfectly possible that the statement made to you by the manufacturer to whom you refer is entirely cor-
rect. The range of cut-off with an inertia shaft rect. The range of cut-off with an inertia shaft governor is not nearly as great as the range
which is possible with the ordinary flyball govrnor The latter typeeasily permit a cut-off sufficiently late to allow the engine above mentioned, at a boiler pres-
sure of 100 pounds and a speed of 100 revolutions per minute, to develop 500 horse-power.
With this late cut-off, however, the engine
(9775) E. E. asks: How is the focus of a concave lens determined? Is it the radius lease inform me as to both plano and double concave. A. All foci of concave lenses are
virtual. For a biconcave lens of glass, whose index of refraction is 1.5 , with the same radius of curvature on each face, the principal focal
length is equal to the radius of curvature. For plano-concave lens of the same glass, the radius of curvature. In these respects the concave and convex lenses agree, excepting that The formula for determining focal length of
oncave lenses is $-\bar{f}=-\bar{p}$

NEW BOOKS, ETC

 By Henry Wellington Wack, F.R.G.
S. New York and London: G. P. Putnam's Sons, 1905. 8vo.; 125 il
lustrations; pp. 643. Price, $\$ 3.50$.
The present voluminous, but extremely ineresting work is from the pen of an American

號

 the rapid progress toward complete civilizaworld, feels it to be his duty to lay before his countrymen the true and complete story of the conception, formation, and development of theCongo Free State. The motive prompting the writing of this book, which is of a character ach as to have entailed much laborious and cureful work, is to be found in the fact the an organized campaign against the Congo the Royal Geographical Society and a member of the New York bar, was in a position,
because of a residence of several years in the United Kingdom, to observe the development
of this movement. In the course of an inof this movement. In the course of an in-
terview with the King of the Belgians, the
\qquad ministration office, for the purpose of writ-
ing an impartial book that would place the ge an impartial book that would place the
public in possession of the true facts regarding the affairs of the Congo. The King gave
he author access to the offices of the Congo dministration, where many weeks were spent he work is an impartial one may be judged from the fact that it is written by an out-
sider to the controversy, and that neither the manuscript nor the proofs were submitted to or the Belgian government.

Our Stellar Universe. A Road-Book to

the Stars. By Thomas Edward Heath. London: King, Sell \& Olding, Ltd., 1905. Price, \$2.
The author of this book, while converting
for his own information the parallaxes of a for his own information the parallaxes of a
long list of stars from seconds of arc to lightyears, discovered. a very suitable scale for information obtainable as to stellar parallaxes
and magnitudes, he has Written thls small

