
Business and Personal Wants
 Marne Iron Works. Chicaze. Catalogue free. "C. s." Metal Poilish. Indianapotis. Samples free.

Inquiry, No. 7 men.-For manufacturers of milk
sturinzers. C., Chicago.

Adding, multiplying and dividing machine, all in one.
Felt \& Tarrant Mfg. Co., Chicago. Inquiry No. V2e4.-For manufacturers of cellu-
loes or corn pith, compressed. Sarmill machinery and outsts manufactured by the
Lane Mfg. Co.. Box 13 , Montpelier, vt .

WANTRD.-Patented specialties of merit, te manu-
faectureand market. Power ${ }^{\text {Specialty }}$ Co., Detroit, Mich,
 I sell patents. To buy them on anytbing, or having
one to sell write Chas. A. scott, 719 Mutual Life Buidd-
ing, Buffalo, N. Y . In quiry No. Fe2py- Wanted, address of manufac
turers of Clemons singie and doubie belt sanders. "he celebrated "Hornsby-Akroyd" Patent Sarety Oil
Ewine is built by the De La verge Machine Company
 paste eoard Soxes for medicinal tablets.
Gut strings for Lawn Tennis, Musical Instruments, and other purposes made by P.F. Turner, 4t th Street
and Packers Avenue, Chicago, IIl.
In inuiry
 Inguiry No. Mise. . For manufacturers of an ap.
paraus.
liquid. to Manufacturers of patent articles, dies, metal stamp.
Ing, screw machine work, hard ware specialties, wood

 Absolute privacy for inventors and experimenting. moderate terms from the Electical Tresting Labo
atories, 548 East Soth St., New York. Write to-day.
 Manufacturers of all kinds sheet metal goods. Vend-
ing, sum and chocolate, mitcteses, cizars and clyareites, amusement machines, made of pressed steel. Send
samples. N. Y. Die and Mudel Works, 508 Pearl 1 tt., N.Y.

 Tumiry No, 7235.-Fin manu facturers of glass

 Inquiry
stairways.
Inquiry
No. \%240.-For manufacturers of moving
Nor ennuiry No. gra42.-Wanted, address of parties
selling ruman gikeletens, or portions tuereor.

Nop Notes and Queries.

is reason in the cat? We see no reason why
we. should not do so. We have known several we. should not do so. We have known several
cats which could open doors in the manner you describe, and have seen dogs and other animals act in a reasonable manner, under cir-
cumstances in which some men would not have cumstances in
done any better.
(9757) C. E. T. asks: I should like to find out which leg is the longer, or if both legs of an ordinary person differ in length.
The reason I ask is this: While skating and moving in a circle with the right leg on the moving in a circle with the righ leg on the
outside of the circle, the balance is easily oboutside of the circle, the balance is easily ob-
taineal but on moving in the opposite direction
with the left leg on the outside balance is with the left leg on the outside, balance is
harder to obtain. As the ears differ from each other, the idea struck me that probably the legs
were affected in the same way. A. The two legs were affected in the same way. A. The two legs
of nearly every one differ in strength; thus people are right-legged or left-legged, just as
they are right-handed or left-handed. This is they are right-handed or left-handed. This is
taken as the explanation of the fact that not guided by eye sight. Persons lost in fornot guded by ceme around ot the place from
ests usually
which they started in their wanderings. There which they started in their wanderings. There
is no difference in the length of legs in a per son of normal condition. If there is any dif-
(9758) E. P. inquires: How many square feet of heating surface of a hot-water
radiator is reauired to heat a room measuring $161 / 2 \times 14$ feet with a 10 -foot ceiling? A. A
common rule for calculating the heating surcommon rule for calculating the heating sur-
face of a radiator is as follows: Add together The square feet of glass in the windows, the
number of cubic feet of air reauired to be number of cubic feet of air required to be
changed per minute and $1-20$ of the surface of the external wall and roof; then multiply quired temperature of the room and that of the external air in the coldest weather; and lastly
divide this product by the difference in tem. perature between the hot water in the radiator
and the required temperature of the room. The result equals the required radiating surface in square fieet. The cubic feet of space in radiating surface required, but is often conconditions, one square foot of radiating surface at 212 deg. will heat from 100 to 150 cubic feet in mices, and from 70 to 100 cubic feet in modern
siden dweslings exposed on all sides. From the above
information you can readily calculate the heatinformation you can readily
ing surface you will require.
. (9759) J. H. R. writes: Some lay men in our town have been discussing whether hot water would burst from a frozen water
pipe, while cold water would thaw it without any fracture. I take it that such a conclusion is based upon insufficient evidence and reasons, and hold that, if the pipe should begin to leak
upon the application of hot water, the crack had been previously formed. Kindly give me pardon a few words stating my position. Suppose we start with a pipe filled with water at perature lowers, both pipe and water contract until 40 deg. Is reached, when the water begins to expand. Suppose freezing takes place with-
out bursting the pipe, and a temperature
-20 deg. Is reached. Now, as the temperature
rises both plpe and water expand, repeating rises both plpe and water expand, repeating
every stage or condition passed through as the temperature lowered, and if a point is reached
where the strain is suficient to burst the pipe that point would have aiso been reached as the temperature lowered, and the fracture would consideration which favors the fracture on cooling rather than heating. Inasmuch as the conductivity of the metal pipe is far superior to that of the water, the pipe would lead in
the contraction on cooling, and also, in ex the contraction on cooling, and also, in ex
pansion on heating, and so there would be an pansion on heating, and so there would be an
aiditional strain on the pipe as the temperaadditional strain on the enipe af temperature of
ture lowers, due to difference of teme pipe and water, and as the temperature rises ence, while usually negligible, becomes very appreciable when hot water is used in thawing. I am very sure that this opinion about hot
water bursting pipes is due to insufficient in water bursting pipes is due to insufficient in-
vestigation. No one is able to say that there was not an incipient crack before the water
was applied, and the hotter the water the more was applied, and the hotter the water the more
promptly the vent will be opened. The fracpromptly the vent will be opened. The frac-
ture cannot be due to unequal expansion of the ture cannot be due to unequal expansion of the
outer and inner surfaces of the pipe, else a snith would shiver a piece of steel when he goes to temper it. It cannot be due to the
formation of steam within the pipe, for the temperature of the water in the pipe will al ways be a mean between its original tempera ture and the temperature of your hot water,
say 100 deg. I can only think of one theory which will explain the phenomenon in question vǐ, viscosity of ice. That is, to suppose that
more ice has accumulated in the pipe per cubic centimeter than was present before freezing Suffice it to say I do not think this theory ab plicable. Please state your opinion definitely for I wish to show your leter to the disputants. A. It is not an uncommon phenomenon for
pipes which have been frozen to burst in the process of thawing. Your reasoning regarding the contraction of water is correct up to a cer-
tain point, but you forget one point: Water tain point, but you forget one point: Water
contracts as the temperature is lowered until 4 deg. C. is reached. From 4 deg. to 0 deg. it
expands. In the process of freezing water at
another expansion much greater than the ex
pansion of the water between 4 deg. and 0 deg After the ice is formed, however, it contracts as the temperature is lowered below 0 deg. centigrade, just as any other solid contracts. This is the fact that you overlooked. As the emperature rises from any poin bow the occurs. Therefore, if a pipe is filled with ice perature is gradull of -2 deg. C. and the temthe entire length of the frozen section, there will be the instant before the ice melts the same strain on the pipe that there was the instant that the water froze. The pipe may be able to stand it the second time. It therefore may burst on thawing, even though it did not ing is based on the supposition that the frozen section is increased in temperature uniformly If, however, the heat is applied only at the center of the frozen section, I think you can readily see that the strain on the pipe will be
greater than it was when the pipe was frozen, provided the temperature then was lowered uni lormly along the entire length of the frozen
(9760) M. F. Co. asks: In running short telephone line connecting several
houses together, will you please advise us if you think there is great danger of lightning striking the wire and damaging the houses?
Can this danger be entirely removed by running ground wires down the corners of the houses so the lightning can take a short path a wire in the air will be struck by lightning. which such mode of protecting buildings into ing such wires enter is by the use of light wires will not answer the purpose, since the will injure the service of the telephones on the
(9761) G. E. M. asks: What are the principles of a steam turbine? What are the principal defects in the Parsons type? Does he steam enter through nozzles or does it
enter in bulk? Why does the efficiency of the steam decrease when the steam is throttled Is there much difference between a Parsons and Curtis? Please inform me where I can ob
tain books on the above subject. What is the power (about) in foot-pounds of an ordinary
8. - ay clock spring? A. The principle of a steam turbine is exactly the same as the principle of an impulse water wheel, like the Pelton Wheel, the only difference being that there are
very many more buckets for the steam to turbine danst. The work done by a stean turine depend on the velocity of the steam as
it issues from the stam nozzle. Throttling the steam decreases the velocity and therefore de. very little difference in principle betwen the
Parsons and the Curtis turbines. For more deParsons and the Curtis turbines. For more Descriptions of Turbines and Their Efficiencies," published by the General Electric Com-
pany, of Schenectady, and to the Westinghouse Manufacturing Company, of Pittsburg, and to he De Laval Steam Turbine Company, the spring of an ordinary eight-day clock It varies with the size and character of the clock, but in most cases would probably not be much
er tho
(9762) E. G. asks: Kindly give me clear definition of adiabatic heating, explainbatically heated and one heated by mechanical compression. A. The word "adiabatic" is de-
rived from the Greek and has three parts. A means without; dia means through; batic means going. This word as a whole means "without going through." Applied to heat, the sense is that no heat passes through to affect the temperature of the gas under test, be
steam in a boiler or any other gas in any re ceptacle or in the air in the atmosphere.
gas which is compressed without
leaving it becomes hotter, and a gas which is expanded without any heat coming into it
grows colder. Both of these are adiabatic changes. The gas which is heated by mechanical compression is heated adiabatically. Adiaatic changes are of great importance in the atmosphere. 2. In reducing a barometer read
ing of a given altitude to sea level, the average temperature of the air must be known. Is this average obtained by taking the average of the P. M. observations, or by taking the average of the maximum and minimum temperatures for he day? A. The average temperature of the level is the average of the temperature of the air at the various altitudes from the sea level to the altitude of the observation. This can be found only with considerable probable error, since the change of air temperature with alti
tude varies greatly in different regions, and any error in this causes an error in the weight of the air column to be calculated. The actal emperature at the place at the time of obploved in the reduction of that obscration. 3 Is water vapor properly classed as one of the
constituents of the atmosphere? A. Water vapor is one of the constituents of the atmosit, since it varies very nuch, from a mere race to as much as five per cent of the amount as ordinarily given is usually that of dry air

