ing the crucible with at pair of tongs and plunging it into cold water, a process not without danger to the operator.
The effect of this sudden change in temperature was to cause the iron, which was heated to incandescence, to instantly contract and with such force that the particles of carbon held in suspension in the liquid mass were greatly increased in density, and having the brilliancy and other attributes of real diamonds.
Mr. Henry W. Fisher, chief engineer of the Standard Underground Cable Company, of New York city, has improved upon Moissan's method in many respects but especially in the manner in which the contents of the crucible are immersed in the cooling bath. Other improvements relate to the construction of the furnace and the means employed for obtaining a more intense and uniform heat, the details of which will be made clear by referring to the diagrams.

The furnace was made by attaching sheets of asbestos, 1,1 , above and below the table, 2 ; on top of the asbestos, fire brick, $3,3,3,3$, were placed and a lining of magnesite, 4, 4, formed the inner surface of the furnace. The crucible, 5 , was made of Acheson graphite and so designed that a portion of it extended through the hood of the furnace and on through the table; 6 is a valve stem arranged so that it can be lifted and the incandescent mass in the crucible permitted to fall into a cooling bath immediately below. Graphite electrodes, 7, 7, are capped with brass conductors over the ends to facilitate the flow of the current; crushed coke is packed around the crucible and electrodes, this serving to retain a large percentage of heat that would otherwise be wasted.
In the diagram showing a top elevation of the furnace, where like figures are used to designate similar points, extending to either side of the powdered coke, 8 , is the lining of finely-divided magnesite, 9,9 , which in this form does not conduct and dissipate much of the current when the furnace becomes excessively heated. This furnace is the outcome of several prior ones that Mr. Fisher had designed and built. The first one was of lime and similar to the one used by Moissan, and then furnaces of asbestos board were constructed and these were lined with blocks of magnesia, but not until he set up the one described above was a really satisfactory furnace obtained.
Since there were large heat losses due to the reduction of temperature from the instant the crucible was
removed from the furnace until the contents were thrown into the cooling bath, the experimentalist devised several methods in which the matrix could be instantly dropped from the furnace into the cooling vessel below.
His first plan was to employ a cylinder of hollow graphite for a crucible and have the lower end of this rest on a graphite slab large enough to project beyond the furnace; when it was desired to discharge the mass in the crucible into the cooling bath the flat slab was pulled away and gravity did the rest.
The danger due to explosion by the sudden change of temperature when the matrix was cooled in water led the investigator to test the efficiency of other mediums as cooling agencies; in one a large lead casting having a hole of appropriate size drilled in the center formed the receptacle for the fluid mass; then a bath of solder was tried, but finally it was found that water gave the best results.
In one of the early trials at making diamonds when the pivoted drop door of asbestos was used to plunge the molten mass into the bath, the crucible holding it did not fall in a straight line, as had been intended, but precipitated the seething matrix into the bath in such a manner that it came in contact with the iron vessel containing it; instantly a bluish-white flame shot up like a heavy disruptive discharge, due, it is thought, to the rapid decomposition of the water, and the matrix then passed through the bottom of the iron pot, melting a large hole in it.
This accident led to further improvements so that the crucible could not depart from its predetermined course. It was subsequently found that the more rapidly the contents of the crucible were cooled, the greater the diamond-making qualities of the matrix, and when the cooling process took place very quickly little pieces that were broken off in the water from the principal mass contained diamonds, which was not the case with the large lump remaining in the crucible and which was partly insulated by it.
In one of the accompanying photographs is shown a reproduction of a microphotograph of the first diamonds produced by Mr. Fisher; as the illustrations indicate, the photograph was taken by reflected light from the top and shows well the transparency of the miniature crystals. Our cut shows a specimen containing several perfectly transparent crystals which were evidently chips split from a larger crystal and the
largest of these measured one-half millimeter in diameter; this was burned on platinum foil and when consumed left only a trace of ash. The long, sharp crystal was exceedingly brilliant and its sharp edges showed very clearly that it was fractured. This photograph was likewise made by a direct light from the top.
Attempts were made to obtain photographs by transmitted light, but where this was tried the reflected light thrown off by the diamonds cast a kind of a halo and this fogged the plate.

To create these beautiful little gems Mr. Fisher employed a current that reached as high as 1,200 amperes and the maximum power required was about 50 kilowatts. The arc produced by this great expenditure of energy caused the temperature of the furnace to speedily reach the limits of the pyrometer used to determine its value, which was 1,950 deg. C. The work of the arc had, however, only begun, and before the matrix was ready for the water bath it was estimated that its temperature had risen to a point near 2,500 deg. C., and it is quite probable that in some places within the crucible this reached as high a value as 3,500 to 4,000 deg. C.

While the stones thus formed are not large enough to be of commercial importance, it is of more than passing interest, for it points out a way for the manufacture of diamond powder for polishing and grinding purposes, and Mr. Fisher is confident that his future investigations will result in a process by which he will be enabled to produce diamonds of fairly good proportions.

It is stated that the Austriai administration put in service not long ago in the central telephone office of Vienna an automatic. section constructed according to the American Strowger system. This section supplies 200 subscribers at present, but it can be extended to take in as many as 10,000 subscribers. The expense of the outfit, as regards the special devices for automatic connection, reach $\$ 6,000$ for the 200 subscribers above mentioned, not counting the mounting of the apparatus, the wires, etc. This apparatus has been purchased from the. German concessionaires of the Strowger patents. Should the trial prove satisfactory, there is no doubt that arrangements will be made to manufacture the epparatus in Austria in order to apply it in Vienna on a large scale.

RECENTLY PATENTED INVENTIONS.

 of Interest to Farmers. CULTIVATOR.-C. E. A. Stickel and H. C. Rogers, Battlecreek, Iowa. The invention cultivator. One purpose is to provide a cultiva tor constructed in two sections, so connected that they have independent action and whenin action a rocking movement, so that when in action a rocking movement, so that when
one section moves upward the other generally one section moves upward the other generally
moves downward, whereby the cultivator is not liable to clog or choke in damp and trashy not liable the implement will leave the soil in an even condition, well turned over, and with the
grain or trash thoroughly covered. grain or trash thoroughly covered COTTON CHOPPER AND CULTIVATOR.While this machine is designated as a "cotton chopper" it may be used for chopping out corn
or similar crops. The object of the invention or similar crops. The object of the invention
is to provide a machine by means of which scraping, dirting, and chopping may be done practically in one operation, thus causing a
great saving of time and labor in the cultivation of cotton.

Of General Interest.

Pavement:-G. W. Crichfield, Jersey City, N. J., and W. T. S. Crichfield, New
York, N. Y. The object in this case is to proYide an improved sheet or so-called "monolithic" pavement; and the invention relates to that general class in which the pavement is formed of bituminous or asphaltic mixtures.
Such pavements as usually constructed are Such pavements as usually constructe are formed of a base or binder laid in a con-
tinuous sheet and having above it a wear-ing-surface formed of a mixture having These pavements have disadvantages and difficulties which are overcome by the provision of an improved pavement formed of a number of separate blocks of convenient size and peculiar composition. The blocks form a continuous, unbroken,
pa vement.
COUPLING FOR DRILL-TOOLS.-F. EDER, Thayer, Mo. This coupling is capable of use in any construction requiring a rigid connection
unaffected by rotation. One of the principal naffected by rotation. One of the principal
dvantag ${ }^{\circ}$ of the improved coupling is the absolute security against detachment by reverse rotation To disengage the parts, access must be had to the chamber. This is an im-
portant feature in well-drilling as it is freportant feature in well-drilling as it is fre-
quently necessary or desirable to reversely rotate the drill.
CONFECTIONER'S CANDY-STIRRER.-M. Raubold, Hopkinsville, Ky. It is customary in making candy to make frequent tests of the liquid candy by means of cold water. These
are necessarily inaccurate, because the water
is often of different temperatures, and the mak-
ing of each test ordinarily occasions a stoping of each test ordinarily occasions a stop-
page of the stirring operations. The invention page of the stirring operations. The ine the necessity for taking these frequent
prevents the tests. Mr. Raubold's object is to facilitate as it cooks.
as
RECLINING-CHAIR.-C. Conn, Bremerton, Wash. This is a form of chair usable as an ordinary chair or instantly and conveniently
converted into a reclining-chair simply by the movement of the body of the occupant. The occupant may assume a full or partially reclining position at will and the parts will remain in their adjusted position as long as ade-
sired and will so remain when the chair is vacated until the adjusted parts are purposely disturbed. It is fiatly fo
connecting any of the parts.
AIr-Ship.-W. C. Branch, Minneapolis, Minn. This invention relates particularly to air-ships, the object being to provide an airship body portion so constructed that it will move through the air on a practically even
keel or without undue rocking or tipping sidewise and that should a leak of gas occur wil descend slowly, thus making the ship pracCREASING ANDengers.
CREASING AND FOLDING LEVICE.-E. C Naylor, Gloversville, N. Y. The intention of
the inventor is to provide a new and improve the inventor is to provide a new and improved
creasing and folding device more especially designed for conveniently and quickly creasin and folding fabrics-such, for instance, as the reception of a stick, but the device may be used for other purposes, such as folding fabri for the formation of neckties and the like.
ICE-CREAM CUTTER. - C. A. KUlen-
KAMPF, New York, N. Y. The purpose of the Kampfr, New York, N. Y. The purpose of the
improvement is to provide a device for cutting at one operation a block or brick of cream in slabs or cakes of equal or varying thickness
and to so construct the device that the knives and to so construct the device that the knives
can be quickly and conveniently placed and adjusted in the body-section and secured in be as expeditiously and readily removed and each part of the device rendered accessible for cleaning.
watch-guard.-a. Fishmann
York. N. Y. The objects in this improvement are to provide means for preventing the removal of a watch or similar object from the wearer's pocket, at the same time permitting
the watch to be removed sufficiently for the use of the wearer without the necessity of manipulating any fastening
gaging any hooks or the like.
SOLAR APPARATUS FOR PRODUCING HIGH TEMPERATURES.-M. A. G. HIMA-

PIPE-WRENCH.-W. H. BRock, Seaford,
N. Y. This improvement relates to the man-
ner of mounting the lugs. Means are provided
to replace the plates when broken or worn
out and to greatly cheapen the construction of
the wrench. The plates may be made of fine
and hard metal, whereas the handle may be
constructed of comparatively cheap material.
Means enable the pivot-point and channels to
be formed by drop-forging. By forming the
channels this way the surface is made of com-
paratively hard metal, whereas if channels
were made by milling or by filing the metal
left and constituting the bottom and sides of
the channel would be comparatively soft.

Household Utilities.

thread-cutting thimble. - W. h. Gay, Richmond, Va. This form of threadcutter is a very convenient means for severing
the thread from the work without use of scissors and without biting off the thread and is always on the hand when sewing and is conveniently available. It is cheaply made and is not liable to cut the work nor the fingers and prese
from the thimble.

Machines and Mechanical Devices. TABLET-MOLDING PRESS.-J. F. Buck1.EY, 26 Meath road, Ilford, Essex, England.
Mr. Buckley's invention relates to molding Mr. Buckley's invention relates to moldingpresses, preferably of the hand-operated type,
and has for its object the production of a press whereby tablets varying in thickness from the may be compressed into any given uniform thickness and density at the will of the operator in a very efficient manaer.

Prime Movers and Their Accessories.
ROTARY ENGINE.-W. Scott, Sheridan, Wyo. The invention reates to improvements in double-cylinder rotary engines using steam,
air, or gas as the motive agent, the object being to provide an engine of novel and simple construction in which there will be an eco nomical use of steam or other motive agent.
Another object is to provide an engine with Another object is to provide an engine with
speed-reducing mechanism thus adapting it for speed-reducing mechanism
use in drilling or boring.

Railways and Their Accessories. CAR-Platform.-A. Melgabeito, Harrison,
Y. The general urposes of this invention is to avoid accidents to passengers in getting on or off at stations and to expedite traffic. In railway operation gass sometimes occur be-
tween the car and station-platform at the
doorways through which passengens must
pass. This defect becomes exaggerated on
curves. Such circumstances as those suggested
have caused many accidents to occur by per-
sons falling into the space, and the object is
to produce a platform adapted to overcome these
defects.
SWITCHING DEVICE.-C. J. CARLSon,
Spokane, Wash. The purpose here is to pro-
vide a switch mechanism whereby the engineer,
motorman, driver, or operator of a car or train
of cars without leaving his station can direct
the rolling-stock from the main line to a siding
or from the siding to the main line, the move-
ment of the switch being automatically accom-
plished through the medium of a device carried
by the car and which is under complete con-
trol of the operator and may be brought in-
stantly into operation.
DUST-PRoof JoINT.-G. W. TridRICK, Dil-
lonvale, Ohio. In the present patent, the in-
ventor's object is to provide a new and im-
proved dust-proof joint more especially designed
for use in mine-cars and similar cars and ar-
ranged to protect the bearing of the axles from
injury by the coal-dust or other fine particles
of the load passing to the bearing-surfaces.
Nore- Copies of any of these patents will
be furnished by Munn \& Co. for ten cents each.
Please state the name of the patentee, title of
the invention, and date of this paper.

Business and Personal Wants
 Marme 1 Fon Works. Chicaze. Cataloeque free.
Inguiry "C. s." Metal Polish. Indianapolis. Samples free.
Inguiry No. \#220.- For manufacturers of stamp ing mainiry No. 7\%20.- For manufacturers of stamp.

thanairy
sturizers.

c., Chicazo.

Adding, multiplying and dividin
Yelt $\&$ Tarrant Mf.
O., Chicago.

Sawmill machinery and outtsts manufactured by the
Inquiry $\mathbf{N o}$. 7225.-For manufacturers of Ajax
battery motor.
faetureand market. Power specialty Co., Detroit, Mich,

I sell patents. To buy them on anything, or having
one to sell, write Chas. A. Scott, 719 Mutual Life Buide-
 "he celebrated "Hornsby-Akroyd" Patent Safety Oil
 Gut strings for Lawn Tennis, Musical Instruments,
and other purposes made by P. F. Turner, Qtith Street enue, Chicago, ill.

 liquid.
Manufacturers of patent articles, dies, metal stamp-

 Absolute privacy for inventors and experimenting.

 Manufacturers of all kinds sheet metal goods. Vend-
ing, sum and chocolate, mitcteses, cizars and clyareites, amusement machines, made of pressed steel. Send
samples. N. Y. Die and Mudel Works, 508 Pearl 1 tt., N.Y. Tebuiry No. $9 \mathbf{2 3 3}$-Fथr manufacturers of elastic Inquiry No. 耳'3.3.-For marinfaciurers of minia-
ture enviues, such as used in aumun biles.

 Inquiry
stairways.
Inquiry
No. \%240.-For manufacturers of moving
Nor manufacturers of turbine

Nop Notes and Queries.

is reason in the cat? We see no reason why
we. should not do so. We have known several we should not do so. We have known several
cats which could open doors in the manner animals act in a reasonable manner, under circumstances in
done any better
(9757) C. E. T. asks: I should like to find out which leg is the longer, or if both legs of an ordinary person differ in length.
The reason I ask is this : while skating and moving in a circle with the right leg on the moving in a circle with the right leg on the
outside of the circle, the balance is easily obtained; but on moving in the opposite direction
with the left leg on the outside balance is with the left leg on the outside, balance is
harder to obtain. As the ears differ from each other, the idea struck me that probably the legs
were a fiected in the same way. A. The two legs were aftected in the same way. A. The two legs
of nearly every one differ in strength; thus people are right-legged or left-legged, just as
they are right-handed or left-handed. This is they are right-handed or tert-hande. The that
taken as the explanation of the fact that not guided by eye sight. Persons lost in forests usually come around to the place from
which they started in their wanderings. There which they started in their wanderings. There
is no difference in the length of legs in a per-
son of normal condition. If there is any difson of normal condition
ference a person limps.
(9758) E. P. inquires: How many square feet of heating surface of a hot-water
radiator is required to heat a room measuring 111212×14 feet with a 10 -foot ceiling? A. A
common rule for calculating the heating sur common rule for calculating the heating sur-
face of a radiator is as follows: Add together the square feet of glass in the windows, the number of cubic feet of air required to be
changed per minute and $1-20$ of the surface of the external wall and roof; then multiply this sum by the diference between the re-
quired temperature of the room and that of the external air in the coldest weather ; and lastly, perature between the hot water in the radiato pead the required temperature of the room.
ane result equals the required radiating surThe result equals the required radiating sur-
face in square icet. The cubic feet of space in face in square feet. The cubic feet of space in
a room has little to do with the amount of radiating surface required, but is often conconditions, one square foot of radiating surface at 212 deg. will heat from 100 to 150 cubic feet in brick dwellings exposea on all
sides, and from 70 to 100 cubic feet in modern dwellings exposed on all sides. From the above
information you can readily calculate the heatinformation you can readily
ing surface you will require.
(9759) J. H. R. writes: Some laymen in our town have been discussing whether hot water would burst from a frozen water
pipe, while cold water would thaw it without any fracture. I take it that such a conclusion is based upon insufficient evidence and reasons,
and hold that, if the pipe should begin to leak and hold that, if the pipe should begin to leak
upon the application of hot water, the crack upon the application of hot water, the crack
had been previously formed. Kindly give me had been previously formed. Kindly give me
your opinion upon this subject. You will pardon a few words stating my position. Sup-
pose we start with a pipe filled with water at any temperature, say 20 deg. C. As the temperature lowers, both pipe and water contract until 40 deg. Is reached, when the water begins to expand. Suppose freezing takes place with-
out bursting the pipe, and a temperature of
-20 deg. is reached. Now, as the temperature rises both plpe and water expand, repeating every stage or condition passed through as the
temperature lowered, and if a point is reached where the strain is sufficient to burst the pipe, that point would have aiso been reached as the temperature lowered, and the fracture would have taken place previousty. There is another cooling rather than heating. Inasmuch as the conductivity of the metal pipe is far superior to that of the water, the pipe would "lead"" in
the contraction on cooling, and also, in exthe contraction on cooling, and also, in ex-
pansion on heating, and so there would be an additional strain on the pipe as the tempera pipe and water, and as the temperature rises this strain would be diminished. This difference, while usually negligible, becomes very appreciable when hot water is used in thawing. I am very sure that this opinion about hot
water bursting pipes is due to insufficient in. water bursting pipes is due to insufficient in-
vestigation. No one is able to say that there was not an incipient crack before the water was applied, and the hotter the water the more promptly the vent will be opened. The frac
ture cannot be due to unequal expansion of the ture cannot be due to unequal expansion of the
outer and inner surfaces of the pipe, else a smith would shiver a piece of steel when he goes to temper it. It cannot be due to the
formation of steam within the pipe for the temperature of the water in the pipe will al ways be a mean between its original tempera ture and the temperature of your hot water,
say 100 deg. I can only think of one theory which will explain the phenomenon in question vǐ, viscosity of ice. That is, to suppose that
more ice has accumulated in the pipe per cubic centimeter than was present before freezing Suffice it to say 1 do not think this theory ap. plicable. Please state your opinion definitely, for I wish to show your leter to the disputants. A. It is not an uncommon phenomenon for
pipes which have been frozen to burst in the process of thawing. Your reasoning regarding
the contraction of water is correct un to a cer. the contraction of water is correct up to a cer-
tain point, but you forget one point: water tain point, but you forget one point: Water
contracts as the temperature is lowered until 4 deg. C. is reached. From 4 deg. to 0 deg. it
expands. In the process of freezing water at
another expansion much greater than the ex-
pansion of the water between 4 deg. and 0 deg. After the ice is formed, however, it contracts entigr temperature is lowered below 0 deg centigrade, just as any other solid contracts. This is the fact that you overlooked. As the temperature rises from any point below the
freezing point the exact reverse of the occurs. Therefore, if a pipe is filled with ice at a temperature of -20 deg C and the temperature is gradually increased uniformly along the entire length of the frozen section, there will be the instant before the ice melts the same strain on the pipe that there was the instant that the water froze. The pipe may be able to stand this strain once, and yet not be
able to stand it the second time. It therefore may burst on thawing, even though it did not burst when the water froze. The above reasonsection is increased in temperature uniformly If, however, the heat is applied only at the center of the frozen section, I think you can readily see that the strain on the pipe will be
greater than it was when the pipe was frozen, provided the temperature then was lowered uniformly along the entire length of the frozen
(9760) M. F. Co. asks: In running a short telephone line connecting several houses together, will you please advise us if
you think there is great danger of lightning triking the wire and damaging the houses? ning ground wires down the corners of run houses so the lightning can take a short path to the ground? A. There is always danger that a wire in the air will be struck by lightning. The proper mode of protecting buildings into which such wires enter is by the use of light ning arresters properly installed. Ground wires will not answer the purpose, since they
will injure the service of the telephones on the line.
(9761) G. E. M. asks: What are the principles of a steam turbine? What are the principal defects in the Parsons type? Does the steam enter through nozzies or does
enter in bulk? Why does the efficiency of the steam decrease when the steam is throttled Is there much difference between a Parsons and Curtis? Please inform me where I can ob
ain books on the above subject. What is the power (about) in foot-pounds of an ordinary deay clock spring? A. The principle of a ciple of an impulse water wheel, like the Pelton Wheel, the only difference being that there are
very many more buckets for the steam to strike against. The work done by a stean turbine depends on the velocity of the steam as
it issues from the steam nozzle. Throttling the steam decreases the velocity and therefore de very little difference in principle between the
Parsons and the Curtis turbines. For more de farsons and the Curtis turbines. For more Descriptions of Turbines and Their Efficiencies," published by the General Electric Com-
pany, of Schenectady, and to the Westinghouse Manufacturing Company, of Pittsburg, and to he De Laval Steam Turbine Company, the spring of an ordinary eight-day clock. It ve spring of an ordinary eight-day clock. It but in most cases would probably not be much
two or three foot-pounds.
(9762) E. G. asks: Kindly give me ing fully the difference between a gas adia satically heated and one heated by mechanical rived from the Greek and has three parts. A means without; die means through; batio "without going through." Applied to heat, the sense is that no heat passes through to affect steam in a boiler or any other gas in any re ceptacle or in the air in the atmosphere. leaving it becomes hotter, and a gas which is expanded without any heat coming into it
grows colder. Both of these are adiabatic changes. The gas which is heated by mechan ical compression is heated adiabatically. Adiajatic changes are of great importance in the
atmosphere. 2 . In reducing a barometer read ing of a given altitude to sea level, the average temperature of the air must be known. Is this
average obtained by taking the average of the dry thermometer readings at the A. M. and P. M. observations, or by taking the average of the day? A. The average temperature of the air in the problem of the reduction to the sea
level is the average of the temperature of the air at the various altitudes from the sea level to the altitude of the observation. This can be
 ince the change of air temperature with alti-
tude varies greatly in different regions, and any error in this causes an error in the weight of the air column to be calculated. The actual emperature at the place at the time of obployed in the reduction of that observation. 3. constituents of the atmosphere? A. Water vapor is one of the constituents of the atmosphere. No percentage value can be given for
t , since it varies very nuch, from a mere tace to as much as five per cent of the amount as ordinarily given is usually that of dry air

