## RECENTLY PATENTED INVENTIONS.

## of General Interest.

HOSE-HOLDER-A. G. Burton, Denver, Col. The invention is an improvement in hose use for sprinkling lawns and the like. Con struction is simple and easily applied. By bending the points of the tripod so they exten parallel to each other and may be forced straight into the ground it is found in practice that but slight pressure is required to force
the points into the ground and that the holder the points into the ground and that the holder
will not turn over, no matter how heavy the force of the water.
TRUCK.-W. h. Ar ${ }^{-}$strong, Vanwert, Ohio. The invention pertains to improvements in
hand-trucks particularly adapted for carrying hand-trucks particularly adapted for carrying
heating-radiators, the object being to provide a truck that may be readily adjusted to diferen sizes of radiators and having means for firmly
gripping a radiator so as to prevent any move ment thereof relating to the truck.
NON-REFILLABLE BOTTLE.-R. BERN stein, New York, N. Y. The purpose of the
invention is to provide an economic construc invention is to provide an economic construc
tion of bottle which after having been once filled and emptied can not be again filled and presented as an original package. Another purpose is to provide a bottle from which fluid can be conveniently and freely poured, and which will require no other stopper than th
constituting a portion of the improvement.
MEANS FOR DISCHARGING FLUIDS FROM DRYING-CYLINDERS.-R. D. Tacka to devices for expelling the air and water of condensation from drying-cylinders-for example, such as are disclosed in a prior patent, No is to simplify the devices as much as possible, and also to maintain uniform and equal pressures in the various parts of the system. The inventor not only provides very simple and efficient means for removing air from cylinders at the beginning of operation, but also prevents sudden rises of pressures in
TROUSER STRETCHER AND CREASER. -H. C. Warfel, Philipsburg, Pa. The device for stretching and creasing trousers, is readily ollapsible, so it can be folded in a small space can be readily adjusted at one end to a desired width and be locked in such adjustment and be then spread at its opposite end to
stretch the trousers, and can be fastened in stretch the trousers
Cartridge - Packet.-J. H. Blake, Batavia, N. Y. The object of the invention is to provide a packet for use in magazine bolt-
guns, and is especially designed for use with the gun for which a patent was formerly ranted to Mr. Blake, and a further object is to provide an eficient packet for such purposes simple in construction, and which may be readily removed from the cartridge-chamber in which it is adapted $t$ ) be placed.
HYDRANT' AND HOSE COUPLING.-W. R. hurston, Jacksonville, Fla. In this case for connecting a fire-hose or the like to a hydrant, the object being to provide a simple
and novel mechanism whereby a hose may be quickly connected to a hydrant and practically in instantaneous use, the parts being so con structed that the hose may be turned in any blucilvalve. J. P. F'LUSY-VALVE.-J. P. Goodfellow and S.
R. Ramsay, New Westminster, Canada. The objects of this invention which relate to a
lush-valve are to improve the construction devices of this character in such a manner as to do away with the annoyances of the
ball-cocks, floats and the like now in use, to simplify the construction of such devices, and especially to provide a valve which will be balfolding under all pressures.
FOLDING TABLE.-M. Landsman, New York, N. Y. This improvement has reference to
tables, and more particularly to those which tables, and more particularly to those which
may be folded to occupy a comparatively small pace. Its principal objects are to provide a operated, and which will furnish a table. support when in an opened or assembled position. The table is preferably made up of wooden
PREPARATION FOR CLARIFYING CANE JUICES-G. B. Williamson, Gramercy, La. The invention relates to a preparation for ciarifying cane juices and syrups and to a
method of using the preparation. The inventor treats the raw juices with paste, then evaporates them to syrups, next treats them with a
liquid made from the paste, and finally reduces them to sugar. The paste is likewise used in syrups before filtration through ordinary bone cal filtration. Neither removed by mechan injured, and percentage of output is greatly ncreased.
Shoe LaAcing.-Elizabeth Falconer, Louisville, Ky. The object in this method or system of lacing shoes, is to obviate the annoyance of the tangling loops and ends and also
to dispense with the necessity of daily lacing to dispense with the necessity of daily lacing
and unlacing the shoe, thereby providing a sysand unlacing the shoe, thereby providing a sys-
tem of lacing which requires no attention extem of lacing which requires no attention ex-
cept when a new lace is needed to replace a lace worn and useless. The invention is

Heating and Lighting. APPARATUS FOR MIXING AIR AND GAS Karger, 26 F'rankfurter Allee, Berlin, Germany. In accordance with this invention un of circulation-conduits in appliances for mixing gas and air; and also for the supply of the both air and gas or two different kinds of gas kinds of cases may be effected either into common chamber or separate chambers. Emand another for air is not possible, because ex act co-operation of the valves leading back $t$ the pressure-main is unattainable.

## Household Utilitie

shade attachment.-J. K. Putnam, Montpelier, Ind. This improvement pertains to shades such as used upon the inner side of
windows in order to exclude the light. It concerns itself especially with the construction of the shade attachments, the purpose being to
facilitate the mounting of the shade and to provide improved means for controlling the position of the same.

Machines and Mechanical Devices.
GEARING.-H. H. GoodsEill, Leechburg, Pa. Mr. Goodsell's invention relates to heat-
controlled gearing, and admits of general use, but is of peculiar importance in connection ith furnaces and the like for the purpose of traction, which otherwise tend to disturb the relative positions and proper working relations of the various movable parts. It is preferably employed in connection with furnaces of the creral type described in this inventor's ap plication formerly filed, but the present invention is no
that kind.
apparatus for coaling vessels.L. A. De Mayo, New York, N. Y. The prime object of this invention is not only to elevate
the coal to and distribute it into the coaling. port of the ship, but to provide means for dis tributing the coal into the bunker-hatches, thus educing to a minimum the work of hand trimming. Mr. De Mayo attains this end by providing, in combination with the elevato proper, a peculiarly arranged distributer, whick takes coal from the elevator proper and con
ducts it to any point within the interior of the ship, this means being extensible and ad the ship, this means being entructure that it
justable and being of such struct may be taken apart and removed from the ship through the coaling-port
LINOTYPE - MOUTHPIECE.-R. Collins, San Francisco, Cal. In the present patent the object of the inventor is the provision of a
mouth piece for the metal pot or crucible of linotype machine, by means of which mouthpiece to allow a better flow of metal into the
mold and also to allow for the thorough venting of the mouth piece, thus preventing de fective slugs.
REVERSIBLE TRANSMISSION-GEARING. Orleans, La. This invention refers to a means or transmitting rotary movement in eithe rection, and in its preferred embodiment th ly to connect the two shafts or other parts and friction-gears and an intermediate pinion serving to connect the two parts to turn them in the opposite direction, the clutch and gears shifting the device the clutch and gears go alternately in and out of action.

## Railways and Their Accessories.

sbur provide, Ind. The aim in this instance is to that will slide -such as coal, shale, grain, etc. -may be readily unloaded from a car. The conveyer or conveyers may be extended over higher or lower or to side or sides or at any higher or lower or to side or sides or at any
suitable distance from the car and under cerfrom both ends of the car at the same time. CAR-DOOR LOCK.-T. Cede, Chickasha, Indian Ter. The invention pertains particularly to improvements in locking devices for graincar doors, the object being to provide a ocking
or securing device that may be readily operated and that when in locking position will hold the door closely against the inner side of the door frame, thus preventing the leaking out
$\qquad$ mail-Crane.-W. E. Westermann, oldfort, N. C. This inventor's improvement is in alongside a railroad track for holding a mail pouch or mail-bag suspended in such position that it may be seized by a person or a passing
train or removed by a device forming an at tachment of a mail car.
CAR-BRAKE.-C. J. $\underset{\text { Specht }}{\text { and }} \mathbf{C}$. R. mainly intended as an improvement over brake previously patented by the same invent-
ors. The subject of the present improvement relates largely to the means for supporting the shoe, separate sustaining means being arranged portions oif the brake shoe, whereby to better insure the desired movements of the shoe fo
its effective action.

## Pertaining to Recreation

MERRY-GO-ROUND.-B. KIPPels, Moo ment in what are variously termed "merry-gorounds," "carousels," and "roundabeuts." It
is more particularly an improvement upon the machine or apparatus for which Mr. Kippel obtained a former Letters Patent. The in
ventor forms a merry-go-round which is dis ventor forms a merry-go-round which is dis
tinguished by maximum strength, lightness ease of propulsion. It may be produced at ease of propulsion. It may be produc
small cost and easily set up or removed.

Note.-Copies of any of these patents wil be furnished by Munn \& Co. for ten cents each the invention, and date of this paper.

Busimess and Personal CUants.

## WEAD THIS COLUMN CAREFULLY-Y You




Inaury No, 7200- For manuacturess of bal For logging engines. J. S. Mundy, Newark, N. J. Inquiry No. 7201.-For manufacturers of metal
castings.

Inquiry No. 7202.- For manufacturers of labor Drying Machinery and Presses. Biles, Louisville, K Inquiry No. 7203.-For manufacturers of oxide ery. Walsh's Sons at Co., Ne War. $\mathrm{E}, \mathrm{N} . \mathrm{J}$. apping machines. 204 ,-For manufacturers of bottle Chicago.
Inquiry No. Y:205.-For furniture manufacturing riorarticapabe of of ourking up hardwood into a surpe-
rood mail order business. Handle \& Spok
Inquiry No. Y206.- For manufacturers of ma
chinery for sawing and spliting cord wood. Adding, multiplying and dividing machine, all in one.
Inquiry No. 2 . Co., Chicago.
valid's tricycles.
Sawmill machinery and outfits manufactured by the Lane Mrg. Co.. Box 1 , Montpelier, Vt .
num gas tip burners. WANred.-Patented specialties of merit, to manu-
factureand market. Power Specialty Co., Detroit, Mich Inquiry No. $\mathbf{\text { I 209. }}$-For manufacturers of wooden
I sell patents. To buy them on anything, or having
one to sell, write Chas. A. Scott, 719 Mutual Life Building, Buffalo, N. Y.
Inquiry No. V210.-For manufacturers of lumin-
The celebrated "Hornsby-Akroyd" Patent Safety oil Engine is built by the De La Vergne Machine Company
Foot of East 138th Street, New York Foot of East 138th Street, New York.
Inquiry ric. 721
gasoline burners.
acuum pans for Co., Sligo, Dent Countr, Mo.
Inquiry No. g212.-For manufacturers of mimeo-
Gut strings for Lawn Tennis, Musical Instruments, and Packers Avenue, Chicago, Ill.
 Manufacturers of patent articles, dies, metal stamI-
ing, screw machine work, hardware specialties, wood
fiber machinery and toois. Quadriga Manufacturing Company, 18 South Canal Street. Chicago.
Ingitry No. \%21.-. Ror ma
Absolute privacy for inventors and experimenting. A well- equppped private laboratory can be rented on moderate terms from the Electrical Testing Labor
atories, 548 East 80th St., New York. Write to-day.
Inquiry No. 7215.-For manufacturers of looms
for weaving woolen blankets.
Wanted.-The patents or sole agency for Britain
and France, of new machines and articles used in the Brewing and Allied Trades. Highest references given nd required. State best terms with full particulars to
"Wideawake," care of Street's Agency, 30 Cornhill.
Inquiry No. 7216.-For address of Stevens Dish-
Patents on Dredges and dredging Machinery
for Sale. - By reason of the death of Ralph R FOR SALE.-By reason of the death of Ralph R. Os
good, valuable patents, having a long term to run, are offered.for sale. For terms communicate with The Albany Trust Company, Executor,
Inquiry No. y21 g.-For a small hand vacuum Gentleman from Antwerp, Belgium, with first lass references. now staying in New York, is visit-
ing the United States for the purpose of opening rela-
tions with American manufacturers desiring to tions with American manufacturers desiring to export
their goods to Belgium and Holland. Address Inal G. W. D., Box 773, New York. Inquiry No. V218. For the, address of the im-
porters of wire called weter, wire, used for the
ignition points on igniters for explosive engines. For SALE.-Canada and all foreign rights. Flinn's
Little Giant Controller. The New Theorrin driving, and a guaranteed conqueror of hard pullers and runabsolutely humane. Does not interfere with wind or gait. No overdraw or checkbit necessary. Lightest
nd neatest controller made. Price, $\$ 2.50$ each. Adand neatest controller made. Price, \$2.50 each. Ad-
dress Dr. P. Harvey Flynn, Patentee and Sole Manu-


## Names and Address must accompany all letters or no antention will be paid thereto. This is for our information and not for publication.



 Mininarial sent for examination stould be distinctits
(9743) P. E. F. says: On rear of St. Patrick's Church, Elizabeth, N. J., is a large copper cross. When it was put up about ten
years ago it was turned northwest and southeast; now it is turned about 80 deg. to the ng. Can you or any of your is still turnhow or why it turned? A. We can only suggest what seems to be a possible cause for the
turning of the cross on the top of the church, turning of the cross on the top of the church,
that it may be due to some slight inequadity in the length of the arms of the cross, so that the wind is ubl (9744) R. E. S. says: In your va able paper, the SCientific American, of July 9, 1905, under the heading, "Five Thousand Degrees of Heat," I find these words: "We
have a heat that cannot be surpassed, and we obtain, in fact, a heat of 5,000 deg." Now, are you aware of the fact that the Carborun-
dum Company, of Niagara Falls, uses 7,000 degrees of heat in producing its so-called carborundum? A thousand horse-power of electric energy, furnished by Niagara, is said to be
converted into over 7,000 degrees of heat. In converted into over 7,000 degrees of heat. In
fact the heat is said to be so intense that it burns and vaporizes every known element. Edison, in trying to produce diamonds, led to dison, in trying to produce diamonds, led to dum. Carborundum is a mixture of sawdust, and, and salt fused with coke at the tremendous heat of $7,000 \mathrm{deg}$. It is said to be and even more indestructable. It is hardness, to whemore indestructable. It is made up made into hones and the like, and is, 1 assure you, absolutely the best grinding substance known. The above facts I take from a paper
furnished by the Carborundum Company to one of its agents. $A$. We note your criticism of the phrase used by our Paris correspondent, hat the electric deg. It is doubtless true known temperature, and that this is the temperature at which carbon volatilizes. It is not so easy as you seem to assume it to be to
determine just what that temperature is. The atest book on the electric furnace, by J. Wright, published 1905, contains this statetric arc itself has never been determined." The highest authority in the world upon the electric furnace is without doubt Henri Moissan, of Paris. In his book, "The Electric Furnace," published July, 1904, page 19, he says, pieces of apparatus; it sepends upon the temperature reached by the electric arc which may be, according to Violle, 3,500 deg." This corresponds to 6,300 deg. F., since Violle used
the Centigrade scale. The temperature of the electric arc is probably limited by the temperature at which carbon is volatilized. This has been variously estimated at from a little above $5,000 \mathrm{deg}$. F. to about $7,000 \mathrm{deg}$. F. In published September, 1904 , page 302 , the "exreme temperature of the electric arc" is given 3,600 deg. C., which is $6,500 \mathrm{deg}$. F. Wootvelopment of Physical Science," page 77, gives the temperature of the electric arc as 3,000
to 4,000 deg. C., or 5,400 to 7,200 deg. F have given you the results as stated by the most reliable authorities. And we can say that we are not aware that it is certain that
a temperature of $7,000 \mathrm{deg}$. exists in the electric furnace. It appears that our Paris corre spondent used the lowest estimate of the temperature, while the advertising circular which the highest estimated temperature of the apparatus, as is natural that it should do. We do not know why our correspondent used the lowest figures, and personally we are accusway or the other there is nothing to dispute about. If you will
ead the books we have quoted, especially the read the books we have quoted, especially the
"High Te can furnish for $\$ 3$. you will appreciate the work done in this direction and the difficulties of the problem. Moissan's "Electric Furnace" is also a book well worth reading by any one
who would know the facts in the matter. We send it for $\$ 3$. This book contains the full
ficially, in which Moissan has been the chief experimenter and the most successful one. It
may be that Mr. Edisen has taken a hand in this line of work, since he has done so in
almost every line, but his name has not been almost every line, but his name has not been
publicly associated with the artificial producpublicly associated with the artificial produc-
tion of diamonds. Your sources of information of diamonds. Your sources of informa tion in the matter may be better than ours. Mr. E. G. Acheson in 1893. Moissan, "Electric Furnace," page 264, says: "I had occasion to find, in $1891, \ldots$, . small crystals of a
filicide of carben . . I did not, how silicide of carbon . I did not, how time, and the discovery of the crystallized carbon silicide really belongs to Acheson." It since the diamond is simply crystallized caron, while carborundum is a compound of sili-
and carbon. It is next t the diamond in cale of hardness. Being harder than emery is a better abrasive, although emery is still ey some.
(9745) M. H. asks: 1. What is a range-finder, such as are used on warships? A. A rmining the distance and direction of any object. We can send you eleven Supplements kinds of range finders, at ten cents each. 2. Is it
identical with a distance indicator? A. There are many forms of this instrument, seme of which may be called distance indicators. 3. About how long, or how much time is usually consumed
in finding the range with such an instrument? Has any instrument yet been invented or de object in from five to fifteen secends of time? A. We do not know how quickly an experienced
person could plot the result after the observaperson could plot the result after the observa-
tions are taken. 4. Can a wind gage be made by an amateur mechanic which will record
sonewhat accurately the velocity of the wind anewhat accurately the velocity of the wind
A. The velocity of the wind is usually measured y revolving cups placed upon arms. The re volving parts actuate gears which communicate
motion to hands êpon a dial. A skillfu amateur could copy surch an instrument if he had one at his disposal.
(9746) A. G. says: I think your explanation of the cause of a ball's curving in
Question 9680 , erroneous. You say: "The roation of a ball is such that the air pressure otates, pushing the ball in the opposite bal rection. Now, while without doubt the ball curves in the opposite direction from its re tation, I don't think you lave stated the true cause of its curving. It seems to me that the
greater air pressure is not due to the rotation greater air pressure is not due to the rotation
of the ball but to its flight, hence it is always on the same side, namely the front, hence the ball must act upon it, not it upon the ball, to
produce a variety of curves. In a word, the - circumvent, as it were, the resistance the air, and so force itself more and more curving effect upon a ball's flight is that which has its plane parallel to the plane of the re-
sistance such ats is given the rifle prejectile. A. We regret that you should not be able to agree with our statement of the curving of a
ball, since it is not ours simply, but the conclusion of the highest authorities in mathe ing and Reach, "General Physics," page 135, wher
(9747) M. W. S. asks: Is there any difference between a foot square and a square
foot? Als•, is there any difference between an inch square and a square inch? The last one was answered in a certain paper as follows: here claim there is ne difference. A. There is no difference in area of surface between a
square inch and an inch square, between a square inch and an inch square, between a
square foot and a foot square. There is a difference in meaning, however, between the
two expressions, which we will illustrate. A two expressions, which we will illustrate. A
piece of paper is an inch square when its corners are all right angles and its sides ar
all one inch in length. Similarly a board is one foot square when its sides are arl equal all square or right angles. A foot square implies a square whose surface is one foot. On
the other hand a board may be of any shape whatever and be a square foot, if its area is one square foot or 144 square inches. A strip
one inch wide and 12 feet long would be such a board. It might be irregular in shape and
contain a square foot of surface. It would then be a square foot. The answer you quote (9748) A. W. P. writes: 1. What is noise? Is it simply the vibrations caused by
moving ©bject, or is it the action of the ib ations on the ear drum? For instance, suppoar that a tree in the woods fell with no one Psychology teachers claim there would not. one sense it is the sensation which the mind perceives, in the other it is the physical cause
of that sensation. If there were no persen of that sensation. If there were no persen
present the fall of a tree would not produce present the fall of a tree would not produce
any sensation in any one's mind. It would, however, produce the same shock upon the air
as if some one were present to hear it. The psychologist would say there was no sound,
is simply a difference in definition of a word. Both are right. The dictionary would give you
this statement of the case. Text books of science and psychology usually contain it.
2. What is the complementary color of purple What is the complementary color of purple
violet? Is it green or yellow? A. The complementary color of purple is green. 3. Conthe receiving antennaphy, I have read that fourth the length of a wave." How may the length of the wave be determined? A. The the number of oscillations per second of the
discharge. With $300,600,000$ oscillations the discharge. With $300,000,000$ oscillations the
waves are about 3 feet long, since the speed of the waves is about the same as that of
light. The mode of securing waves of a particular length is discussed in the several sys$\$ 2$. 4. Which is the best battery to use with $\$ 2$. 4. Which is induction coil (spark) for experimental purposes-one that will give a steady current minutes? A. For experimental purposes you will find the plunging bichromate battery as
satisfactory as any. A good form is described satisfactory as any. A good form is describe
in our Supplement No. 792, price 10 cents.
(9749) G. R. M. asks: Will you kindof notes the following through the column and oblige a faithful reader: 1 . What causes the changes of the moon? A. The phases of the moon are produced by the moon's revolution
around the earth. The sun shines upon the moon all the time. When the moon in its motion around the earth comes between the sun
and the earth, the sun is shining upon the side and the earth, the sun is shining upon the side
of the meon which is farthest frem the earth The dark half of the moon is toward the earth. weeks later the meon has traveled around se is, and the earth is between the moon and th sun. The lighted side of the moon is towar has changed from showing ne lighted surface t the earth te showing the entire lighted sur showed half her lighted surface to the earth That was first quarter. Similarly there will be a time between full and new moon, when she will show half her lighted surface to the
earth. That is last, or third quarter. If you will look up this matter in astronomies in
your city library, you can read about it, and see the illustrations of it in the books, which will give you a much better idea than mere
description in words. Asli the librarian about description in words. Ask the librarian about
it. 2. Why does the mercury in the barometer stay higher when storms come from an easter-
ly direction than it does when they come from any other direction? I have noticed this time and again and seme of our largest and worst storms come from the east, and still
the mercury will stay away up. I have wondered if the ocean hanything to do with it. A regards the power of a télescope, what is
meant when manufacturers say they magnify $2 \bullet, 33$, or 50 diameters, A. We were not aware that a storm coming with an easterly wind was which comes with the wind from a southeres
quarter. Storms always travel from west to east around the world. In crossing our country the paths curve considerably because of the mountain ranges, plains, and rivers. In
the storm the wind blews inward toward the enter, an the storm as a whole rotates from east to north, west and south, as we say, opposite t. the hands of a clock in the northern
hemisphere. This causes the northeast winds in hemisphere. the northern front quarter of such a storm. as far west as Ohie. The storm does not come from, an easterly direction, but from the west,
and the wind in its whirling in the storm blows from an easterly quarter in the front, and from a westerly quarter in the rear of the
storm as it goes away. It clears off with a
westerly wind, as you have observed.
$\begin{aligned} & 9750) \\ & \text { E. C. asks: If the following }\end{aligned}$ preblem can be solved, please give the solution
in your inquiry column of the ScIENrIFIc Ambrican. You will note that no rate of speed or length of time is given. A column of
soldiers twenty-five miles long are on the soldiers twenty-five miles long are on the
march. A courier is dispatched from the rear t- deliver a message at the head of the column. He delivers the message and returns to
the rear, when he notices that the rear of the column is at the same point at which the Hew far the column was when he started
a. The problem is pos. sible of solution without having the rate of
speed of either the soldiers or couriers given and without having the time known. The solution is as follows: Let $Y=$ the number of
miles traveled per hour by the courier. Let $X=$ the number of miles traveled per heur the soldiers. Then $\frac{25}{y-X}=$ the time required to reach the front, and $\frac{25}{Y+X}=$ the time reqi ired for the courier to reach the rear of the
column again. The sum of the two above column again. The sum of the twe above
quantities equals the time required for the quantities equals the time require
soldiers to march 25 miles; therefore
$\overline{Y-X} \frac{25}{Y+X}=\frac{25}{X}$
Solving this equation we
$0.41 Y$ or $Y$ equals 2.41 .

The soldiers traveled 25 miles. The courie ent 2.41 times as fast and traveled for the same length of time, therefore he traveled
$2.41 \times 25$ miles or about 60.25 miles. This solution is based on the assumption that bot the soldiers and
uniform rate.
(9751) A. W. asks: 1. What is meant y "polyphase", as applied to electric engines
nd by "cycle" as applied to gas engines? A a cycle is a series of changes through which a varying quantity passes, including all it periedically it fluctuates through these change periodically. Thus a cycle of an alternating f the $\mathrm{E} . \mathrm{M}$. F through one series from zer to its highest value, and down through zero to the lowest and back again to zero. This succession of values the current will have as many times per second as there
are cycles. ordinarily 30,60 , or 120 . Polyare cycles. ordinarily 30, 60, or 12n. Poly
phase currents are those whose E. M. F.'s diffe from each other by a fraction of a phase Thus three currents a third of a cycle apart with which it is connected. See Sloane' "Electrician's Handy Book," price $\$ 3.50$ cycle is like a complete succession of the the seashore. A phase is any single value or
height of the water. If two or three tides height of the water. If two or three tides
come together by different channels in the same pace or bay we have a two-phase or threephase current of the tide. 2. What is meant tacked when in changing from one course the wind to another it presents its bow to the wind; it is jibed when it is turned in the oppo the wind. In a high wind the latter is always
the winticult and difficult and sometimes a dangerous epera
ion. 3. Is a catbeat so called because the mast stands straight up at one end of the boat
like a cat's tail from its body? A. We are certain that a catboat is not se called because The mast is at the front end of the boat, and - far as we have observed cats have their tails set at the stern end. We de not know
the derivation of the name catboat, but think it far more likely that it was given because
of the quickness with which these boats will come about. 4. Does an electric motor differ
in structure from a dynam $\bullet$ Can they be inerchanged? A. There is ne theoretical dif ference between a dynamo and a motor. In gen-
eral, each may be used for either service. eral, each may be used for either service.
There are, however, many structural differences between the two classes of machines, so that it an be easily told to which class any particu
ar machine belongs. 5. How can a steady eff ective current proceed from a dynamo giv ng an alternating current? The curren
changes pelarity each instant, as understood A. A steady current is not produced by an alternator. An alternating current can, how-
ever, be changed to a steady direct current by means of a rotary converter. 6. What light ing a dirigible balloon? A. Probably some form of gasoline moto
in a dirigible balloon.
(9752) O. E. G. asks: 1. Is the speed i radiant heat (whose medium is the same as ght) the same as light and electricity? A. The latest science does not make any such distinc etc. They are all the same radiation. If the nerves we feel them as heat; if they can af-
fect the eye we see light. 2. Is the difference between light, electricity, and radiant heat due
t the ifference in wave-length? A. The sole to the difference in wave-length? A. The sole
difference between the several effects is due to Prof. length. See the "New Knowledge," by transversal waves, how can it move forward? form simply which travels. A wind moving ver a field of grain is the very best illustraocean. Whis ene can have remote from the
Water waves on the ocean are good illustrations of a transverse wave with an onward motion of the wave form. It is not ight which moves, but a wave form. The mat advances. 4. Please explain wave-length.
Wave-length is the Wove-length is the distance from a particle cle in exactly the same condition of motion. In a water wave, the wave-length is from a drop on the crest, for example, to the next
drop exactly on the crest, also. 5. What is drop exactly on the crest, also. 5. What is
the wave-length of electricity, and does it vary the wave-length of electricity, and does it vary
with the amperage? A. There are all sorts wave-lengths of electricity down to very
short waves, but not se short as those which produce light. Those used in wireless telegraphy with a single wire as an aerial are very aerial wire from which they are radiated int space. When a capacity is in the circuit this
affects the wave-length. The wave-length va affects the wave-length. The wave-length va
ries with the rapidity of the oscillations ries with the rapidity of the oscillations of
the discharge. 6. Does a heated conduct electricity retard the current? A. A hot metal temperature, and so reduces the current which flows through it. Carbon, however, has a much
greater electrical resistance when cold than
(9753) F. W. M. says: I have a house to wire for burglar alarms, closed-cir-
cuit system. Kindly tell me where I can get a cheap book or instruction paper on the subject,
to how to connect up the battery (bluestone) and run the wires from windows to battery
and then to annunciator. A. We recommend and can supply you with $1 . u r s t m a n n$ and Tousley's "M॰dern Wiring Diagrams," price $\$ 1.50$, which gives a good variety of modes of wiring
for burglar alarms, showing all connections.

## NEW BOOKS, ETC.

Suction Gas. By Oswald H. Haenssgen. Cincinnati: Gas Engine Publishing Company, 1905. 16º.; pp. 88. Price,
The economy of the gas producer for fur-
aishing fuel for a gas engine has led to its opid introduction and adoption in this country for many large installations. That a gas proply fuel gas almost as economically for a mall-sized engine of 3 or 4 horse-power as prising to our readers. Such a producer, howver, is described in this little volume, which as gives considerable useful information, t. gether with numerous valuable figures upon suction gas.
Wheel Gearing. With Tables of PitchLine Diameters of Wheels, ProporAlfred Wildgoose and Andrew J. Orr. New York: Spon \& Chamber-
lain, $1904 . \quad$ Pocket size; pp. 175. Price, \$1.
This small handbook sheuld save engineers, draftsmen, and others engaged in making calculations relating to gear wheels, much valu-
able time. It contains a large number of tables giving the pitch-line diameters, of of gears of different sizes. The pitch-line ufficient are given with a degres, the diam eters being expressed in inches and decimals and fractions of an inch. The proportions of wheel teeth given are those generally adopted engineers, and the various dimensions for each pitch will
venient form.

## Report of Pregress $\bullet$ Stream Measure

 for the Calendar Year 1903. By John C. Hoyt. Washington: Government Printing Office, 1904.This book, which forms Paper No. 100 on
Water Supply and Irrigation, is issued under Water Supply and Irrigation, is issued under
the auspices of the United States Geolegical survey. It forms Part IV. of the series and Hudson Bay drainage. Besides the regular measurement of the flow of streams made during the year 1903, and reported herein, a con-
siderable amount of other special information that will be of use in general hydrographic studies has been included. Reconnaissances of of the cone important rivers in different parts of the country have been made, and these have with regar to flo d, water-powers, river pro-
files, etc. The number of regular stations for stream measurements is steadily increasing, and at present systematic measurements are taken at over 500 stations, distributed se as and Territories. The expansion of the work is the result of the greatly increasing demand from the general and engineering p
stream data collected by the Survey.

INDEX OF INVENTIONS
For which Letters Patent of the
United States were Issued
for the Week Ending

## August 22, 1905

ND EACHEBARING THAT DATE


