

Drawing by Brontosaurs as They Probably Appeared at a Period Charles R. Knight. Estimated at Seven Million Years Ago.

The Hind Legs. Height of the Reptile at the Hips, About 151/2 Feet.

Part of the Vertebral Column. The Structural Similarity with the Modern T-shape is Apparent.

Fore Legs, Showing Method of Mounting.

A Portion of the Brontosaurus Skeleton, from the Hips to the Head, Showing the Iron Work Used in the Reconstruction. The Total Length of the Anımal is Estimated at 62 Feet

SCIENTIFIC AMERICAN

ESTABLISHED 1845

MUNN \& CO., - . Editors and Proprietors

Published Weokly at
 No. 361 Broadway, New York

TERMS Te SUBSCRIBERS

 ioney order. or by bank draft or check.
MUNN C . CO., לijl Broadway. New York.

NEW YORK, SATURDAY, JANUARY 21, 1905.

The Editor is always glad or receive for examination illustrated
articles on subjects or timely interest. It the photographa are

schedule versus safety.

The greatest credit is due to the Interurban Company for the admirable manner in which they have operated the new Subway during the two months of its active service. Systems as large as this have usualiy grown from small beginnings, and developed grad ually to the full magnitude of their traffic; but in this case, the turnstiles were opened and the full flood of 2 great city's traffic was allowed to flow into the Sub way, as though the opening day were but one in a long series of years of successful operation. Not even the Interurban officials, however, will claim that the operation of the system is so perfect that no further improvements can be made; and, indeed, an incident occurred recently in the early hours of the morning which served to show that in one respect at least the security of the passengers can be very materially increased. We refer to a rear-end collision, which took place between two trains on the local tracks at the Worth Street station, and to the fact, which was brought out by this incident, that although the automatic stop is used on the express tracks, this most ex cellent device has not as yet been installed on the local tracks. The automatic stop, it will be remembered, is a small lever placed on the tracks, which is raised whenever the adjacent signal is at danger, and when in this raised position serves to shut off the current on a passing train, and set the emergency brakes. This stop is considered, and rightly so, to be an absolute preventive of rear-end collisions.
Now, the action of the stop in the case of a breakdown of any train, is to delay the whole service on that particular line back of the obstruction, every train being held with a clear stretch of track between itself and the train ahead. This, of course, means that the blocking of one train involves the instant blocking of a long stretch of trains behind it. . In order to avoid such delay, the management decided not to install the stop on the local tracks; but to adopt a modified operation of the block signal system, under which, when the signals are against him, the motorman is permitted to proceed "under a slow bell" until he brings himself as near to the train ahead as to his judgment may áppear to be advisable. By thus playing fast and loose, as it were, with the inexorable demands of the block-signal system, the following trains are kept moving much longer than they otherwise would be, before being brought up by the obstruction. This conduces, of course, to a closer observance of the time schedule; but it is done at a very evident sacrifice of those safeguards which the block-signal system is intended to throw around the passenger.
It is this practice of leaving to the judgment of the engineer as to how far and how fast he may proceed beyond a signal that is set against him, that is answerable for a large percentage of the accidents that are occurring on our steam railroads with such alarming frequency; and it cannot be denied that the adoption of the same method on the local tracks of the Subway has materially lessened the security of travel on that system. It is to be hoped that the officials, prompted by the recent collision, will see the wisdom of applying the automatic stop not merely to express tracks, but to every track on the road.
the american exhibit of foreign automobiles.
The fact that in this year's annual automobile show it has been necessary to find a separate hall in which to house the foreign exhibits, is striking evidence of the rapid growth of the domestic industry. In previous exhibitions there has been a hint of the separation that has taken place this year, in the fact that for the last two or three years foreign exhibitors have been grouped in a separate room at Madison Square Garden. The demand this year has been so great, that every foot of available space at Madison Square has
been required for the exhibition of domestic machines, with the result that, for the first time, the foreign makes are to be found in an entirely separate building. As it is, there is a sufficient number of first-class foreign machines and their accessories to entirely fill an exhibition hall which occupies one complete floor of the largest department store in New York city.
Our succeeding issue, which will be a special number, devoted to the annual Automobile Exhibition as illustrative of the development of the American industry, will include detailed illustrations of some of the leading foreign machines; and it will suffice in the present article, which is devoted to a general survey of the foreign exhibit, to mention some of the more important points of novelty that have been developed during the past twelve months. In the first place, testimony should be borne to the characteristic beauty of design and excellence of finish that distinguish every machine. Although, in general contour and proportions the cars conform to the standard of last year, there have been some modifications produced in the form of the bonnet and the curves and proportions of the body that have added not a little to their handsome appearance. There is a general tendency to abolish the rear door and substitute the side door, which is placed either in the body of the tonneau, or else is formed by an ingenious arrangement, either of a swiveling or a lifting front seat, which makes it possible to enter the automobile directly from the sidewalk, and avoid the old inconvenience of having to step into the street. A machine that attracted much favorable comment was a brougham intended for city use, in which the bonnet is dispensed with, and the motor is placed beneath the driver's seat, which is hinged at the forward end, and can be lifted for inspection of the engine. This arrangement permits a considerable shortening of the wheel base, and provides a brougham that is more easily maneuvered in a crowd of vehicles, particularly in moving to the sidewalk in front of a theater or crowded store. This is a step in the right direction, at least in such cases as are intended more particularly for city use. There has been a considerable development of the inclosed or partly inclosed automobile, of the type that has been so popular during the past season, and some very pleasing designs are exhibited.

We note a tendency to abandon the over-light metallic car bodies, and return to the more substantial wood. This, of course, has the disadvantage of increasing the weight of the machine-a fact that has been noted with some alarm by the French tire makers, one of whom has recently offered a prize for a machine having the lightest car body compatible with reasonable strength
In the design and construction of the chassis, engines, and running gear, there is no striking novelty to record. The pressed-steel frame has become the standard type, although a few makers exhibit a frame built up of standard shapes. There is a general adoption of the protecting pan, curving across the frame beneath the enoine and transmission gear-a device so obviously useful that it is surprising it should not have been incorporated long ago. It is a common practice to equip each engine with two separate methods of ignition, the high-tension magneto and the battery and coil. The former is preferred, and the batteries are held in reserve in case of a breakdown of the magneto. In this connection mention should be made of a magnetic clutch, exhibited on a Belgian car, in which magnets, incased in the flywheel, are energized by current from the magneto or from the batteries. The device has apparently given excellent results, and if so, we may look for its very general adoption. Another promising form of clutch carries a series of springs behind the leather casing, by means of which the power is transmitted so gradually, that the car can be started when the transmission is on the high speed. The performance of these two clutches will be watched with keen interest during the coming season.
Many minor improvements were noted in the direction of providing a more convenient access to the various levers for control of the engine, the transmission gear, and the brakes; the foot-brake levers, in particular, being made longer, and so placed as to be operated with more of a forward and less of a downward thrust than in the earlier machines. In tires, the most notable improvement is the introduction of a non-slipping variety, in which a leather sheath is vulcanized over the tire proper, this sheath carrying a leather strip the full width of the tread, on which are riveted a mass of flat steel plates or studs, which serve the double purpose of giving improved adhesion and at the same time protecting the rubber tires from wear and puncture. The exhibit, as a whole, is a demonstration of that excellent workmanship and general beauty of design which have enabled the foreign makers, in spite of the remarkable development of our own industry in this country, to import into the United States, as they did last year, over three million dollars' worth of machines.

A MONUMENTAL BUILDING.

In planning the truly magnificent station which is to take the place of the present Grand Central Station of the New York Central Railroad, the company have shown a full appreciation of the magnitude of the problem and of the inexorable necessity that is laid upon them of building not merely for to-day, but for the vast increase of travel of the far future. When the present structure was built, back in the seventies, it was the wonder of the day; and because of its mag. nitude, its great arch of glass and iron, its many parallel tracks, its long stretch of office buildings, and other features of greatness, the Grand Central Sta tion was, for many years, an object of much civic pride in New York city. It was built with a strict eye to the future; nevertheless, but two decades had passed when the company began to realize that so rapid was the increase in traffic, that their great station was great no longer and that before long they mus begin to pull down and build on a far more generous scale. The question of enlargement was receiving seri ous consideration, when the enormous inconvenience not to say danger, attending the running of steam-op erated trains through the tunnel approach to the sta tion became so acute, that legislative powers were sought to enable the company to dispense with steam locomotives altogether, and operate the terminal yard and the suburban traffic by electrical traction. The opportunity presented by this change of motive powe enabled the company at the same time to greatly en large and entirely reconstruct the station yard and the terminal buildings.
The magnificent structure, of which we present il lustrations on another page, is the outcome of a con tinuous study of the problem by the architects, Messrs. Warren \& Wetmore, associated with Messrs. Reed \& Stem, and by the engineering staff of the New York Central Company. Every possiblie arrangement of tracks and type of building wás considered, and no less than two hundred different sets of plans are now on file in the architects' office, as evidence of the care with which the problem was studied. The present designs were adopted because they conform to certain importan principles which were laid down as indispensable to the successful operation of a great terminal station such as this, chief among which were the following:
The station must be considered as a great gateway to the city and, therefore, must be simple and digni fied in its architecture, and must provide the broadest possible facilities for the inflow and outflow of traffic. It was this consideration that condemned those plans which contemplated the erection above the station of a vast office building; for such a structure would have congregated several thousand people at the very point where it was desired to provide a broad unobstructed thoroughfare for incoming and outgoing passengers.
The progress of the passengers from the street to the cars and from the cars to the street, must take place as far as possible in two direct and entirely separated channels; the incoming and outgoing crowds never meeting or intermingling with those moving in the opposite direction.
In passing from the street to the cars, the passenger should take the steps incidental to departure in their natural consecutive order, with as little running to and fro as possible; the waiting room, the ticket office, the baggage room, the concourse, and the departing platform presenting themselves successively to him as he moves to his particular train. Similarly, the incoming passenger should find the incoming baggage room, the cab stand, and the means of exit to sub way station or to street, presented to him in quick and logical succession.
The express and long-distance passengers, whose progress through the station either in departing or arriving is necessarily retarded by ticket purchasing and the checking of baggage, should be entirely separated from the suburban passengers, who almost invariably pass direct from the street to the car without any delay in the station.
Lastly, in view of the vast increase which must necessarily and rapidly take place in the future, the station must be built on a scale much larger than is absolutely needed by the present volume of travel; and this provision must extend not merely to the area devoted to passengers in waiting rooms, ticket lobbies, and concourse, but to the station yard itself, which must be extended in area to accommodate the larger number of trains that will be required.
Now, it must be admitted, after an impartial study of the plans of this great undertaking, that the above requirements appear to have been fully met and all the provis
be asked.
Architecturally, the station building will present a massive and dignified appearance, worthy of what is probably the most important railroad teiminal in America. The architecture of the building is throughout and without exception an expression of the plan; none of the decoration being used merely for architec tural effect, but everything serving some useful, struc
tural purpose. Thus the main piers under the great arched roof of the concourse, and at the intersection of the roof and its transept, are necessary to carry the load of the massive steel work of the roof. This is true even of the two massive piers that flank the main entrance on Forty-second Street, their great mass serving to take the horizontal thrust of the arches. The only possible exception is the pairs of columns between the arches of the Forty-second Street entrance; and these are placed there merely to accen tuate the fact that this is the main approach. The proportions of the façade are truly monumental, the main arches being 33 feet in width by 60 feet in height, and the cornice being about 75 feet above the street level. The whole structure will be faced with gray granite, and with its great frontage of 300 feet on Forty-second Street and twice that distance on Van derbilt Avenue, and with an open width of street of from 130 to 140 feet to afford a fitting point of view, it must long remain one of the most successful of the monumental buildings of New York city.

THE LIFE OF A BARREL.

The introduction of improved machinery in its manuacture has made the American cooperage business the largest in the world. There are upward of $300,000,000$ barrels and circular packages manufactured in this country annually, and the demand increases so that this output must be steadily broadened in order to keep pace with the growth of the business. The largest consumption of barrels is in the cement business, which approximately demands $35,000,000$ a year for the trade, while flour comes next, with a demand for $22,500,000$ fence staples, bolts, nuts, and nails require $18,000,000$ and sugar $15,000,000$. Roasted coffee, spices, crockery, and fruits and vegetables use up about $5,000,000$ barrels a year each, while the glassware trade, baking powder companies, distilled liquor manufacturers, and candy, tobacco, and cheese packers are big users of bar rels, averaging in each trade from $2,000,000$ to $3,000,000$ barrels. The consumption of barrels for molasses, oil, lard and pork is also enormous, while dry paint, glue, snuff, oatmeal, screws, castings, and general hardware articles annually increase the demand on the cooperage supply.
While the amount of expenditures for barrels can be closely estimated for a given year, it is not possible to say how many barrels are in actual use. The life of a barrel is put down at one year by the trade; but that is far from true. The great majority of barrels have as many lives as a cat. They begin as sugar or flour barrels, and are then sold to the farmer for shipping his produce to market. It may be they are returned to him several times, carrying potatoes or pickles to market in the first trip, and then cabbages or lettuce in the next, each cargo being lighter in weight than the previous one, owing to the weakened condition of the barrel. Finally, the barrel may serve out its life work as a garbage receptacle, and be burned in the end in some tenement home to keep out the winter's chill. Thus it may be said that a barrel serves a more useful career than almost any other manufactured article, and its life is much longer than a season
The demand for barrels is steadily increasing because modern machinery has made it possible to make them for the trade cheaper than almost any other form of package. That it is the most convenient form of package has long been acknowledged. The ancient cooper's art was a skilled one, and the work of cutting out the staves and then assembling them required long practice and apprenticeship. To-day machinery performs in a fraction of the time what hand labor did so slowly and clumsily.
The modern veneer machines have been instrumental in reducing the cost of barrels. Hand labor is eliminated here to such an extent that the work of feeding the machines constitutes most of the requirements of the operators. The staves are cut to the required thickness by the machines, and then pressed into shape by hydraulic pressure until they are ready for the assembling machine.
A feature of barrel-making in this country is the grading of the circular packages so that all the lumber brought to the factories can be utilized. One class of barrels must be absolutely water-tight, without a flaw of any kind in their staves. Barrels made for the oil, whisky, and paint trade must not only be flawless, but they must have a resistance power equal to a lateral pressure of five hundred pounds. In order to secure this the staves must be put to a rigid test beforehand, and they must be cured so there will be no danger of shrinkage and damage when put into use. Lumber used for this work must be carefully selected, and it must be cured by nature's slow but sure process. Kilndried lumbr r would never do. The condition of kilndried wood is such that it would prove too brittle.
The choicest oak, hickory, ash, or other hard wood must be selected for barrels used for such purposes, and their cost is consequently in proportion to the extra labor and cost of the raw product. Out of every dozen trees in an ordinary woods only four or five will be
found to pass the most rigid examination and tests. The second grade of barrels comprises those which have to endure a great lateral strain, but which do not have to be water-tight. To this class belong the sugar barrels, and all those used for packing hardware. The staves must be made of hard wood, but they only require strength and a power to resist three or four hundred pounds lateral pressure. It is possible to use for these barrels most of the lumber rejected for the first class of barrels. There must not be knot holes in the barrels, however, for tightness to some extent is essential. While the sugar and flour barrels have paper lining inside of them, they will spill more or less of the contents if holes and cracks of an unusual size are left in them.

The third grade of barrels includes those used in the hardware trade and for packing tobacco, spices. and coffees. The weight of these articles is no less than sugar or flour, but their sides need not be so tight. The barrels and kegs for the hardware trade must be stout, but lumber can be used that is somewhat defective. Knots are not necessarily a bar to the use of staves. Some of the rough lumber used up in this way is practically of little or no use for the manufacture of any other kinds of circular packages. The cost of the raw material being smaller, the barrels can be sold to the trade from fifty to sixty per cent less than those made for sugar, molasses, oil, whisky, and paints.
The question of hoops for these commercial barrels is fully as important as the staves. The use of wire and flat iron hoops has become quite universal, but where wooden hoops can be used as well, they always receive the preference. The most satisfactory method is to use wooden hoops, reinforced by iron or wire ones. A great many of the barrels used in the trade are thus held together. There is a uniformity of strength existing between staves and hoops which must be carefully computed in the manufacture of barrels for the different trades. To make hoops that would break at a straining point of two hundred pounds for barrels that were built of staves guaranteed to withstand a pressure of five hundred pounds would be a waste of good material. If anything, the hoops must have a resistance more than equal to that of the staves. The hoops are consequently the most important part of the barrel. Stout hoops will hold a barrel together even when the staves are weak, and it is possible to hoop a barrel of 200 pounds resistance.so that it will resist a pressure for a time of 500 pounds. The breaking power of "either the wooden or wire hoops is carefully computed for each class of barrels, and when properly made and applied they will insure a long life to the circular packages. The life of the barrel is estimated by the life of the hoops, and to prolong it beyond that period new hoops must be supplied.

DETERMINING A SHIP'S BEARING BY WIRELESS

 TELEGRAPHYA Boston inventor has devised a means for determining the bearings of navigable vessels under all conditions of weather, the object being to provide improved indicating devices for use with a ship's compass and the usual sailing-charts, whereby the bearings of known objects at a distance from the ship may be positively determined at times when owing to fog or storm the landmarks may be invisible.

The invention is based upon the scientific fact that "Hertzian-wave" impulses or signals may be conveyed over long distances without connecting-wires. This principle is utilized to determine the position of the ship with relation to known landmarks, thus rendering navigation safer and avoiding delays in the move ment of vessels caused by foggy or stormy weather when the usual sight observations cannot be taken.
The apparatus, carried on the ship, is applied to or connected with the binnacle, which incloses the ship's compass; and it consists, primarily, of a receiving instrument electrically connected with an upright conductor so shielded that it can receive only the wave, impulse, or signal (coming from a transmit ting station on shore or from another ship or light ship) through a lateral opening or slot when such exposure is in proper range radially with said ship or shore station. The conductor is surrounded by a rotatable shield, cap, or tube slotted vertically to admit the wave or impulse from a given station at such time only, in its rotation, as the slot or opening is approximately between said station and the inclosed con ductor. With this apparatus or its equivalent when used on shipboard a rotatable pointer is employed extending over and close to the compass, always in the same radial vertical plane as the slot or exposure, to indicate on the face of the compass the bearing of the station from which emanates the signal or impulse reaching the receiving instrument through such slot or exposure.
With this system of taking bearings each lighthouse and prominent landmark will have a distinctive name or number by which it is known and designated on sailing-charts, and each will be provided with a trans mittileg instrument adapted to continually repeat its
name or number or to automatically transmit such impulse, wave, or signal as shall make the identity of the station certain. Then when a ship appears off the coast provided with the receiver and compass attach ments, the elevated conductor receives through the slot of its rotating and intermittingly-acting shield the impulse sent seaward from the transmitting stations, and the navigator notes at once on his chart the bearing of the station as denoted on his compassdial by the indicating pointer. From another shore station he receives a different signal, and by the cross bearings thus secured he obtains his reckoning, showing exactly where on the chart his ship should be. A transmitting instrument on the ship will at such times be able to communicate with the shore-station, thus making its presence and its exact location known.

SCIENCE NOTES.

A telegram has been received at the Harvard College Observatory from Prof. W. W. Campbell at Lick Observatory stating that a sixth satellite of Jupiter, suspected by Perrine in December, was discovered by him January 4, 1905. The position with respect to Jupiter from previous plates taken in January, is as follows: Position angle 269 deg., distance 45 . The distance is decreasing 45 sec . daily. The apparent motion is retrograde and the magnitude 14. Derived from observations with the Crossly reflector on December 3, $8,9,10$, and January 2, 3, 4.

A clock which will run for two thousand years has been invented by Richard Strutt, son of Lord Rayleigh The motive power is a small piece of gold-leaf which is electrified by means of a very small quantity of radium salt. It bends away from the metal substance and keeps moving under this influence until it touches the side of the containing vessel. At the moment of contact it loses its electrical charge and then springs back and is again electrified, and the process repeated. Sir William Ramsay considers that this may be made nto a very reliable time-piece at an expense of about $\$ 1,000$.
President Roosevelt has become the honorary president of a committee representing the United States, which is to be a portion of an international organization, including the heads of all of the Powers of Europe, to make excavations at Herculaneum, which, together with Pompeii, was destroyed by an eruption of Vesuvius in the year 79 A. D. Prof. Waldstein has secured the consent of the King of Italy to act as the head of the international committee. King Edward will be at the head of the committee in England, Emperor William in Germany, President Loubet in France, and King Oscar in Sweden. The international committee will have headquarters in Rome, over which the King of Italy will preside. Representatives of every nation will be at Herculaneum, and, once started, the work will be pushed rapidly.
E. Demoussy has made a series of experiments to show the growth of plants in an atmosphere charged with carbon dioxide gas. In this case the plants reach an increased development over the plants growing in ordinary air. He used two glass boxes each of over one cubic yard capacity and containing a number of pots. The first was not entirely closed and was used for the plants growing in ordinary air. The air supply was sufficiently renewed to give the average conditions, and number of tests gave the normal amount of carbonic acid, or $3-10,000$ ths. In the second box a certain amount of carbonic acid gas was introduced each day so that the proportion reached $18-10,000$ ths. In the evening this became less, but never fell below 12 10,000 ths, so an average of 15 could be admitted, this being five times the amount contained in ordinary air. During the day the plants were protected from the sun's rays by cloth covers, and at night the boxes were opened so that they were well aired. For the experiments he chose four sprouts as nearly alike as possible, placing them in ordinary flower-pots in garden earth, one pair in each box. The observations were made from the end of May to the end of July, at which time the plants were cut and weighed. The following results show the increase in growth due to the carbonic acid. The weights are those of all the part of the plant lying above ground. At the beginning the weights were very small, as the plants had just sprouted; only the geranium, mint, and fuchsia came from buds. The first figure gives the weight in ordinary air and the second in the air charged with gas. Coleus, 34 grammes; 50 grammes. Lettuce, 21; 36. Geranium, 45; 118. Castor, 26 ; 45. Mint, 28; 36. Red tobacco, 30; 54. White tobacco, 51; 101. Poppy, 21; 30. Fuchsia, 30; 29. All but one, the fuchsia, show a great increase, with an average of 60 per cent. The appearance of the plants is the same in both cases, but the dimensions are somewhat greater in the latter case. For many of the plants the flowering is more rapid and abundant in the charged air. The fuchsia alone does not show any difference, but this may be due to the fact that the plants were but little developed in either case, as the conditions of high temperature and moisture were probably unfavorable for its growth.

THE NEW GRAND CENTRAL STATION, NEW YORK.
In the editorial columns of this issue will be found discussion of the fundamental principles laid down by the architects of the new Grand Central Station, for their guidance in determining both the internal ar rangements and the general architectural appearance of this great structure. The station building proper together with the general offices of the company and
ing determined in every case by the structural engineering necessities of the station. The southerly façade will stretch for 300 feet on Forty-second Street, and the westerly façade will reach for 680 feet on Vanderbilt Avenue. The building will extend 625 feet on Forty-fifth Street, 400 feet on Lexington Avenue, 275 feet on Forty-fourth Street, and 260 feet on Depew Place. The southerly half of the building incloses the
height. On entering, the passenger will find himself in a vast ticket lobby, 90 feet in width by 300 feet in length. In the center of this building will be a long, oval structure, containing the ticket offices. To the right of this, and forming part of the main lobby, will be the outgoing baggage room. On the opposite side of the lobby the passengers will leave the ticket lobby through three main arches, corresponding to the en-

Frontage on 42d Street, 300 feet ; on Vanderbiit Avenue, 680 feet. Height to cornice, 75 feet,
Warren \& Wetmore and
Reed \& Stem, Architects
The New Station as it Will Appear from the Corner of Forty-Second Street and Vanderbilt Avenue.

Restaurant.
Ticket Lobby, 90×300 feet.
Grand Concourse, 160×470 feet. 150 feet high.
Express Tracks.

LONGITUDINAL SECTION THROUGH THE NEW GRAND CENTRAL STATION, NEW YORK, SHOWING THE TWO TIERS OF TRACKS.

he post office and. express buildings, will cover the blocks lying between Vanderbilt and Lexington Ave nues from Forty-fifth to Forty-third Street, inclusive and the block fronting on Forty-second Street be tween Vanderbilt Avenue and Depew Place. The main architectural features are governed strictly by the ground plan, the dominant architectural elements be
trance arches, and enter a broad gallery, which runs around three sides of the grand concourse. The ticket lobby and this gallery, it should be understood, are at street level. From the gallery passengers will descend by four broad staircases, each 25 feet in width to the floor of the grand concourse, which, by the way, (Continued on page 46.)

A CHICKEN-FEEDING MACHINE.

Fattening fowls for the market by means of machinery, on first thought to most people seems ridiculous, hardly more so, however, than the hatching o chickens by means of an incubator a few years ago The incubator has come to stay, and the chicken eeder, although an innovation, has found a place in some of the largest poultry yards. Modern genius in recent years has affected the poultry farm just as decidedly as it has the apiary or the stock farm, and its problems have offered a wide field for scientific study.
It is claimed that chickens fattened by machinery comprise sweeter and tendere meat than those fattened in the ordinary way. Fowls are fed in this manner for two or three weeks prior to killing, and in that time increase in weight from two to three pounds. The chickens are not allowed exer cise in this time, and are allowed no othe food than that which is received from the machine. The feeding is done twice a day and one man can feed 300 chickens in a day It is a patent liquid food that is fed in this manner, the ingredients of which, of course are known only to the maker.
The feeding machine is nicely illustrated in the accompanying photograph. The food is forced through a tube by means of a suc tion pump, which in turn is operated by a foot pedal. The tube, which is about ten inches in length, reaches through the chick en's mouth into its crop. In the photograph this tube is shown on the outside of the owl's neck, reaching to about the sam point as when inserted in the mouth. When the crop is full the flow of liquid food stops instantly, and the chicken is not injured in the least. This feeding by machinery is done chiefly in the preparation of roaster for the market and for finishing the fatten ing of broilers.

Notable progress has also been made among poultry raisers in the increased pro duction of eggs. It is claimed to-day.that it is within the power of the poultry owner to make his hens lay an average three years crop in two years, and that even molting is controlled at the will of the owner. This is an important discovery in this day, when the demand for eggs is so enormous and the price so high. In the last annual report of the Secretary of Agriculture, a statement is made which gives an idea of the size of the annual consumption of eggs in this country. This report states that the hens of the United States lay $1,666,000,000$ dozen of eggs a year, the value of which in one month is enough to pay-the interest of the entire national debt for one year. There is little question that the sci entific study that has been given the subject of poultry raising in recent years has added materially to this nnual egg production over what it otherwise would have been. Proper housing, for example, has come to be recognized as an absolute essential. Also, as pure air is required for the healthy human being, so also the well-bred fowl to-day is given plenty of fresh air while at the same time drafts are avoided.
It is not unusual nowadays to see numerous small chicken houses scattered over a large field where the poultry business is carried on upon an extensive scale This arrangement, of course, admits of the various flocks being housed separately. Artificial heat is sel dom resorted to in heating these houses, except in extreme cold weather. With all surroundings conducive, it is not unusual for one hen to lay sixteen dozen eggs in one year and even better records than this are often made Few poultrymen, however attain such records with heir flocks unless they have made a study of the numerous scientific meth ods of caring for them.

A new application o wireless telegraphy has been introduced by two English inventors. The device is purely for enter taining purposes, consist ing of the operation of mu sical boxes placed at dif ferent points from on common center. There is a receptacle in which the coin is placed, and imme diately a musical box placed at a distance, such as in another room, com mences to play.

THE TWO-MIRROR CELOSTAT OF THE SMITHSONIAN ASTROPHYSICAL OBSERVATORY.
south track is for the purpose of shifting the second irror for different declinations of the sun, the mirror eing at the south end of the track at the summer solstice.

As it has been thought that this solution of the difficulties attending the use of the cœlostat will prove of interest and value to astronomers, a large instrument of this type was ordered from the J. A. Brashear Company and sent for exhibition to the recentlyclosed Louisiana Purchase Exposition. The ac companying engraving is reproduced from a photograph of this cœlostat as now being tested at the Astrophysical Observatory, in connection with the long-focus mirror above mentioned. There is also shown in the illustration a portion of the "churned" tube of the horizontal telescope, of which more will be said later. The cœlostat carries a thirty-inch and a twenty-five-inch mirror, the former turned by a polar axis driven at the rate of one complete rotation in forty-eight hours, the latter mounted on a carriage with traverse motions at right angles like the slide rest of a lathe. The cell of the second mirror is carried by trunnions in a fork, itself capable of turning about a horizontal north and south axis, and by these two motions of rotation, with their fine adjustments, the beam may be sent in any direction whatever, though most favorably in a nearly northerly one. In actual use the reflected beam is depressed about 6 deg. from the horizontal to feed the long-focus mirror, which is 55 feet north and about $31 / 2$ feet below the center of the first mirror of the cœlostat, directly under which the beam passes toward a focus on the third pier, some 85 feet further south. To provide for this depression of the beam from the horizontal, the north and south, or declination, track of the ccelostat is inclined upward at a corresponding angle, so that the reflected beam may always clear the first mirror. The length of travel of the lower base of the second mirror on this north and south track is five feet and the lower base itself has an east and west track six feet long on which the upper casting is moved to and fro to allow for avoiding the shading of the main cœlostat mirror by the cell of the twenty-five-inch mirror between 11 o'clock and 1 o'clock near the times of the equinoxes.

Early experiments on an artificial star with the long-focus mirror, before the completion of the cœlostat or the installation of a tube, showed conclusively that the "boiling" caused by irregularities of he atmosphere over the grass-grown soil between the mirror and its focus waz far too great to permit anything like satisfactory definition on the solar image, and therefore the novel device of a tube with provision for stirring the air by means of a blast was ordered It consists of a main horizontal tube 24 inches in internal diameter with diaphragms at five-foot intervals, and with an inclined flared tube uniting with the main tube at the north end close in front of the concave mirror. At intervals of about five feet, five-inch ducts lead to air-mains 14 inches in diameter, which in turn at length unite in two twenty-inch mains leading to the intake and blast respectively of a twenty nine-inch fan blower with direct-connected $21 / 2$-horse power electric motor. It is so arranged that the openings in the telescope tube communicate with the blast and suction of the blower alternately, so that the air within the tube is repeatedly carried through the system and churned over and over. Thus the path of the beam from the cœlostat to the focus of the mirror is thoroughly stirred, but nothing has been done as yet to introduce stirring between the cœlostat and the sun. It is possible that an attempt will be made later to stir the path of the beam in the eighty feet immediately above the cœlostat, if it is found impossible to get good enough definition with the present arrange ments.

It should be recalled that the conditions re quired for bolometric work are quite different from those suited to direct. eye vision or to photography. Bolometric studies require unchanging transparency of the air, else difference in the galvanometer deflec tion may be due to alter ations in transparency of
the intervening medium and not to the properties of the source of light. Thus those times when thin cirrus clouds, fog, or smoke cover the sun, which are well known by solar observers to be the times when "boiling" is apt to be diminished, and which are the most favorable opportunities for visual and photographic observations, are quite unsuitable for bolometric work. Indeed, the best time for this is some what after noon on those clear October days when "boiling" is apt to be at a maximum, but cloudiness at a minimum, and it is probable that the definition obtained in such conditions will never be the best.
Trials made thus far have demonstrated the great value of the stirring apparatus, not only to diminish "boiling," but to preserve a constant focal length and tolerable definition. "Boiling" is still of course notice able, because the long reach of air above the cœlostat is not stirred, but the image is far better than couid be obtained with the earlier appliances, and owing to the massive piers and to the simplicity of driving mechanism, it is less subject to jars and wandering.

THE BRONTOSAUR. HOW A GIANT PREHISTORIC ANIMAL WAS DISCOVERED, TRANSPORTED AND RESTORED.

In 1897 Mr . Walter Granger, of the expedition sent out in that year by the American Museum of Natural History of New York, found in the southeastern part of central Wyoming, not far from the Medicine Bow River, the first fruits of the greatest collection of the fossilized remains of extinct reptiles that has ever been discovered in any one locality. Previous prospectors had taken fossils from the region, but had abandoned it for other fields, so that Mr. Granger really rediscovered it. It will be remembered, from various accounts published since then, that weathered fragments of dinosaur bones were so common at this place that they were taken for bowlders of peculiar shape, and that a couple of Mexican sheep herders had used these fossils for the foundations of their hut. This Bone Cabin Quarry, as it came to be called, was about ten miles south of the famous Como Bluffs, from which a considerable number of fossilized skeletons had previously been taken. The finest specimen among these is Prof. Marsh's Brontosaurus excelsus now one of the treasures of the Yale Museum.
When fossil bones of one kind are found in different places within a reasonable distance of one another, they usually occur in one stratum, which has cropped out at different points. This is true of the remains found at the Como Bluffs and at the Bone Cabin Quarry, the bone layers there exposed being of the same age, and originally an unbroken level stratum which may be designated as "the dinosaur beds." When the contiguous Laramie Mountains and the Freeze Out Hills were formed by the shrink ing of the earth's crust, this stratum was correspondingly warped and wrinkled into numbers of great folds or rock waves. Surface erosion of wind and water has been responsible for the subsequent removal of great portions of the crests and upfolds or
"anticlines" of these waves, thus exposing the edges and allowing the weathering out of the fossilized contents of the strata. This layer, usually about two hundred and seventy feet in thickness, is entirely of fresh-water origin, but both above and below it are strata which show that there had been previous and subsequent invasions of the sea, the first forming the ichthyosaur and the latter the mosasaur beds. Owing to the uplift of the various mountain ranges, this great dinosaur graveyard is found to crop out along the entire eastern face of the Rocky Mountains, around the Black Hills and in all parts of the Laramie Plains. Dinosaur bones may be found almost everywhere, but up to the present, in no locality have they been seen in such profusion as in the two wellknown places mentioned before.

In the excavations at the Como Bluffs the remains were found thoroughly scattered and from twenty to a hundred feet apart, an entire skeleton or even the larger part of one being extremely rare. In the Bone Cabin Quarry, on the other hand, the American Museum expedition found a vast number of skeletons, not only close together, but often closely commingled, remains of most of the animals of that region at that period, from the largest of the giant dinosaurs to the smallest and most bird-like kind. The Bluffs appear to represent the ancient shore line of a muddy estuary or lagoon, such as is depicted in the accompanying drawing of a Brontosaurus restoration by Charles

Covering the Excavated Bones with Plaster of Paris.
The figures on the plaster show whe each bone is and where it was found

Appearance of the Fossil Bones when Uncovered.
THE RESTORATION OF THE GIANT LIZARD, THE BRONTOSAUR, AT THE AMERICAN MUSEUM OF NATURAL HISTORY, NEW YORK.
but more massive in structure. Considerable portions of the skeletons of perhaps a score of the great herbivorous dinosaurs are preserved in the Yale, Carnegie (Pittsburg), Field Columbian and American muse ums, while much less abundant and more incomplete remains have been found in England near Oxford. Of another type, and much smaller in size, were the carnivorous dinosaurs. They were bipeds with bird like feet and sharp claws, and, in contrast with the two foregoing types, had large heads with share, pointed teeth. The marks of these teeth have been found upon the tail vertebræ of both Diplodocus and Brontosaurus, showing that if the carnivora did not destroy the ponderous and slow-witted lizards of the other types, they at least fed upon their carcasses.
In 1898 the largest known and at the same time the most complete Brontosaurus skeleton was discovered about three miles west of the Bone Cabin Quarry It was worked out with great care, and is now being restored and mounted complete at the American Museum under the direction of Prof. Osborn. When fin ished it will be the only mounted skeleton of a Brontosaurus in the world, though at the Yale Museum the pelvis and hind legs of a dinosaur of this kind are mounted, and another splendid skeleton of a Diplo docus is being reconstructed at the Carnegie Museum, Pittsburg.
As can be readily understood, the natural processes incident to the preservation of these fossils almost
preclude the possibility of finding an entire skeleton Especially is this true of the smaller bones, such as those of the head, or those not firmly bound together by strong ligaments. These often become scattered or so badly crushed by the weight of the strata which accumulate above them that it is not worth while to mount or even reconstruct them. The Brontosaurus now in course of erection at the American Museum is unusually well preserved, and it is, fortunately, of nearly the same size as the Yale Museum specimen This fact smoothed over a number of difficulties. The skull was not found, and in fact is known only by incomplete portions of the jaw and of the back of the head. The reconstructed skull is based on these frag ments and on the known skull of a nearly related species. The heads of these herbivorous dinosaurs, by the way, were comparatively small in size and altogether out of proportion with the ponderous body. We can hardly understand how this very small head with its light jaws and slender, spoon-shaped teeth could adequately supply the food necessary to nourish the great creature. Prof. Osborn is of the opinion that the animals fed on some very plentiful and nutritious water-plant, which was swallowed in large quantities without mastication, there being no grinders or molars in the head.

The Brontosaurus was among the most highly specialized of the herbivorous dinosaurs-probably the last of the race. Evidence of this is found in the wonderful construction of the bones, especially of the vertebræ. The bones were excessively light for their size and strength. They are so shaped that every unnecessary particle is dispensed with, are hollowed out wherever possible and braced wherever necessary and are porous in the centra. The ac companying photograph of the verte bræ clearly shows the remarkably effi cient construction, from an engineer ing standpoint, to withstand the enor mous strains and stresses incident to moving the huge bulk of a creature from 60 to 70 feet long. It shows also how similar the principle of structure is to the modern T-iron one. From the tip of the tail to the head the struc ture of the vertebræ changes with the mechanical requirements. Exactly what these were, however, has not been thoroughly studied, as little is known about the musculature of the body. A further demonstration that the Brontosaurus was highly special ized is given by the pelvis. In primitive vertebrates there is little connection between the pelvis and the backbone. Here the pelvis and the adjacent vertebræ are intimately con nected. The anterior tail vertebra are peculiarly shaped to strengthen the pelvis, and the one nearest to this is, in fact, a part of it. The lateral flange of this vertebra is in part probably a modified rib, being deepened to give added strength with which to resist the tremendous torsional strains on this portion of the frame, the pivotal center of motion undoubtedly being at the hips.
It is supposed that the two inverted V-shaped prongs under the hind legs were used to rest upon in a sitting posture, and that there was a great pad of cartilage or connective tissue at the point of each V. It is not believed that the Brontosaurus was able to sit up on the hind legs and tail like the modern kangaroo as at no point of the tail is found the peculiar bend or the fusion of vertebræ usual in this case.
The Brontosaurus was supposedly aquatic, but not marine. As in most aquatic animals, the ends of the bones at the joints are rough instead of smooth. It is, in fact, beginning to be doubted whether it ever came out on land, though the comparative lightness of its bones, usual in walking or flying animals, but not in swimming ones, seems to indicate that part, at least, of its life was spent out of the water. The five toes on the hind feet are thought to have been used to force the body along the muddy bottoms of the shallow lagoons which the Brontosaurus supposedly frequented. Palæontologists have not, however, accounted for the single claw on each forefoot. The fact that there really was only one claw on each forefoot is proven by the numerous fossilized footprints that have been found.
The mental and physical labor, the time and patience necessary successfully to complete a restoration of this kind, can hardly be appreciated by the layman. The expeditions that are sent out each year to search for fossils or to recover those already found, entail great labor and expense. The real work begins, though, with the removal of the fossils from the rock, clay, or shale matrix, and this excavation is a very
delicate operation, as the bones are brittle and frac ture easily. As they are uncovered little by little, the bones are closely covered with tissue paper or very thin muslin and gum arabic. Over this, as they are gradually laid bare, plaster of Paris is applied, till the entire bone is covered. Sometimes, if the bones are much shattered, no attempt is made in the field to excavate them, but the surrounding matrix is cut out and shipped in a block. In the case of the large bones, the plaster envelope is strengthened with wooden ribs and the whole bound with wet rawhide which is then allowed to shrink and closely bind the whole. Th fossils are next carefully crated and hauled to the nearest railroad siding for shipment. This sometime means a bad trip of many miles over rough countr and is frequently the cause of much difficulty
The actual laboratory work of patching up fractured bones, restoring or reproducing missing ones, of put ting them properly together and in a proper posture, means months of thought and labor. It can readily be understood that it is a matter of some difficulty to pose a skeleton 60 -odd feet long and 15 feet high at the pelvis. Some of the individual bones are enormous The femur of the hind leg is 5 feet $101 / 2$ inches long, the total length of the body being estimated at 66 feet while the remarkably small head is only 27 inches long. In the Field Columbian Museum are preserve the limb bones of a related species, the Brachiosaurus, the femur of the hind leg being 6 feet 8 inches long Assuming the proportions to be the same, the Chicago specimen would have been 70 to 72 feet over all.
The construction of the iron framework used in a restoration of this kind is no mean feat of practical engineering. The photographs of the hind and fore limbs give a clear idea of the way in which this is done. For supporting the weight of the large bones of the limbs and backbone, heavy wrought-iron pipe of large size is used. This is bent and curved so as to conform closely to the natural angularities, as shown The bones are fastened to this by means of lighter piping and reducing crosses. Light channel irons and flat bands are also used, as may be seen in the manner in which the bones of the pelvis are supported and bound together. The photograph of the vertebræ shows how these are joined to the heavy supporting pipe by means of smaller pipe and reducing tees.

Some idea of the length of time that work of this kind takes may be gathered from the fact that it took two men at least a year to work the bones out of the matrix, at least six months to restore the missing parts, and at least ten months to mount the bones, weld and bend irons, etc. Nor does this include the time spent by the field parties or by Prof. Osborn and other scientists, and Mr. Adam Hermann, head pre parator of the department, in planning and laying out the work.

This department of the American Museum is one of the most interesting ones in the institution. The collection comprises the extensive material collected by the late Prof. E. D. Cope, chiefly between 1870 and 1890, and the much larger collections made by the expeditions which have been sent out by the Museum every year beginning with 1891.

We are indebted to Prof. Osborn for courtesies in the preparation of this article.

The Congo (Belgian) Telegraph.

The telegraph and telephone lines of the Belgian Congo region show some peculiarities both in the construction of the lines and their operation, owing to the climate and the character of the country. Where the lines run through the forests, the wires are placed as much as possible upon trees and in other case upon iron poles. The wire, which is of phosphor-bronze, is painted black, so as not to attract the attention of the natives, who lay hands upon all the copper they can find. The other brilliant objects of the line, such as the insulators, are also painted black. A cutting 30 feet wide is made through the forest for the line so that there is no risk of fire or from falling trees Besides the telegraph offices of Leopoldville, Kwamouth and Coquithatville, there are nine telephone offices and six cabins. The latter are used for communicating with the steamboats on the river. The first hours after sunset are the best for telephoning, and it is possible to telephone direct from Matada to Kwamouth, or 380 miles. From the latter point to Boma, or 410 miles, the voice is still heard. After 10 o'clock A. M. the heat makes it impossible to use the telephone, especially in the rainy season. 'This is due to the fact that a return wire is not used, and the use of the earth return is accompanied by great disturbances in the middle of the day. The greatest enemies of the telephone lines are the wild animals. In the rainy season atmospheric discharges often strike the wires, therefore the lines need to be constantly inspected and repaired. Within the last two years the government has been experimenting with a wireless telegraphy system between Boma and Ambrizette to connect the land lines with the submarine cable,

THE TASMANIAN BLUE GUM-AN IDEAL TIMBER FOR HARBOR BUILDING.

The erection of the great National Harbor, at Dover, on the south coast of England, has called attention to the wonderful properties of the Tasmanian blue gum (Eucalyptus globulus). It is at once one of the strongest as well as the most durable and densest timber in the world. It is so heavy that it will sink like a piece of lead, while it is also practically immune from the attacks of the seaworm. These facts have only lately been more or less known to timber experts, but the presence of a large number of piles of Tasmanian blue gum at Dover, where they were tested together with ther timber, has shown in the most striking manner the superiority of this wood for the erection of staging n salt water.
Before dealing further with the wonderful strength and remarkable density of the blue gum, it is as well to note that the harbor where this wood is being ex tensively employed is one of the biggest ensineering eats ever undertaken. It is being formed by extending the well-known Admiralty Pier at Dover some 2,000 feet, the erection of an eastern arm 3,320 feet in length, and the building of a breakwater 4,200 feet long. Natually, the carrying out of such a huge undertaking called for an enormous amount of timber, the minimum quantity required being given as follows: Hardwoods, principally greenheart and rock elm, 25,000 cubic feet; and softwood, pitch pine, redwood, etc., 75,000 cubic feet for permanent work; and for merely temporary staging, 550,000 cubic feet of blue gum and ther hardwood; and pitch pine, etc., for superstruc ure, 850,000 cubic feet; or some $1,500,000$ cubic feet of imber in all.
It was not necessary, of course, to go to Tasmania for the execution of such an order, so far as quantity was concerned; indeed, some of the timber used for piles at Dover has been imported from Vancouver's Land, and on the whole there has been very little fault o find with it. Then why, one may well ask, did the contractors avail themselves of the services of their timber expert, Mr. W. Heyn, and dispatch him on a journey of 14,000 miles to Tasmania, to bring home piles which could have been purchased cheaper in America or Canada? The reasons were many. To secure Oregon piles 100 feet in length and 18 to 20 inches square (the necessary dimensions) was by no means difficult; but Tasmanian blue gum piles were referable, chiefly on account of their greater specific gravity. In the first place, it was found impossible to get a pile of Oregon 100 feet in length into position for driving into the ground through 47 feet of water at low tide, on account of the strength of the tides and currents, unless it was "weighted" with iron at the end. This at once entailed an extra expense in material and labor of nearly $\$ 50$ per log.
But the blue gum possessed other advantages over its rival Oregon. The Teredo navalis, or seaworm, lit erally honeycombing its way through the latter, rendered it after some time unfit for further use as a pile As a rule, the timber was injured through the ravages of this little animal after a period of about eighteen moaths to two years. Now, it is not difficult to see that as the piles are only employed to carry temporary staging, so as to enable the 40 -ton concrete blocks of which the harbor walls are being built to be placed in position, a great saving is effected by using them over and over again as the blocks are laid. That was mpossible for any great length of time in the case of Oregon wood, but with Tasmanian blue gum it was entirely different. Being immune from the attack of the sea insect, the greater proportion of the blue gum piles at Dover have been in constant use for over three years, some having been driven three or four times, and there is no reason why they should not be re-employed in this manner till the whole work is completed. On account of their high gravity it is not necessary to weight them, and should they get carried away by accident they would sink where they feil', and could easily be recovered, instead of floating about as Oregon would do, a menace to the works or to ships or steam ers. Some idea of the density of this wood may be the better understood when it is stated that it has a specific gravity of 75 pounds to the square foot, whereas water is but 65 pounds. A pile of blue gum, therefore, 100 feet long and 20 inches square, would turn the scale at nearly 10 tons, while an Oregon log of similar dimenșions, having only a specific gravity of 48 pounds per square foot, would only weigh 6 tons, and consequently float.
To obtain a pile 100 feet in length and 20 inches square, parallel from top to bottom, demands a tree 15 to 18 feet in girth 5 feet from the ground, and about 150 feet to the first branch. The Tasmanian blue gum easily attains this height. Indeed, so far as height and general beauty are concerned, the blue gum is no mean rival to the famous Redwoods of California. A arge quantity of the timber to be seen at Dover came rom the yards of Messrs. Gray Brothers, of Adventure Bay. Mr. Gray, the head of the firm, states that they
often come upon trees from which they could cut piles 160 feet long (that is, 60 feet longer than required by the contractors at Dover), before the first branch is reached, and others 230 feet high measure 7 feet through at the butt. Nor are these figures by any means the largest recorded for Tasmanian blue gum Mr. Perrin, formerly Inspector of Forests in Tasmania and afterward in Victoria, mentions having measured a fallen blue gum at Geeveston (on the Huon River) which had a length of 330 feet; and Mr. R. M. John ston, the eminent government statistician, speaks of "the Tolosa blue gum," also 330 feet high; and Baron von Meuller, the well-known Australian naturalist, say of a blue gum growing at Southport in Tasmania that it contained "as much timber as would suffice to build 90 -ton schooner." And when speaking of these giants, it should be borne in mind that they are not isolated cases, mere curiosities, but that trees of from 200 to 250 feet are fairly common in the forests, extending over thousands of acres in the Huon and Peninsula districts of Tasmania, rising high and clear of boughs like the masts of great ships.
The wonderful strength and lasting qualities of the Tasmanian blue gum have been more than demon strated at the Dover Harbor Works, where their em ployment has given the greatest satisfaction, thus calling attention in the most emphatic manner to the commercial value of Tasmanian timber. Tests very carefully made and at long intervals show that tin Tasmanian wood will sustain about double the weight of English oak before breaking, and will even regain its elasticity after bearing a weight at which oak breaks, while as to its longevity under water no limit appears so far to have been reached. Many instance could be quoted in confirmation of this statement. An old ferry-boat built of blue gum in 1818, and which for more than fifty years has been lying a wreck between high and low water mark on the banks of the Derwent in Tasmania, shows no signs of decay to-day, and the wood, beyond a few stains from the iron fastenings, is perfectly sound. A portion of this old vessel is shown at the Hobart Museum, among a collection of Tasmanian timber. In speaking of the commercia value of this particular wood, one must not forget that a good deal of it is to be found growing within six to ten miles of the seashore, thus considerably reducing the difficulties of transportation to the timber ships, which is effected on rudely-formed tramways.
Another Tasmanian tree deserving of mention here is the stringy bark (Eucaly, ius obliqua). In height and size this tree is quite equal to its brother, the blue gum, and when cut it is by no means easy to distin guish it from the blue gum. Its specific gravity is usually about five pounds per cubic foot less, but it is often found with knots, which render it less desirable for piles required to carry very heavy loads, besides be ing more liable to seaworm attacks. It closely resem bles English oak, particularly when used for flooring for which it is well adapted.

It is interesting here to note that sleepers cut from the stringy bark and blue gum are most excellent They have been used on the Dover Harbor Works for four years, exposed to the most trying weather, salt and fresh water, very heavy traffic of locomotives, goliath cranes, etc., being continually shifted and re laid as the engineers of the service require, and ye they are in as good condition to-day as they were when first puit down. Large quantities of these sleopers are being sent from Hobart to South Africa, where the are highly esteemed. Their great feature is their dura bility, their average life being no less than twenty years. They cost about $\$ 1.50$ each, against $\$ 1$ for Baltic or soft timber sleepers, which do not last one third of the time. This wood is also admirably adapted for wood paving, and if properly laid on a good con srete foundation, will last under heavy traffic fifteen to twenty years, and does not polish through use, thus giving a sure foothold for horses.

The Huon pine is another Tasmanian wood deserving of notice here. For exquisite beauty when pol ished and for all decorative purposes it certainly comes before the stringy bark. Of this timber Mr. R. M Johnston says: "It is the grandest and most beautiful of all Tasmanian soft woods." Though so beautiful that it appears little short of wicked waste to use it for any but decorative purposes, it is, in truth, remarkably long lasting, declining to succumb to the attacks of insects, whether in water or on land. It is largely used in boat building. Still another beautiful wood is the Tasmanian blackwood, a species of acacia, which very closely resembles mahogany, and which is used by the English government at Woolwich Arsenal in the manufacture of gun carriages. It is a!so employed in the making of billiard tables, sideboards, and deco rative work

For much of the above information, and for the loan of the photographs accompanying this article, the writer has to acknowledge his indebtedness to Mr. W. Heyn, head of the timber department of Messrs. S. Pearson \& Son, the contractors for the Admiralty Harbor Works at Dover. As already mentioned, Mr. Heyn was sent
to Tasmania to select piles, and while there, at the request of the Tasmanian Ministry, read a paper before the Royal Society of Tasmania on the timber in that colony. Being acknowledged as an expert on the subject, and having had a long experience in Baltic and American timber, his remarks were naturally listened to with considerable attention, and printed for circulation in the state by the government. In an interview with the writer, he was enthusiastic about the wonderful properties of the Tasmanian timber, but spoke sadly of the waste he witnessed in the great forests of that state, caused through bushfires and useless ring-barking, etc. At the same time he had a good. word to say for the Tasmanian axmen, declaring them to be among the finest in the world, as the splendid workmanship shown in the squaring of the Dover piles proves. Indeed, at a short distance, it is difficult to distinguish whether they are sawn or hewn. It is a curious fact, and complimentary to American industry, that they infinitely prefer the American ax to that made in any other country.
Before leaving Tasmania Mr. Heyn read a second paper before the Society, in which he declared that the government of that State could take a leaf from the method of the Agricultural. Department at Washington by establishing a school or schools of forestry such as are to be found in the United States and other great countries. The work of such an institution should include, in his opinion, the importation of desirable seeds from different parts of the world, as well as collection of native seeds for afforesting the waste lands on the island; growth and distribution of nursery stock, particularly of trees likely to benefit, materially and physically, Tas-

tasmanian axmen squaring blue-gum piles in the bush.

COMPLETION OF THE EAST BOSTON TUNNEL.

The completion of the East Boston tunnel marks the inauguration of one of the many rapid-transit suiway systems which are being constructed in the lead ing cities of the world. The tunnel was built by the Boston Transit Commission, under Mr. Howard A. Car son as Chief Engineer; and it forms a most important extension of the system of trolley subways which that city constructed several years ago. We take this op portunity to refer to the indebtedness of New York city and all municipalities that either already have, or will shortly inaugurate, subway sys tems to the city of Boston, which, in successfully putting through her subways, proved the practicability and great convenience of such a system where the traffic conditions on the surface are badly congested.
The new tunnel extends from Scollay Square, an important station on the Boston Subway, beneath a wide arm of Boston Harbor, to Maverick Square in East Boston, the total distance between these two points being 7,480 feet, or 1.4 miles. From Maverick Square the tunnel falls on a grade that varies from 4.7 to 5 per cent for a distance of 2,000 feet. Here the lowest point of the tunnel below low water is reached, the bot tom of the masonry being 82.3 feet and the top of the rail 73.3 feet below mean low water. At this point is located a pump well, where all water that enters by seepage is collected and pumped out The location of the well is about 550 feet out from the East Boston shore line From this point the tunnel rises for about 2,000 feet on a grade of 0.5 per cent, until it reaches a point approximately below the Boston harbor line. The grade then steepens to 2.5 per cent

SPAN OF OXEN AT WORK IN A TASMANIAN BLUE-GUM FOREST.

"BIG BEN" GUM TREE
Its height is nearly 250 feet; its circumfersnce, five feet from the ground, is 95 feet; its interior measures 20 x 25 feet
mania; and practical teaching, with ocular demonstration, of the art of forestry to those desiring it. The institution would also see that the laws for the protection of forests were rigidly enforced.

A New Variety of Potato
M. Labergerie has been making some experiments in France upon a new variety of potato which not only has the advantage of growing in damp earth, but gives an extraordinary yield. This variety is known as
are of good quality. The branches of the plant are as long as 12 feet. The potatoes contain a large pro portion of starch, and he finds 17 per cent in the present specimens. The taste is good, and in this regard will compare very well with the ordinary varieties The plant is considerably influenced by water and light. It appears that the Solanum was considered formerly as only good for cattle, but we now find that it can be developed so as to be nutritious and good-tasting. At the same time it prefers wet soil where ordinary potatoes will not flourish.
until the first station on the Boston side is reached, at a point just beyond Atlantic Avenue. Another 1,500 feet on an upgrade of 4 per cent, reducing in the last 300 feet to 2.5 per cent, brings the tunnel to near Devonshire Street station, and then 500 feet of 3.5 per cent ascent brings the new tunnel to a junction with the existing Subway at Court Street adjoining Scollay Square.
Apart from its great importance as affording a direct double-track trolley road from Boston to East Boston, the tunnel possesses particular interest because of the

Rear View of Shield With Which the Upper Half of Tunnel Was Excavated.

View in Completed Tunnel, Showing the Ventilating Duct in the Roof.

Devonshire Street Station, Showing Method of Interior Finish.

State Street Station Under Construction.

View in Completed State Street Station.

Exit, Maverick Square, East Boston.

boldness of the plan upon which it was so successfully carried through. In the first place, it is notable as being the only double-track tunnel thus far built in America. The tunnels under the Hudson River and under the St. Clair River, and those now under construction beneath the East River, in connection with the Brooklyn Rapid Transit lines, being single-track tunnels and of considerably less sectional area. The width of the tunnel under the harbor where it is lined with ribbed tile is 23 feet, and in the upper part of State Street and Court Street it is 23.67 feet wide. The height of the tunnel from the top of the rail to the roof in the upper part of State Street and Court Street is 14.17 feet, and in the lower part of State Street, and under the harbor, the height is 17.3 feet. The excavation was done partly in open cut, this method being used where the tunnel lay near the surface, and there were no physical or other difficulties to prevent its use, and partly by means of shields and compressed air, the latter system being used in the construction of about 4,900 feet of the tunnel. It is the latter part of the construction that is most interesting, because it was carried through by an entirely new and exceedingly bold method which, as far as we know has never been attempted under similar conditions.
When the borings for the proposed tunnel were made, it was found that it would pass through a stratum of exceedingly: fine bowlder clay; of a consistency much firmer and more reliable than is usually found in subaqueous tunneling of this kind. Hitherto in such tunnels, where the shield has been used, among which might be mentioned the Blackwall tunnel under the Thames, London, and the tunnels under the St. Clair and Hudson rivers in this country, it has been cus tomary to use a completely circular shield, which is pushed forward by hydraulic pressure, the tunnel as it is excavated being lined with a heavy segmental cast iron lining, which is bolted together and grouted to render it perfectly water-tight. For a double-track road like this, however, the use of a circular tunne would have involved much more excavation than was really necessary to accommodate two lines of trolley cars,...there being a considerable amount of waste space in such a tunnel both above and below the cars The engineer, therefore, determined to take advantage of the firm nature of the material, and build the tunnel with a semicircular roof, perpendicular side walls, and a. flat invert. The irregular section that this method necessitated, made it impossible to use a shield in the ordinary way. Consequently, a semicircular halfshield was used for the construction of the upper half of the tunnel, and the lower half was built by means of drifting, in the manner now to be described.
Two bulkheads were constructed, one at each end of the central portion of the tunnel extending below the river, and these were provided with the usual air locks. The next step was to drift out two small tunnels, one in the line of each side wall, and large enough to permit these walls to be built therein. The walls were built of concrete and carried up to the springing of the semicircular arch. On the top of the walls was laid a heavy trackway, upon which rested the ends of the semicircular shield. The shield was then advanced by hydraulic pressure in the customary way, the clay being dug out, passed back through the central openings, and removed through the air locks. The concrete roof, three feet in thickness, was then rammed in place, being temporarily supported on falsework, in the customary manner. The material lying between the side walls was then excavated down to grade and the concrete invert was built in place. Except for a blowout, and one or two minor accidents, this very bold and original method of excavation was carried through: successfully. The pneumatic pressure served to hold the clay in place until the concrete side walls, arch, and invert had been built in place and given sufficient time to harden. The boldness of this scheme will be appreciated when we remember that at extreme high water, the bottom of the excavation was exposed to a head of about 100 feet of water, and that until the concrete shell had been built in and had set there was nothing to prevent inward collapse, except the natural tenacity of the clay, assisted by the pneumatic pressure.
The work presented many features of engineering interest, arising in some cases from the cramped location, and in others from the fact that lofty buildings abutted on the tunnel and care had to be taken to provide against lateral displacement. To relieve the lateral thrust due to the weight of the concrete arch, and its superimposed load, a series of cross-tie rods with turnbuckles was let into the arch near the crown. These were so arranged that when the concrete had set, the rods could be removed. In some portions of the tunnel near the high levels, the structure was built with a flat roof, the necessary bending strength being secured by embedding twisted steel rods in the con-crete-a method of construction known as reinforced concrete.

In order to secure proper ventilation, an air duct In order to secure proper ventilation, an air duct
was formed at the crown of the arch, extending from

Webster Street, East Boston, to and under the narbor to the Atlantic Avenue station. It has a cross section of about 48 square feet, and is formed of a diaphragm one inch in thickness, made of metal and inclosed in cement mortar. This diaphragm is attached to the tunnel walls by steel rods and plates which are then incased in concrete. At the center of the duct, midway between the two ends, is a partition which divides it into two approximately equal portions. On each side of the partition there are fourteen openings, each 4 feet long and 1 foot 5 inches wide, formed in the flat portion of the ducts; and at intervals of about 550 feet there are other groups of openings diminishing in number as they approach the chambers above the surface in which the fans are located. These openings are fitted with doors which can be opened or closed from the tunnel below. Fresh air enters the tunnel from the portal at East Boston and through the station near Atlantic Avenue. This air moves to near the middle of the tunnel and then passes up through the openings into the duct, through which it is drawn back to the east and to the west, and leaves the tunnel through the ventilating fans located near each end of the tunnel.

Work on the tunnel was commenced May 5, 1900, so that the work has taken about four and a half years to complete. Its approximate cost is $\$ 3,300,000$.

THE NEW GRAND CENTRAL STATION, NEW YORK.

(Continued from page 40.)
is considerably the largest of its kind in the world. Its width is 160 feet, its length 470 feet, and the height from the floor to the top of the domed roof is 150 feet. The noble arched and domed roof of the concourse will extend entirely across the full width of the station building, a distance of 300 feet, or from Vanderbilt Avenue to Depew Place; but the concourse floor will be carried westerly under Vanderbilt Avenue for a distance of 170 feet. Back of the concourse, and located under the ticket lobby, will be the main waiting room, which will have twice the area of the waiting room of the present station. Surrounding it will be several retiring rooms, telephone and telegraph booths, and the various other conveniences of a modern station. Back of the waiting room will be a large restaurant, located beneath the broad approach to the station. Across the northerly end of the concourse will extend the customary line of gates admitting to the express platforms. Beyond the gates will be located no less than thirty-four stub tracks, with broad platforms between them, the average width being about 16 feet, extra space being provided, in order to avoid the crowding which is such a troublesome feature under existing conditions. Of these thirty-four tracks, the westerly eight or ten will be reserved preferably for incoming trains, and the arriving passenger, on passing through the gates onto the concourse, will find himself opposite a large cab stand, and with conveniences right at hand for securing his trunk and driving away with it with as little delay as possible. In addition to leaving directly by cab, he has the choice of four other means of exit from the station; for he may pass by a covered walk directly to the Subway, or by a 25 -foot stairway to the concourse gallery and so into the main ticket lobby, or he can pass out to Madison Avenue and Forty-third Street by a covered subway, or crossing the concourse, he may leave by another covered subway to Lexington Avenue. It will be understood, of course, that the thirty-four tracks extend the full width of the concourse, the most easterly track abutting on Depew Place and the most westerly on Vanderbilt Avenue, and this, of course, necessitated some careful engineering work in supporting above these tracks the immense weight of the northerly half of the station building, containing the company's offices. Care has been taken to so arrange the supporting columns that none of them shall inter fere with the passenger platforms. To recapitulate, it should be explained that the ticket lobby and the gallery are at street level, and the express tracks, the main concourse, the express waiting rooms, and the restaurant are at a level 15 feet lower than that of the street.
The plans for the new station involved, as an absolute prerequisite to success, that the suburban travel should be entirely separated from the express; and it was considered that the best way to insure this was to place the suburban tracks below the express tracks and provide a suburban concourse, waitiog rooms, and other conveniences on this lower level. Moreover, it was decided that, with a view to further separating the two classes of travel, separate entrances and exits should be provided, so that the suburban passengers could enter or leave the lower level from the street or the Subway without meeting the long-dis tance travel. Access to the suburban tracks and station is obtained by gradually depressing the two out side tracks in the entrance tunnel below Park Ave nue until they reach the lower level. In the rush hours the suburban trains will pass into the station and around a loop which will extend beneath the res
taurant on the express level, the trains passing out again without breaking bulk. Toward the close of the rush hours, alternate trains will discharge their passengers from the series of seven stub tracks, which occupy the train space within the loop and in front of the suburban concourse. Trains will be stored here and in the station yard until the evening rush hour, when they will be switched out into service again. Provision is made at the inner end of the loop for connection direct to the tracks of the Rapid Transit Subway below Fourth Avenue; and it is a fortunate circumstance that Mr. Parsons, the Chief Engineer of the Subway, by moving the two tunnels below Park Avenue over toward the curb line, made provision for this connection with the New York Central system, although, εt that time, the New York Central Company was not disposed to consider any such connection.
The suburban station is provided with a broad concourse and with the necessary waiting room and other conveniences, all arranged on the lower level, and with separate exits both to the Subway and to the street. This station is, to all intents and purposes, absolutely independent of the express station above; although provision is made by means of staircases for communication direct from the ticket lobby and the main concourse to the suburban station.
In conclusion, it should be mentioned that the capacity of the Park Avenue tunnel has been increased at least one hundred per cent by the great enlargement of the station yard. One of the most serious obstacles to a further increase in the number of passenger trains under existing conditions, is the fact that the storage yard for express trains is at present located at Mott Haven, and every express train that enters New York has to make the trip through the tunnel four times, twice in entering and leaving the station with passengers, and twice in making the round trip to the yard for cleaning purposes. With the enlarged area of yard provided in the new arrangement, the storage of express trains will take place at Forty-second Street, and the tunnel will be relieved proportionately.
The whole of the station yard will be operated electrically, as will also the suburban trains on the New York Central, the Harlem, and the New Haven Railroads. Suburban trains will be operated on the multiple-unit control system with motors on the car axles, and shorter trains will be run at more fre quent intervals. The long-distance expresses will be hauled as far as Croton on the main line, White Plains on the Harlem Division, and Portchester on the New Haven Road, by electric locomotives. It is expected that the local service will be in operation in from two to three years' time, and that the whole scheme will be completed about a year later.

The Carrent supplement.

The current Supplement, No. 1516, opens with a continuation of our correspondent's review of the Paris Automobile Show. His two articies, taken in connec tion with the Automobile Number of the Scientific American, which is to bear date January 28, will give the reader a most excellent review of automobile progress in Europe and America. Mr. Ambrose Swasey writes on "Some Refinements of Mechanical Science." Dr. O. F. Herz discusses at length the great frczen Siberian mammoth which he unearthed in 1901, in an almost perfect state of preservation. Splendid pictures accompany the text. Prof. William Bateson's article on breeding and heredity is continued. Prof. G. W. Ritchey presents another chapter on the "Mod ern Reflecting Telescope, and the Making and Testing of Optical Mirrors." In this installment he discusses silvering. Arthur Gulston's splendid discussion of icebreakers and their services is concluded.

Next Week's Special Automobile Issue.

This is the season of the year when the prospective automobile buyer casts about him for a machine that suits his taste and purse. For several years the Scientific American has come to his assistance by publishing special automobile issues, in which the very latest types of cars, big and little, costly and cheap, have been described with a fullness of detail and a wealth of iilustration that have been of immence assistance in such a selection. This year the Scientific American will outdo anything it ever before attempted in this direction. Next week's Special Automobile issue will contain forty-four pages, and will be larger than any of its predecessors. The subject of the colored cover is a wild automobile ride through a blinding snowstorm.

Naturally, the issue will be devoted largely to the products of American manufacturers; but the foreign maker has by no means been forgotten. Commercial vehicles, novelties of the Automobile Show, motor bicycles, racing cars, automobile accessories, are also discussed. For the general reader extra pages häve been incorporated in the issue, which pages are devoted, not to automobiles, but to the usual subjects described and illustrated in these columns.

RECENTLY PATENTED INVENTIONS.

Of General Interest.
ANIMAL-TRAP.-J. KERNS, West New York, N. J. In the present patent the object of the inventor is to provide a new and im-
proved animal-trap, more especially designed for trapping alive fish, crabs, and other animals, the trap being simple, easily set, and
quick in action. The trap can be readily lowquick in action. The trap can be readily low-
ered into the water for the fish, crabs, etc., ered into the water for the fish, crabs, etc.,
to get to the bait and to become entrapped alive within a basket.
PLUG.-E. M. Hall, Raymondville, N. Y. Mr. Hall's present invention is an improve-
ment in plugs for use in rolls of paper, and has ment in plugs for use in rolls of paper, and has
for its object the provision of a novel construction whereby to prevent the plug from
slipping out of the roll during storage and slipping out of the roll during
shipment of such paper-rolls.
DUMB-WAITER SHAFI
DUMB-WAITER SHAFT.-G. Geraerdts, New York, N. Y. In this patent the invention relates to masonry; and its object is to pro-
vide a new and improved dumb-waiter shaft or like structure formed mainly of buildingblocks or tiles and arranged to insure the durable walls.
CUFF-HOLDER.-A. P. Gillen, Chicago, Ill. The invention relates more especially within the coat-sleeve and secure the cuff independently of the shirt-sleeve. The principal object is to provide a holder in which the
cuff may be readily adjusted without chang. ing the position of the holder within the sleeve. A further object is to provide a holder operated by pressure upon the outer surface
of the sleeve and which is so constructed that of the sleeve and which is so constructed that
it may be set and held in open position ready it may be set and held in open position ready
to receive the cuff, so it may be introduced and secured with great ease and rapidity.
dental TOOL-E. Forquignon, Ne York, N. Y. The inventor's object is the pro-
vision of a dental tool to be used for scaling off calcareous deposits from the teeth and also to enable the dentist to conveniently and quickly form and scrape a tooth-carrying rubber plate to accurately fit the same against the
hard palate or roof of a person's mouth. hard palate or roof of a person's mouth.
Pay-ROLL-C. T. Chichester, Placerville, Cal. The intention of the inventor is to pro-
vide a new and improved pay-roll for the use of merchants, contractors, lumbermen, or other employers of labor arranged to embrace a time-book, a ledger, and a receipt-book to show at a glance how an account between an em
ployer and an employee stands at any time.
ployer and an employee stands at any time.
SINGLE-TRIGGER MECHANISM FOR DOUBLE-BARREL GUNS.-J. C. Broyles, Birmingham, Ala. The invention
locks for dotes to
louble-barrel guns, and particularly to that class wherein a single trigger controls and operates both hammers. The trigger is so arranged that by sliding forward or back it is adapted to come in contact with the re-
spective sears of the two hammers. Thus spective sears of the two hammers. Thus
either barrel may be fired at will, according to the position in which the trigger is set, or the barrel may be fired successively without such shifting of the-trigger.
PASTE FASTENING FOOR RUGS OR CARPETS.-C. C. Conner and T. Grimler, New York, N. Y. The invention of Messis.
Conner and Grimler relates to fastenings for rugs or carpets, their more particular object being to produce a fastening of suitable form
to be held in place by paste and, if desired, to be held in place by paste and, if desired,
to utilize a partial vacuum as an auxiliary mean
tion. SPRING-ROLLER.-W. A. Hadden, New York, N. Y. In this case the isvention refers to improvements in spring-rollers particularly fabrics, and the like with a spring-roller as usually constructed it oftea happens that in rolling up, the end of the shade or other material will, through the spring force, pass aver the roller several times, thus weakening ihe
spring force and making it necessary to remove spring force and making it necessary to remove the roller to rewind means to obviate the abov difficulties.

Hardware and Tools.

Wrench.-H. Phelan, Jimenez, Mexico. Mr. Phelan's invention relates to improvements in wrenches of the type having a fixed jaw a wrench of this character that will be comparatively light yet strong. and that may be
quickly adjusted to a nut or pipe. quickly adjusted to a nut or pipe.

Prime Movers and Their Accessories. EQUALIZING-GEAR FOR RECIPROCAT-
ING PRIME MOVERS.-M. NEUMAYER, New ing Prime movers.-M. Neumayer, New
York, N. Y. The inventor's object is to provide a power-equalizing gear for prime mov ciprocating therein, arranged to give the piston which has passed a central position a the other piston to eliminate all danger of the prime mover stopping when a piston reaches prime mover stopping when a piston r .
Notr.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each. Please state the name of the patentee,
the invention, and date of this paper.

Business and Personal Wuants. Red phis coldin Carfevirnumbered in consecutive order. It It of you manu mand
facture these goods write us at once und we will
send you the name and address of the party desir send you the name and address of the party desir
ing theinformation. Ineery case it is neces-
sary to give the number or the inquiry.
Marine Iron Works. Chicago. Catalogue free.
Inquiry No. 6404.-For manufacturers of , the
electric cand. .nachine known as Fairy Floss " or
"Cotton Candy." For logging engines. J. S. Mundy, Newark, N.J. Inquiry No. $6405 .-$ For
glaks spangles or ornamental cut glass.
Inquiry No. 6406.-For manus. Samples free. Inquiry No. 6406.-For manufacturers of coppe
plated sheet iron and sieel. Perforated
Co., Chicago.
Inquiry No. 640\%.-For paper decorative panels
for tapestry work, also for theatrical scenery
which to paint. Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St.
Chagrin Falls, o. $\underset{\text { drag saw. }}{\text { Inquiry }}$ No. 6408.-For makers of a pneumatic Adding, multiplying and dividing machine, allin one.
Felt \& Tarrant Mfg.Co., Chicago.
 Sawmill machinery and outits manu
Lane Mfg. Co.. Box 13, Montpelier, Vt.
Inquiry No. 6410.-For disks of prepared paper
for iuniting wicks of pocket cirgar lightera ; the disks
are about Inch in diameter, having on the face smail Special Machinery to order, manufacturing, meta tampings, etc., Brickner Machine Co., Tiffin, Ohio. Inquiry No. $\mathbf{6 4 1 1}$,- For makers of fancy paper
shades for electric lighiglobes. Robert W. Hunt \& Co. bureau of consultation, chem Chicago.
Inquiry No. 6412.
contaning spirit plumb
Patent for sale or on royalty.-Combination watch, 2ob chain, key and chatelain bag prote
129 Thompson Street, New York City.
Inquiry No. 6413.-For makers of wooden thumb
The celebrated "Hornsby-Akrogd" Patent Safety oil
Tngine is built by the De La Vergne Machine Company Engine is built by the De La vergne Machine Company. Inquiry No. 6414. - For dealers in patented nove I have every facility for manufacturing and market ing hardware and housefurnishing specialties
McDonald, 190 Main St., East Rochester, N. Y.
Inquiry 1 No. 6415 .-For makers of steam engines
from $3 / 8$ to 1 h . p. The SCIENTIFIC AMERICAN SUPPLEMENT is publish
ing a practical series of illustrated articles on experi mental electro-chemistry by N. Monroe Hopkins.
Inquiry No. 6416.-For machines for making bri
quettes from marsh mud, or who control the process. WANTED. - Revolutionary Documents, Autograph
Letters. Journals, Prints, Washington Portraits, Early American Illustrated Magazines, Early Patents signed Manuals of the early 40 's. Correspondence solicited. Address C. A. M., Box 773 , New Yorik.
Inquiry No. 6417.-For machinery for cleaning
cluthing.
Any metal, sheet, band, rod, bar, wire; cut, bent crimped punched, stamped, shaped, embossed, letter-
ed. Dies made. Metal Stamping Co., Niagara Falls, N.Y. Inquiry No. 6418 .-For makers of ice machinery
and outfit; also for makers of corrugated iron arches
tor bulding.
We manufacture gasoline motor and high-grade machinery, castings best quality gray iron. Select pat-
erns, and let us quote prices. Frontier Iron Works. Buffalo, N. Y.
Inquiry No. 6419.-For large quantities of draw
Manufacturers of patent articles, dies, metal stampng, screw machine work, hardware speciattes, machic
ery and toois. Quadriga Manufacturing Company, 18 South Canal Street, Chicago.
Inquiry No. 6420.-For makers of bottles for
soda water with Codd's ball stoppers. Waxted.--Having a thoroughly organized agency
orce, we are desirous of securing Exclusive Pacific Coast Agency of Articles of Merit, where personal soliitation is required. Address Suite No. 2, 47 Geary Street, San Francisco, Cal.
Inquiry No. 6121.-For makers, of earthen bak-
ing utensils containing asbestos. Cascctating Machines.-Wanted, first-class firm
willing to take up the agency and sale in the United States and Canada of a well-known calculating machine. Terms very favorable. Apply Grimme, Natalis \& Co., Braunschwelg, Germany.
Inquiry No. 6492. - For makers of fiberloid.
Rowe's Automatic Carpenter's Hammer Dever
Rowe's Automatic Carpenter's Hammer Device.United States, Canada and Great Bican patents grant-
ed. Will sell same outright, consider royalty or cor-
respond with some one with capital. Send for descrip. ine circular. Geo. H. Rowe, Patentee, Box 442, Ennis, Texas.
Inquiry No. 6423.-For machinery for the desic-
cation of cocoanut, Inquiry No. 64.4.-For makers of call boxes
similar to those employed by the Western Union Co Inquiry No. 6425 .-For makers of woven wire bed
springs, also spiral springs. Inquiry No. 6426.-For machinery for evaporat-
ing sweet corr foit table use, Inquiry No, 642\%. - For makers of art metal fur-
niture.
Inquiry No. $\mathbf{6 4 2 8}$. - For makers of electric stor-
Tnquiry No. 6428. - For makers of electric stor-
age batteries. such as are used for propelling auto-
mobiles and recharged by electricity. Inquiry No. 642.9.-Fnr parties to build 1.000 or
more autos per ear. complete, on contract, drawings
and samples furnished. Innuiry No. 643N.-For an estimate of cost of
mall plant of machinery for making tin boxes of all
izes. sizes.
Inainiry No. $\mathbf{6 4 : 3 1}$. For makers of hollow wire,
small pressure tank and gasoline lamps. Inquirv No. 6432.-For machinery and appliances

erences to former artic date of paper and pag uiries not answered in repeated; corresponden some answers require though we endeavor letter or in this dep his turn. ers wishing to purcha tised in our columns addresses of houses m the same. cial Written Informatio rather than general in ntific American Supple had at the office. Pri

(9520) W. A. T. asks: Would you kindly give me directions for a spark coil for feet and number of wire for primary. core, feet and number of wire for primary; also have 550 feet of No. 18 cotton-covered wir
that I would like to work into the coil. Want coil to give about $1 / 2$-inch spark. A. Supple your order, gives full information concerning a coil for gas engine ignition, if one has gen-
eral knowledge of the work of construction. Lacking this, it would be best to get Norrie's "Induction Coils," price $\$ 1$, which gives detailed instruction in this work, together with
tables data for all the parts of coils tables of data for all the parts of coils of all
sizes up to a 12 -inch spark. Do not use so and use a coarser wire in the primary. Two layers of No. 14 will be right for primary, layer 6 inches long. Three-fourths pound of
No. 36 silk-covered will be right for secondary No. 36 silk-covered will be right for secondary
to give a half-inch spark. Core should be $\pi / 8$ to 1 inch in diameter and 7 inches long. . If a person sparked his engine with a magneto, would he need a coil also? A. A
magneto can be made which will render a unnecessary, but a battery and coil are necessary till the machine has speed enough to enable the magneto to generate.
(9521) C. S. J. asks: I wish to learn the cause of trichinæ in pork. A. The trichina is often found in great numbers in the flesh of these animals, in the encysted condition but still alive. If such meat is eaten without cooking thoroughly, the parasite is taken into the body and is rapidly propagated. The worm
came originally from the rat. As hogs eat came originally from the rat. As hogs eat
rats, they pass into the hog and thence into man. The only preventive is thorough cooking. This kills the trichinæ. No rare or un-
derdone pork should ever be eaten. The risk is too great. The cost of immunity is so little, that anyone may be safe. Cook all pork
thoroughy. 2. The cause of ptomaine poisoning by eating pork. What causes the presence of the poison, how the poison can be pre-
vented, and whether or not there is any way of detecting the presence of poison before using the meat? A. Ptomaines are formed by de-
composition. If only fresh food is used, one will be safe from these poisons
(9522) H. S. N. asks: I havé been a reader of your paper for several years, and
always enjoy reading it. I should like to submit a problem for solution. The problem is this: Several years ago I took a picture of
a fast train while running, a Michigan a fier, at a point about two a Michigan Central catur. On development the plate showed a blur of 1-32 inch, i.e., the pilot did. I used was 6 inches; the distance of the engine, the pilot, from the camera, 50 feet; the length of exposure, 1-100 of one second; camera was
placed at an angle of 15 deg. with the track What was the speed of the train? The camera was a vive, $41 / 4 \times 41 / 4$, meniscus lens. A. The solution of your problem of the speed of the
train is not difficult, at least so far as a train is not difficult, at least so far as a
sufficiently close approximation is concerned Start with the fact that the image of the pilot moved $1-32$ inch during exposure. Since feet away, the pilot moved across the in 50 drawn through the center of the lens, 100 times $1-32$ inch, or 3.125 inches, since 50 feet is 100 times 6 inches. And since the camera
made an angle of 15 deg. with the track, we made an angle of 15 deg. with the track, we
must divide the 3.125 inches by the sine o 15 deg. to find the distance the pilot moved during the exposure. This gives 12.07 inches of exposure, or $1-100$ second. In one second it moved 1,207 inches, or 100 feet 7 inches. This is a speed of somewhat over 71 miles per hour tion, but still not far from the result which an exact solution would give.
(9523) J. S. M. asks: Will you kindly answer in your column of Notes and Querie putation? I suppose the matter is simple enough, but I have never come across any work explaining it, nor any person whom I
have asked who could throw any light on the
subject. A. Very little is known concerning
the method by which the Romans used their very inconvenient notation for performing the ordinary calculations. They are supposed to have used the abacus for all except the most simple problems. This instrument is in common use now by all Chinamen, and it is not difficult for any one to see it used wherever these men may be found. A description of the There was a rod from any encyclopedia numbers to millions, seven rods each caryin five balls. Another set of short rods corres ponded to these, and had one ball sliding on each. They could thus count by fives and carry by tens. Other rods supplied their need for calculating ounces. Further than this their business did not require them to go they never needed to divide the distance of the sun by the velocity of light. They died in total darkness in regard to both of thes data of the universe. As we said at the
outset, we do not know the detail of the outset, we do not know the deta of their cal
method by which the Romans made method by which the Romans made their ca
culations. Their mode of writing numbers was not like ours by placing like denominations in the same column, but each lette added by itself on the abacus, since each rod meant a denomination.

INDEX OF INVENTIONS
For which Letters Patent of the United States were Issued for the Week Ending January 10, 1905

AND EACHBEARINGTHATDATE

Abra note at end of list about copies of these patents.

 779,544
779,999 779,494
779,466

779,626
77962

To Leave Your Family Well Off? To Secure an Income in Old Age ? To Increase Your Business Credit? To Invest Your Savings Profitably?

Life Insurance in The Prudential may be made to Provide all These and More. Write for Book Showing Rates.

The PRUDENTIAL INSURANCE CO. Of AmERICA John F. DRYDEN, Pres't. Dept, 121

Rub it on wood and make it come good."
In by-gone times an itching palm was said to betoken the receipt of money. To-day, the sure sign of money is an advertisement in Leslie's Weekly and Judge.
Large and certain returns result from the use of these money-making mediums.
 week and is read by all the family. Its columns are clean, instructive and entertaining. A very profitable advertising medium.
 reader and money for the advertiser.

 Explosive engine, F. W. Hagar
Eye shield, A. A. Fairbanks.

 uning machine stop motion
urnace, E. H. Carroll
urnace, J. R. Cravath

Gas generator, acetylene, E. E. Miller...
Gas line safety cut-off, J. G. Armstrong..
Gas manufacturing apparatus, P. Eyermann
Gas producer, J A. Herric.
Gase.

 Governor. pumping engine,
reissul
frader, road, wi.. . williams.

 Hamer, rerguson reciprocation, A. $\dddot{\mathrm{E}}$. Leech
Hanger. See Picture frame hanger.
 Harrow tooth fastener, M. ©... Biaine
Harrow, wheeld disk, J. Hi. Price Harvester, cotton, R. R. Murnell
Hat frame machine, D. ${ }^{\text {D. . Beatty. }}$
Hay elevator connecting head, Ro

Hay press feeder, automatic, E. N. Richmond
Heat derived from fuels into. energv for M. Aslakson $\dddot{W} \dddot{3}$.......

AGOODINYESTMENT
 CHIS GRINDER
 plest in construction, most efficient
in operation. Price will interest y ouv. W. F. \& JNO. BARNES CO.,
Estan Ruby St.,
P. O. BOX 7, WATERBURY, CONN

Youn BUILD IT YOURSELF

 $\underset{\substack{\text { This Tool } \\ \text { is } \\ \text { Polished }}}{\substack{\text { and }}}$ "You Cannot Stumble at Any Step of the Temple"
 GOODELL-PRATT COMPANY Greenfield, Mass.

WOLVERINE freversing soline Marine Engines to 18 horse nower. Launches to 5 ft. Write for catalorue IVERINE MOTOR WORK and Rapids, Mich., U. s, A.

THE B. F. BARNES
14-INCM DRILL

AGENTS

KEYSTONE

Fire Extinguisher

has been examined and approved
under the standard on the anational
Board of Fire Underwriters. $1 t$ sells
fit
 and best approved extinguisher on
the market. This agency can be
har mate carried in addition to other business
interests.
Write to-day for full particulars. JAIIES BOYD \& BROTHER. 18 N. 4th St., Philadelphia FIRE PROTECTION EQUIPMENT Couplings, Hose Pipes, etc.

SAVE FIRE LOSS
Seconds count. Be ready at the start wit
Badger's Fire Extinguisher and you can put out any kind of a fire.
A reunest will bring you the information
you wish, FREE. BADGER FIRE EXTINGUISLIER CO.
so Portland St., Boston, Mass.

Strength, Safety, Speed, Simplicity

Slotted Armature DISCS

ADean Boiler Tube Cleaner

How To Increase MYour Business

R^{E}

 columninin the Scientific American This wek it will be found
on page
s.ine
sean e Siome week you will be
likely to find an an inquiry for something that you manufacture or deal in.
A prompt reply may bring A prompt 1
an order. Watch it Carefully

Heels and foreparts, shave or boot or sus Hinge, spring, E. Bomme

 Horseshoe
Horseshoe
Horseshoe
 Hosseshoe, soft tread, F. E. Mcewen
Hub ataching means, J. W. Kovalek
Iydraulic press, Iydraulic press, ${ }^{\text {O. }}$. Philipp
Inductance coil, W. C. Fish Inductance coil, w. C. Fish
Induction apparatus, high frequency, Spauld
ing \& Austin Insect trap, C. F. SMith Insuator, F. M. Locke
Insulator pin, M. M. W. Wood
Intrenching tool, C.

 Knitting machine, circular, H. A. Houseman
Knob, arriage, J. Harer. J. J.
Labeling machine, H. L. Duncan
Labeling machine,
Labeling machine, toup, G. Hendickson
 Lacing holding clasp,'shoe, A. M.
Ladder, step, W. M. Anderson
Lamp, C. Maton
Lamp, H. F. Smith
Lam

 L
 Liquid separator, centrifugal, A. T. Salenius
Liquid separator, centrifugal, A. L. Christenso
oading
oading
Loading or unloading Hachine, J. McMyler.
Lock,
$J .0$.
Lock, J. Greenberg
Lom, J. R. Fitton
Loom bobbin receptacle

Loom picker check, S. H. He.......
Loom warp thread holder, A. Man
Lubricating devie, J. V. Clark
ubricator,
Lubricator, Knipper \& Mackaye \cdots
Lubricator, drop feed, ${ }^{\text {\& }}$. D. Marvin
Magnet, polyphase, D. L. Lindquist
Mail bay fastening, C. B. Stevens.......
Mail catcher and receiver, Long \&orto.
Mail collecting and distriburtng pouch, E.
 Manure spreader, J. S. Kemp
Match box, J. F. W. Kuehn
 Match safe, Selif-igniting,
Mattress, B. F. Berryman

 W. Jessop
Meter. See Current meter.
Milk cooler, J. W. \& C. W. Walkup.....
Mine shatt safety device. N.W. Wickerson.
Molding machine, w. J. Stering.. 779,976 . Molding machine, W. W. Sterling.. 779,976 ,
Mortising machile, A. Willer.
Motion transmitting mechanism, rotary, J.

\qquad Nursery stock puiler, i.
Vut. lock, W.
Vut le. Wolf
leck,

\qquad
 W. SJ McKnight. \cdots.ilen
Oil wick burner, M.
Ornaments, manufacturing clot
\qquad

${ }^{\mathrm{P}}$ Pen reservoir attachment, H. Tartsch......
Pew, extensible, J. P. Kine
Photographic plates, prints, or films, appar-
atus for washing or otherwise treating,
Photographic shutter, E. V. Prercy
Photographs or pictures for producing ani-
mated effects, apparatus for displaying series of, J. J. Mas
In
 Picture frame by hanger, J. A. Long mans of catalysis, reproducing,
Ostwald \& Gros Pipe coupling,
Pipe or casing puller. Poweil S.
S.

Plastic matr rials, manufacturing decorative
articles from,

 Polyphase winding, B. A. Behrend
Pontoon for lifting loaded ships, A
 Power transmitter, Ough \& waltenbaugh
Printing apparatus, L. M. Todd.........
Propeller, C. T. Freid Puff comb, R. H. Damon
Puller. See Nail
Pump.

Hydrozone

Cures Sore Throat

A Harmless Antiseptic. Endorsed by the medical profession. Send ten cents to pay nostage on
free trial bottle. Sold by Leading Druggists. Not genuine unless label bears my signature
Quf llatatacutwo
Dept. U, 63 Prince St., N. Y. Write for free booklet on Rational Treat-
ment of Disease.

EPAGE'S GLUE s.rpanar

 2 oze ize reanisho ivi pais

SHOEMAKER'S BODK
 on POULTRY

 BIG PROFITS IN POULTRY. CYPHERS INCUBATOR
 n this paper. Adidreses nearesto ofitice.

MOUNT SHASTA

There is no more beautiful sight of its kind than Mount Shasta, covered with snow and glistening in the sun. Thousands have trav eled across the continent to see i t, and felt
well repaid fortheirtime. The way to reach well repaid for their time. The way to reach
it is by the
new york central lines and their connections. Mount Shasta is only about four and a half days from New York
or Boston, and every lover of this country should see it.
For details of rates and trains, see a ticket
agent of the New agent of the New York Central.

Instructive Scientific Papers
ON TIMELY TOPICS
Price 10 Cents each by mail ARTIFICIAL STONE. By L. P. P. Ford. A paper of immense practical value to the
architect and builderto. CIIENTIFC AMERI-
CAN SUPLEMET THE SHRINKAGE AND WARPING excellent presentation of modern views;
fully illustrated.
ScIENTIFIC AMERICAN CONSTRUCTION OF AN INDICATANER OID BAROMETER. BEA N. DIRECT-VISION SPECTROSCOPES. written, instructive and copiously illustrated
article. ScIENTIFIC AMERICAN SUPPLEHOME MADE DYNAMOS. HOME MADE METCAN SUPPLEMENTS $\mathbf{1 6 1}$ and $\mathbf{6 0 0}$ Contain excellent articles with full drawings.
PLATING DYNAMOS. RICAN SUPPLEAENTS 720 and 793 de-
scribe their construction so clearly that any DYNAMO AND MOTOR COMBINED. AMERICAN SUPPLEMENTS 844 and 865.
The machines can be run either as dynamos The machines can be run either as dynamos ELECTRICAL MOTORS. Their Construction at Home. SCIEN TrFIC AMERIC
SUPPLEMENTS 759, $\mathbf{7 6 1 , 7 6 7 , 6 4 1 .}$
Price 10 Cents each, by mail Order through your newsdealer or from MUNN Q COMPANY

 ailway construction, slot switch to.....................
and slot switchbox mechanism for con-
duit, H. C . Stiff
 Railway rail fastening, R. G. Musgrove.
Railway rail joint, C. A. Gilchrist
Railway signaling circuit, A. J. Wilson. Railway signaling circuit, A. J. Wisons.
Railway swwitch, H. Elliot
Railway tion

 Refrigerator fastening, N. Leightoni
Refrigerators, ete., overflow alarm or indi-

 Rotary engine, L. G. Bartlett $\ldots \ldots$. .
Rotary explosive engine Parneli \& Coryeil.
Roundabout, J. M. Taylor
 $\stackrel{\mathrm{Sa}}{\mathrm{Sa}}$

 S
craper, A. M. Minter
Sea light.
Sen
Sea light, intermittent, G. R.
Seed drill, disk, B. Armbruster
Sewing machine, A. Tetreault
Sewing machine attachment for drapery cords, C. A. Burns …
 machines, apparatus for, A. V. Brown Sheet metal plate, G. H. Stewart.......
Sheller feeders, means for adjusting, c. E
Armstrong Shiping cange, \ldots................
Shovel, w. S.. Judd. Pe........

 Siphon, P. McGrath
Skate, P. W. Finkle

 ppeed indicator, rotary, G. Säaier
Sindle and bearing, TV. A. Boyd
 Steam gage, bourdon, W. I. Staaf. 779,8812,
Steel, cutting self-hardening, J. Armtrong
Steel-hardening machine, J, W. Faessler.

Sterilizing
Budd
Stirrup,
Stock

 Threshing machine, G . Reiter $\ldots \ldots . . .$. Aderson
Threshing machine band cutter and feeder
 Threshing machine separator attachment
 mer \& Bridenbaugh $\ldots .$. Wiilits.
Ticket or check holder,

int
int
int

GOOD SERVICE

 al three: our 400-page, clot
"Guide to Investors" will place you in possession of all facts relative to any
stock dealt in upon the exchanges; our dAILY MARKET LETTER

Hoaightegrelse oo

 STOCKS, BONDS, GRAIN, COTTON 55 broadway, new york city Determining the charaster and financial responsibility of your Broker as important as selection of right slocks.THE PANAMA CANAL IS DESCRIBED
 RADIUM

THE SORTIE of the RUSSIAN FLEET
from Port Arthur on August io, 1904, is discussed by a naval expert in Scientific American Supplement, i513; price io cents by mail. Diagrams and photographs showing the damage sustained by the Russian ships are published. Order from your newsdealer or from

MUNN \& CO., 361 broadway, NEW YORK

JUST PUBLISHED

American Estates and Gardens

4to. $11 \times 131 / 2$ inches. Illuminated Cover and 275 Illustrations. 340 Pages. Price, $\$ 10.00$

By BARR FERREE
Editor of Scientific American Building Monthly, Corresponding Member the American Institute of Ars Institute of British Architects

A SUMPTUOUS book dealing with some of the most stately houses and charming gardens in America. The illustrations are in nearly on double coated paper. Attractively bound. This book will prove one of the most interesting books of the season, and will fill the wants of An illustrated prospectus mailed free on request.

ELECTRIC AUTOMOBILE. - DIREC-
 in detail Price
all newsdealers.

Delightful Mid - Winter Cruises
 Trade Marigs,
Designs,
opyrights, Etc. Anyone sending a sk etch and description may
quickly ascertain aor opinina free whether an
invention is probably patentable. Communicainvention is probably pat entable. Communica-
tions strictly confidential. Handbook on Patents sent free. Oldest agency for securing patents.
Ta tents taken throufh MuNN Co receive
Special Notice, without charge, in the

Scientific American

THE VICTORIA UNIVERSITY OF MANCHESTER
APRGLANDIA The Concil desires to proceed to the ApPoINTMENT of a Propessor of ENGNEERING.
The Profesor will be responible for the organization
of the Enginering Deparment and will have the diof the Engineering Department, and will have the di-
rection of the Engineerint Labor andry
He may take a consuting practice under specifled Clis stipend will be composed of a fixed salary and a
share of the fees. and the Council guarantee that, the
total income will not be less than $£ 1$,oop per annum durA the frrst three years. detailed statement of the conditions of appoint ment may be otatainent of the conditions of appoint
Appliations, with ristrar.
Anef aperences and such testimonial

EXPERT and DIE MAKERS Moulds, Models, Experimental Work
NSTRUMENT MAKING and STIALL HICHINERY thos. H. Hart \& Co., Charlestown, Mass.

PETTYJOHN BROS.

PRINTING THAT: BRINGS RESULTS PAYS YOU W attend to every detail of Writing, Illustrating, Printing and Binding Booklets. effectively by good circulars and booklets. Estimates furnished. Send 8c. postage C. C. L. WRIGHT \& CO., 132-4-6 West 14th Street, New York.

A SPECIAL Automobile
 NUMBER

OF THF

Scientific American

JANUARY 28, 1905
It will have a Colored Cover It will cost only Ten Cents

The New York Automobile Show and the Paris AutomoBILE SHOW, both of them the most important automobile expositions ever held, will be reviewed. Striking pictures never before published will illustrate the principal models.

A New Type of American Automobile will be one of the leading features. Improvement in tires, etc.

Striking Models of 1905 TOURING-Cars will be illustrated and described.

Novel Types of Automobiles will be pictured for the interest of the general reader.

In a division on Automobile Novelties, the automobilist will find instructive accounts of useful automobile accessories.

The pictures published, for the most part, have been prepared especially for this number and have been taken for the purpose of clearly showing the technical features of the carriages. Each article is based upon a careful study of the particular machine described.

MUNN \& C 0 ., scientinict Amerersican, 361 Broadway, New York

The Orient Buckboard What's the use considering a motorcycle when you can
have one of these real motor cars for $\$$ tint The Orient
Buckboard is light and fast, and so simple a child can run it. It makes light of the steepest grades and will
run away from twothirds of the touring cars. Write
for our catalogue, superbly illustrated in colors. Shows WALTHATI MFG. CO.

pircosime

GREAT

 Deep Well, Mine, etc. Will not Short Stroke or Injure
from Load to No Load. Write for Catalog No. 15.
UNION STEAM PUMP CO.. Battle Crees, Mich.

MOVING PICTURE MACHINES

The Kutocar

Bubier's Popular Electrician 3 MONTHS 10c. Scientific but not technical,
Edited by expert electricians.
50 c. per year Dept. S, Lynn, Mass. 3 years $\$ 1$

Electrical Engineering and Experimental Work of Every Description
We have every facility for producing frst-class work

OUR NEW SKELETON WATCH

Tewoinglaul
WATCHES
The man who owns or rives an Auto should not use an expensive watch. The New England THE NEW ENGLAND WATCH CO., $37 \otimes 39$ Maiden Lane, New York 63 Victoria Street, Liverpool, England

Photographic illustrations
for illustrating lectures on for illustrating lectures on every subject,
al and popular
 WILLIAM H. RAJ, 1322 Chestnut Street PHILADELPHIA, PA. Commercial Vehicles TRUCKS 2. 000 to
Carrying
Capacity Carrying Capacity

Prices and Blue Prints application

DELIVERY WAGONS
500 to 1,500 lbs. Car trying Capac
ecial bodies to meet
requirements

You Neednt Fear a Gun If You KnowJiuJitsu
Jiu-Jitsu is the most perfect system of
self. defense in the world to day. It is as

 render helpless an a assailant withanand
fishing ease and rapid. $\begin{aligned} & \text { Jiut-jitsu is }\end{aligned}$ ishing ease and rapidity. Jiu-Jitsu is
different from all otter systems because
size size and strength count for naught. A
child of forte versed in the ant can
chic lely

FREE LESSON IN JIU-JITSU For over 2,00 years an Imperial edict
forbade the teaching of
of of Japan. But as a result of the friendly
feeinigg existing bet wen Japan and the
United Stat.
 school of Jib- Jititu in Jopan-has been
delegated to reveal to A americans all the He las just written an intensely interesting bo oz fully explaining the
principles of diu- itsul. This book, toether with the first lesson in the art,
will bee sent free to interested persons. tins showing one of the monet effective
methods known to Jiu-jitsu, for fictive ing of a dangerous a atapanintst, IIspos
desire to know more about the closely
 will be sent so specimen lesson. They
paid. Address, by return mail, post-

The Yabe School of Jiu=Jitsu

are of 4 cycle type: speed control approached by no other
makes run smooth and reliably at speeds varying from
100 to 700 revolutions 100 STAND RD SIZE
 CHAS. J. JAGER CO., 166-8 HIgh St,,Bos ton, Mass Everything for the Automobile
 Auto Fur Coats, - - \$20.00 up
Auto Rubber Coats, - - $\mathbf{6 . 0 0}$ up Auto Cravanette Clothing. Yankee Spark Plugs, Yankee Electrical Cut-Out Big Free Catalog
E. J. WILLIS CO., 2 Park Place, N. Y.

