
method of calibrating volt and ampere me
ters without the aid of another volt or am meter? Would the following metho answer? Place two 220 -volt lamps in series on a 220
volt light circuit, causing a 110 -volt drop in each lamp. Connect the voltmeters in shunt with one of the lamps, and add or take off enough resistance from the meter to make it
read 110. Place four lamps in series, and read 110 . Place four lamps in series, and
shunt the meter with one of them to get 55
vor shunt the meter with one of them to get 55
volts. A. You can determine several points
on the scale of a voltmeter in the manner you describe jy the use of lamps in a rough way, but the voltage of the circuit and the voltage of the lamps are neither of them to be relied
upon to any great degree of accuracy. If one annot do better, this way is better than noth irgg ; but in a great city it should be possible to reliable instrument. Standard lamps can
\qquad antee them to be of the rated voltage. 2. Have measuring instruments? A. We can furnish you Reed's "American Meter Practice" for $\$ 2$.
(9653) J. W. asks: 1. How is bicycle riding explained? By what laws does a man
balance himself? A. A bicycle maintains its upright position upon the same principle that a pendulum maintains its plane of oscillation, otating wheel maintains its plane of re-
This is most clearly illustrated in the Foucault pendulum and the gyroscope. As long as the bicycle is moving, it $\mathrm{w}^{\text {i" }}$ not fall over.
2. Scientists claim to find the shape of the arth by the pendulum. This would all be very well if the density of the earth were the same in all of its parts, but as that is very im-
probable, it seems to me that the results of these measurements are also very improbable. Is there any way of correcting these results?
A. The time of vibration of a endulum deA. The time of vibration of a vendulum de-
pends upon the intensity of gravity in the place where it is hung and swung. The vari the mean density is known to sufficient accuracy. It is not probable that the results of
pendulum measurements are greatly in error, or in error at all beyond the variations assigned as the limits of the determination. We
have no better way to determine the form of have no better way to determine the form of
the earth than by the pendulum, and measurethe earth than oy the pendulum, and measure-
ments of meridians. 3 . In looking over several cyclopedias for the article Parallax, I find for the motion through space of the solar sys tem and of the star whose distance is to be measured. Do they really make any allowance for these motions? These motions cer-
tainly influence the parallax. A. The prope motions of some stars are known, and can be allowed for when these stars are observed.
This is so little that it cannot affect the parallax to a sensible amount. The nearest star of the velocity of light The annal in term of the velocity of light. The annual parallax
of the nearest star is $75-100$ of a second of arc; its distance is $25,000,000,000,000$ miles. The variation of its parallax due to the motion of the sun in a year through space is not appreciable. 4. We are bothered here with
alkali water. Is there any way of making such alkali water. Is there any way of making such
water di:nkable? A. Without an accurate chemical analysis of your water, it is impossible for us to express any opinion. The ques-
tion of the purification of drinking water is always a somewhat difficult one, and it seldom happens that impure water can be much improve In case you have not tried it, however,
pense. we would suggest your boiling the water for a period of about twenty minutes. With some
waters this will cause a sediment to form, waters this will cause a sediment to form,
which when allowed to settle, removes many of the impurities with it.
(9654) J. D. asks: Can you give me in your query department of your paper, data
for a small jump-spark coil, such as is used on gasoline motor cycles to explode mixture? Using four dry batteries for the primary exci-
tation. Writer has several pounds of B. \& S. silk-covered copper wire. Can this be B. \& S. Silk-covered copper wire. Can this be
used on secondary? A. A strong and reliable used on secondary?
spark can be made
of the following proportions: core length wire, B. \& S. gage. Primary of three layer of No. 14 copper magnet wire, cotton covered.
Secondary 1 pound No. 36 silk-covered wire. Secondary 1 pound No. 36 silk-covered wire.
Condenser of forty sheets of tinfoil, 4×6 Condenser of forty sheets of tinfoil, 4x6
inches. The insulation of the secondary should be very carefully attended to. Failure here will cause a loss of the whole. The derk are given with great fullness in Nor-
(9655) H. J. B. writes: In reading of the applications of electricity in the treatment little at variance with some others that I have noted. For instance: one, after connecting
forty large Columbian dry cells in series (each one giving about 15 amperes), says he was sur prised to find an output of $1,6 \Leftrightarrow 0$ milliamperes Now, when the inspector of the telephone
comes around, he applies an ampere meter, and comes around, he applies an ampere meter, and
from three small cells shows an amperage of 6 from three small cells shows an amperage of milliampere is $1-1,000=0.001$ of one ampere. What becomes of all the rest of the electricit and fractional meter, and the other sot with
the full measure? As I am a constant reade of your paper, I shall be pleased if you will
give me a little more light on this matter. am thoroughly conversant with the fact that we can seldom take out all that we put int
the dish; some will stick to the sides, and the dish; some will stick to the sides, and
there are various ways of loss. But it seems am this case there must be something tha ou. In a certain catalogue, I find a descrip. tion of the Laclede cell or battory, saying
"Connected with a faradic coil with milli "Connected with a faradic coil with millihours, giving a 70 -milliampere current; o short circuit it gives one ampere; its voltage will average 1.5. ." A. You are cor-
rect in saying that a milliampere is a thousandth of an ampere. Thus 1,660 milliamperes are one and six-tenths a it in that physicians are in the habit of using milliam peremeters, and so fall easily into thinking in the smaller unit. As to the output of cells Thort circuit, that is, with no external resist ance, and even then a number of cells in series
will not give a very large current, or number of amperes. In the case you cite, forty cells will give 15 amperes. The current is cut down a tenth of the full current of one cell. This
because of the increased resistance in series not give more current unless there is a larg external resistance. With a small external re sistance it is better to put the cells in multi
ple for larger current in amperes. As no data for the various resistances are given in you citations, we cannot present any numerical so ution for the different cases, but dollbtless thi
(9656) H. J. F. asks: Will you please tell me if a piece of paper 8 inches x 8 inches can e cut so that it will cover a surface con-
taining 65 square inches? Explain if it can be
$\begin{array}{lll}\text { done. } & \text { A. } A \text { piece of paper } 8 \text { inches } x \\ \text { inches contains exactly } & 64 & \text { square inches or }\end{array}$ nches contains exactly 64 square inches of
area. By cutting it you cannot make the are any greater. Therefore, by no conceivable means can it be made to
taining 65 square inches.
(9657) J. G. P. says: 1. I want to put a slide-valve engine about 900 feet from
the boilers. The lead pipe to engine is 3 inches. Should this lead pipe be larger? If
so, should it be larger all the way, and how much larger should it be? With high-pressure boilers, should the engine hatve a receiver or
separator? A. It will be considerably cheaper to use a 3 -inch pipe all the way from the
boilers to the engine than to use a larger size and although there will be a considerable drop probably in pressure between the boiler and the steam chest of the engine, we o not think
that this would cause sufficient annoyance to warrant the additional expense of the large pipe, unless it is desired to have the engine develop the maximum power that it is capable finerating. In the latter case, a 4 -inch
pipe would be better. a steam separator of liberal size should be placed in the steam pipe sary. 2. In putting a crankpi in in not neces gine, is shrinking the best nethod? If so he hest method to heat? Will it hurt the disk, or is there any danger if it gets ho
round the main shaft? Could you crack the disk in shrinking the pin in? Should it coo
itself, or should there be anything used to coo itself, or should there be anything used to coon
it? A. Hydraulic pressure is the best means of securing a crankpin in a large engine. If have the crankpin slightly tapered, and then orce it into the disk by means of a large nut shrinkage, but there is some danger of warp ing the disk slightly by unequal expansion of
different parts of the disk. If this metho is used, very great care should be taken to heat the disk slowly and uniformly, heating a conto a high temperature, but one, of course, very taken to have the cooling as slow and uniform
(9658) A. L. T. asks: Will you be so kind as to inform me if it is possible or imout of a pure soft iron, i.e., a magnet, for example, similar to the steel horseshoe magnets as now made? Can a permanent magnet be
made out of any iron? I do not refer to the residual magnetism remaining in the field magAny iron or steel which has once been mag. netized does not again lose all its magnetism, except by heating it red hot. Tt magnetism wrought, will, however, retain but little mag The retentivity to which you allude is the same property in steel as in iron. The field magnets of a dyyamo, when of iron, retism. A hard steel retains so much that it is called a permanent magnet. It, however, does not re tain full magnetic saturation, but loses con siderable magnetism very soon after the magetizing force is remove from f. It is strong est just after it is magnetized. From the above
it will be seen that a magnet cannot be made of iron which deserves to be called a perma-

NEW BOOKS, ETC.

Pbactical Sanitation. By George Reid, M.D., Ph.D. With an Appendix by
M. Andion. Herbert Manley, M. A. Cantab., M.B., Ph.D. Philadelphia: J. B. Lippin. numerous diagrams. Price $\$ 2$.
That this handlook on practical sanitation,
sanitary inspectors and others interested n the subject, is of value is shown by the fact that it has reached its eleventh edition. The author is an expert on the subject, and ubjects treated are Water Supply, Drinking Water, Pollution of Water; Ventilation and Warming - Sion or Water, Ventilation and and Insanitary Works and Appliances; Betails osal; House Construction ; Infection and Dis. nfection; and Food. The addition of the Acts of Parliament relating to public health in England and Wales is useful as an example

Telephone Development. By Vinton Sears. Boston: Barta Press, 1905. - B vo., pp. 121.
an onet or this pamphlet, which is new e development of the telephone by showing nclusively re already being enjoyed under competition. That such service and rates are being furnished to-day on a large scale by telephone comthe Bell patents, and in successful competition with the latter, besides makirg attractive earnings at rates which the Bell companies have declared prohibitive, is demonstrated to the satisfaction of all. One of the most interesting facts brought out is that the most im-
portant improvements and the most modern high-class apparatus are to-day controlled by independent companies. Telephone conditions
in various cities throughout the country, the various cities throughout the country, the securities and finance, etc.. are thoroughly discussed. A map showing the independent telePennsylvania is one of the useful features of this pamphlet.
Calcareous Cements: Their Nature, Mancracture, an d uses, with Some By Gilbert R. Redgrave, A.I.C.E., and Charles Spackman, F.C.S. Philadelphia: \quad J. B. Lippincott Company,
1905. 8 vo.; pp. $310 ; 63$ illustrations. Price, $\$ 2.75$.
As the cement industry has been completely in it have undergone a great revolution in the ast ten years, due to the introduction of the rotary-kiln tube mill, as well as other impor-
ant inventions, the authors of this work, in nt inventions, the authors or this work, in had to alter it considerably. All the latest ocesses used in cement manufacture, both ere and abroad, are illustrated and described; and the theories of cement reactions that perimenters are given in a chapter on the Analysis of Cement Mixtures. All information industry will be found in this book, which we heartily recommend to all interested in the hearticy
v Outline of the Theory of Organic Evolution. With a Description of Explains. By Maynard M. Metcalf, Ph.D. New York: The Macmillan Ph.D. New York: The Macmillan
Company, 1904. 8vo.; pp. 204; numCompany, 1904. 8vo.; pp. 204; num
erous illustrations. Price, $\$ 2.50$.
In this book, which is the outcome of a series of lectures given by the author before the students at the Woman's College of Baltimore,
the author sets forth briefly the theory of evolution and describes some of the phenomena which it explains, after which he discusses
the relation of mankind to evolution. The book serves as an introduction to this great theory, and gives a comprehensive outline of
it, together with sufficient illustration to tempt the reader to seek fuller knowledge of the many interesting phenomena relating to it. factorily establiched, there is far from a satis factory knowledge of the factors which are it work to produce it, and especially are we The author avoids discussing the more doubtquestions, but merely gives an outline the apparently well-established facts as to the In the three cases where there is a general point ance of opinion upon ficiency of natural selection, inheritance of the effects of use and disuse, and evolution and sexual selection, Mr. Metcalf has given the divergent opinions and what seems to him the
safest conclusion. The third point mentioned he has illustrated abundantly with pictures, showing some of the phenomena about the exof opinion. Color in animals is the subdivlsion of his work to which the author has given the most attention, his reason being that these phenomena might be readily observed by any person in any locality. The first section of and the weeond section with the phonvinens
eaplained by the theony. The beok is lllus

Wood-working Machinery

Every Gas Engine User

 see that your ticket reads

ORIGINAL BARNES
mand Upright Drills
Send for Drill Catalogue.
W. F. \& NNO. BARNES co.
$($ Estabishead 1872$)$
 WOLVERINE Lf STARTING AN Gasoline Marine Engines 3 to 18 horse power. Launches
18 to 7 ft. Write for atato
wo WOLVERINE MOTOR WORKS
Grand Rapids, Mich., U.S. A. Brokkyn ofien on. U.S.

The Right Kind of a Motor

 Send for Cataosule.
BUFFALO ENGINE CO., Mfrs.
272 272 Michigan St, Buffalo. N. Y.
AGOOD INYESTMMENT

TELEGRAPG

Chnt Place New York Manufacturers should investigate the
B. F. BARES MACHINE TOOLS

 Catalog so. what we have. APt to

 Arristic Job Printing, Catalogs, Booklets, in English orFOREEGN
LANGUAGES.
Half -tone and Color LANGUAGES PRINTING COMPANY
Languages Building, is West i8th St., New York
How To Increase Your Business

trated with 101 Pull-page plates, a number of
which are in colors, besides some 46 figures. which are in colors, besides some 46 figures.
It is printed in large type on fine paper, and will be found a very instructive and entertai
ing introduction to the study of evolution. applications of the Kinetic Theory Gases, Vafors, Pure liquibs, any
the Theory of Solytions By wil the Theory of Solutions. By Wil ant Professor of Physics at the University of Oregon. New York: The
Macmillan Company, 1904. 8 vo.; pp. 280. Price, $\$ 1.60$.
The kinetic theory, which may be regarded as a special or specialized theory of heat, is ume. While any adequate treatment of this theory must be mathematical, and while the majority of such discussions are extremely so,
the theory itself is of interest specially from the fact that it is fundamentally a physical one that attempts to present to the imagination the mechanism by which things take place. has to face not only the problems of the gas eous state, but anso of the liquid and solid atates, and of mixtures and solutions as well
as of pure substances. It is, therefore, desir able to present a treatment of as large a scope
as possible, and this the author has attempted contains all the latest information regarding to students and others interested in the same

INDEX OF INVENTIONS
For which Letters Patent of the United States were Issued for the Week Ending May 30, 1905
ANDEACHBEARINGTHATDATE

Cabinet, A. Pederson......
Caddy bag, J. Winslow
Cam, G. S. McLeod
Cand....

 Cards, game, L. Wade
Case. See Burial ca Catamenia appliance, M. S. M
Cattle Euard, C. W. Booth
Catte Euard, Costelio \& Miller
Cement post, J.

STANDARD SCALEE
FOR FACTORIES
Osgood Scale Co., Binghamton, N. Y.

You Value Your House

and Insure its Contents. You Value Your Life, tooThen why don't You Insure it? Its Loss Would be Far Greater to Your Family.

The Prudential

INSURANCE CO. OF AMERICA.
Incorporated as a Stock Company by the State of Newv Jersey
JOHN F. DRYDEN, President
Home Office: : NEWARK, N. J.
Awarded Grand Prize at St. Louis Exposition, 1904.

Our Hand Book on Pa tents, Trade-Marks,
etc, sent free. Patents procured through
Munn \& Co. receive free notice in the
Scientific American
MUNN \& CO., 361 Broadway, N. Y.

THE SUPPLEMENTARY SPIRAL SPRING

SUPPLEMENTARY SPIRAL SPRING CO

The Buckeye Air-Cooled Engines
workmonshipanded as to
e Oscar Lear Automobile Co. COLUMBUS, oHIO.

Do You Ulse Chucks?
you. Sent free. New styles.
New sizes. Liberal discounts.
THE CUSHMAN CHUCK WORHS
Chucks Exclusively
Hartford, Conn.

