
"Valhalla."
Two of the Square-Rigged Ships on the Port Tack Shortly After the Start.

rod bayonet, which was carried permanently below the barrel in the position occupied by an ordinary ramrod in the old muzzle-loading musket. The rod, it should be mentioned, was provided with a catch, which en abled it to be drawn forward until several inches of it projected beyond the muzzle for use as a bayonet.
The five thousand 30 -inch barrel rifles were never issued except for purposes of test. The manufacture of the 24 -inch barrel type was commenced, and over one hundred thousand were made, and were to have been issued on the first of January, 1905. But the reports received from our army officers detailed to observe the Russo-Japanese war spoke so favorably of the good work done by the bayonet that a committee was appointed to consider the whole question, with the result that the type of sword bayonet shown in our illustration was adopted. The bayonet which has finally been adopted, is 16 inches in length. This adds to the total length of the gun, from butt to point of bayonet, the 6 inches which were lost when the barrel was reduce from 30 to 24 inches in length. The bayonet is made of a quality of steel which will take and hold a fine edge, and it is supposed to be kept sharp at all times. The front of the blade is sharpened throughout its entire length, and the back is sharpened to a length of 5 inches from the point of the blade. There can be no denying that the general appearance of the gun is greatly improved, to say nothing of the great increase in its efficiency by the sulstitution of the sword bayonet for the old ramrod type.

START OF THE OCEAN RACE

The positions of the yachts soon after the start of the $3,000-$ mile ocean race for the Kaiser's cup, which took place under gloomy skies and in a raw and chilling east wind, seemed to the eye of many of the yachtsmen who vitnessed it to be prophetic of their position at the finish. There was a light head wind and a decidedly lumpy sea, which served at once to demonstrate the relative ability of the contesting yachts under two very material and important conditions; for while the wind was about the worst possible for the square-rigged ves sels, it showed the fore-and-aft yachts to their best ad vantage; whereas the short, steep seas, which did not bother the big fellows, were particularly trying to the smaller craft, and especially to such as carry the spoon-shaped bow that has become so fashion able in late years. The starting line at the Sandy Hook lightship was laid so that the yachts had to go over on the port tack. At the preparatory gun the schooner and the one yawl entered in the race were grouped con veniently near to the line, with the big "Valhalla" a quarter of a mile to the northeast, and "Sunbeam," "Fleur-de-Lys," and "Apache" yet further away, the last-named having fully a mile and a half to cover before she crossed. "Valhalla" and "Utowana" went ove on the wrong side of the committee boat and, of course were recalled, and the big ship had to pay the penalty of losing something like three-quarters of an hour in the light air before she finally got across between the lightship and the committee boat
There was but little of the preliminary maneuvering which is one of the interesting features of an "America" cup race, the skippers evidently realizing that in a 3,000 -mile race, which might last anywhere from four tcen to twenty-one days, or even longer, the mere ques tion of weather position at starting was not worth con sideration. The first to cross the line was the "Ailsa" at 12.15 , and close at her heels, but to leeward, wa the schooner "Hildegarde." Half a minute behind was the stately three-masted schooner "Atlantic." A min ute later came the record-holding schooner "Endy ute later came the record-holding schooner "Endy
mion," and half a minute behind her was the schoone "Hamburg," on which the hopes of Germany are cen tered. The "Thistle" crosse about three minutes, be hind the "Ailsa," and these five boats formed a divi sion by themselves. The little "Fleur-de-Lys," which essayed to sail from Sandy Hook to the starting line was nine minutes behind the "Thistle." Five minute later the veteran "Sunbeam" made a charming marine picture, as she swept over the line, and three minutes astern of her came that handsome bark, "Apache. "Utowana" and "Valhalla," which would have crossed close at the heels of the schooners had they been on the proper side of the committee boat, did not get across until twenty to thirty minues later, the "'Uto wana" going over the line at $12: 55$ or forty minutes mehind the "Ailsa;" and the "Valhalla," which went into irons in returning for a true start, did not get across until five minutes past one
The "Ailsa," with a new racing mast several feet longer than her old mast, evidently was wearing her - 1 mainsail, for there looked to be six or eight feet be tween the jaws of the gaff and the hounds. She spread a jib-headed jigger, and her small jib-headed topsail wanted many feet of reaching her topsail halyard block. Aitogether, she looked to have a very snug spread of cail for the trip, and should she be caught in a blow, by using her long gaff at the foot of a storm trysail, and a storm jib, she should be able to take the worst that comes her way. She pointed high and slipped along very sweetly, pulling out rapidly ahead of "Hildegarde." Bu
the big "Atlantic," carrying what is practically her full racing rig, was just astern, and closing up steadily on the leaders, she quickly passed to windward of the "Hildegarde," drew through the lee of "Ailsa," and footing surprisingly fast in the light air, and looking fully as high as the yawl, she began to demonstrate that her reputation for fast work to windward was well earned. A few cables' length astern of these three were the "Endymion" and "Hamburg," and there was much speculation as to how the Watson schooner, probably the best boat of any kind the late designer ever turned out, would do against the well-tried ocean racer. The question was not long in doubt, for in spite of her greatly reduced rig, the long, lean craft, rising and falling to the seas with an easy rhythmical motion that won the hearts of the yachtsmen on the accompanying tugboats, caught and quickly passed the "Endymion" and began rapidly to cut down the lead of the "Ailsa." She seemed to be making even easier work of it in the short seas than was the "Atlantic." She pointed as high, and at times seemed to hug the wind even closer, and she warranted the statement, recently made to the writer by Mr. Gardner, the designer of the "Atlantic," that the Watson boat was the "Atlantic's" most dangerous competitor. The New York Yacht Club tugboat, from which we watched this most interesting start, followed the yachts until they had made about fifteen knots on their first leg. The tug finally steamed up abreast of the leader, the band playing the national anthem, and wished her godspeed on her long passage. She then dropped back to the "Atlantic's" German rival, and the "Hamburg" was bid adieu to the strains of the German national anthem. As the yachts vanished in the mist, it was seen that "Atlantic" was in the lead by about a quarter of a mile, and that "Hamburg" not only seemed to be just about holding her own, but was pointing higher. A steam yacht which followed the "Atlantic" all night reported that at 7:45 the "Hamburg" was leading and one mile to windward of "Atlantic." A few cable lengths astern of "Hamburg" was "Ailsa," with "Hildegarde" footing about as fast as the yawl, but far to leeward. "Thistle," whose owner is largely responsible for the revival of interest in ocean racing, did not seem to be doing so well to windward in the light air and choppy seas. Her turn, however, will come when the wind freshens and sheets can be started in a reaching breeze. "Endymion" was the first of the yachts to break tacks, which she did soon after being passed by "Hamburg," being soon lost to sight in the haze over toward the Long Island shore. The little "Fleur-de-Lys," which carries the only lady in the race, the daughter of the owner of the yacht, was holding up so high, and footing so well, and withal taking the sea so comfortably, as to augur well for her ocean passage. The New York Yacht Club boat picked up every one of the racers in turn, treated them to some national air, three hearty cheers, and a hearty godspeed. "Sunbeam," "Apache," and "Valhalla," hugging the light air as closely as their sharply-braced yards would allow, but heading nevertheiess for the South African coast, were the last to be spoken, and as the strains of "Rule Britannia" were wafted over to the stately "Valhalla," she vanished in the mist, the last at the start, but not by any means necessarily to be the last at the finish of this splendid ocean contest.

The Current Supplement.

The English correspondent of the Scientific American concludes his interesting discussion of the Hydraulic Power Works on the River Glommen, Norway, in the current Supplement, No. 1534. Excellent illustrations accompany this last installment. Fifteen years ago many engineers looked askance on the use of concrete. Nowadays there is hardly a structure which does not depend in some way upon the use of concrete, or concrete reinforced by steel. An excellent article on the wide use of reinforced concrete will, therefore, we read with considerable interest. Mr. Dugald Clerk's recent course of lectures on the gas engine is abstracted. Lead pencils we use every day are described and illustrateü. Karl F. Kellerman writes on copper as an algicide and disinfectant in water supplies. The limits of sensibility of odors and emanations is discussed by M. Berthelot. Frederick V. Coville writes interestingly on desert plants as a source of drinking water. The printing telegraph invented by John C. Barclay of New York, and experimented with successfully last New York, and experiment
December, is fully described.

The steamship "Terra Nova" has been dispatched from London to relieve Anthony Fiala, head of the Ziegler North Pole Expedition. She will go to Franz Josef Land irl search of the expedition headed by Mr. Anthony Fiala of Brooklyn, N. Y., on board the steamship "America," fitte out by Mr. William Ziegler, of New York, to attempt to reach the North Pole by way of Franz Josef Land
The "Terra Nova" is coaled and provisioned for eighteen months. Drs. Samuel Jackson and Frederick m. Mount are among those on board. The crew are mostly Scandinavians.

Eleetrical Notes.

Continuous Current of Seventy Thousand volts. French electricians have prided themselves on attain ing a voltage of 60,000 volts in alternating current for industrial establishments. Now, it seems that M. Renethury has attained 70,000 volts in continuous current. Three dynamos coupled in series give under this voltage a power of 70 kilowatts, the current having an intensity of 1 ampere. The difficulty he en countered in avoiding sparks, owing to the difference of potential, 500 volts, between two segments of the commutator, was overcome after various experiments and trials by placing a condenser after each segment. Many experiments were also conducted for determin ing the most advantageous insulator. This is not M. Renethury's only feat. He originated the hydro-elec tric installation of Lausanne, in which 5,000 horsepower is transmitted under the tension of 25,000 volts in continuous current.

The state railroads of Prussia are to use De Lavai steam turbines combined with dynamos for lighting a certain number of express trains. The turbine and dynamo are built together in a compact group, which is then mounted upon the locomotive boiler. The tur bine is said to give 20 horse-power and run at 20,000 revolutions per minute. The dynamo which is use here will furnish 180 amperes at 68 to 90 volts. Each car of the train is provided with a battery of 32 storage cells. The incandescent lamps used for lighting the train will run at 48 volts. The difference in voltage is absorbed by an iron wire resistance on the same principle as the resistance used in a Nernst lamp, so that the tension at the lamp remains constant in spite of the variations in the battery during the charge and discharge. Generally, the dynamo and battery are run in parallel, and a special device consisting of a red lamp placed in the motorman's cab is used. The lamp lights up whenever the voltage of the storage battery becomes equal to that of the dynamo, and indicates the moment when the charging of the latter is to be stopped.

In a paper presented to the Academie des Sciences, M. Einthoven describes a new form of sensitive galvanometer which he has devised, together with some experiments which he carries out by applying this very sensitive method of measuring electric currents to the study of the electrical condition of the human body In the latter case it is especially the electric effects produce by the heart which he observes. The new galvanometer is one of the most sensitive which is known, and at the same time very precise, so that the smallest variations of current can be measured, down to 10^{-12} ampere. It is formed of a silvered quartz fiber which is stretched like a violin cor between the poles of a powerful electro-magnet. When a small current passes in the wire it is deflected perpendicular to the lines of the field and the deflection can be measured directly by means of a microscope carrying a micrometer The sensitiveness of the instrument can be regulated by adjusting the length of the wire, so that it will measure in the region of 0.001 down to 100^{11} amperes The movement of the wire and its variations can be registered by the photographic method. The image of the middle of the cord, magnified 600 diameters, is projected upon a slit which is placed perpendicular to the image. In front of the slit is a cylindrical lens whose axis lies perpendicular to the slit. A photographic plate receives the image which is thus concentrated to a point, and by moving the plate a curve is obtained which corresponds to the current variations. The image of a scale is projected on the plate at the same time in order to measure the curves. The new instrument allows of making measurements which could only be observed heretofore with the electrometer. One of these is the study of radium, which is now made with a gold-leaf electrometer. It will prove especially useful in physiological work for studying the nerve currents. In the case of the frog we observe the cur rents of the sciatic nerve, for instance. The electric action of the human heart has been observed hereto fore with the Lippmann electro-capillary instrument. The muscular shocks of the heart-beats are known to produce variations in the electric potential of the organism, and this was brought out by Waller in 1899. The currents are registered with the Lippmann instrument, but this has many disadvantages, owing to the inertia in the oscillations of the mercury column. The present instrument is more sensitive and works more quickly, as the light quartz fiber, in spite of its length, has but little inertia and can register the variations of current more exactly, and again, the displacement is proportional to the current. M. Einthoven has obtained a series of curves in the shape of regular waves which corresond to the heart beats and show how the electrical effect varies. The effect is, in fact, quite considerable and indicates the great variations of electric potential in the different parts of the body which accompany the muscular shock of the heart. The waves he ottains are similar in form to those of the Marey cardiograph register.

