-M. T. GoLDSMITH, New York, N. Y. This is
an ornamental design for a back for band-mirrors, brushes or similar articles. The mirror portion is circular with a graceful handle.
beautiful figure of a lightly celd fende beautiful figure of a lightly-clad
tended amid encircling flowers.
Note.-Copies of any of these patents will
be furnished by Munn \& Co for ten be furnished by Munn \& Co. for ten cents each
Please state the name of the patentee, Please state the name of the patentee,
the invention, and date of the paper.

Business and Personal Wants

 ins theinformation. iu every case it it nee nees.
sary to give the number of the inquiry.
MUNV

Marine Iron Works. Chicago. Catalogue fr
Inquiry No. $6712 .-$ For manufacturers of lead
pipe making machinery.
Forbridge Heaniry Mo. 67.13 -Wanted addres. of partie Inquiry No. $67414-$ Wanted, adress of parties Perforated Metals. Harrington \& King Perforatin Co. chicago.
 Handle \& Spo
Charrin Falls,
Ingniry No. $\mathbf{H z 7}$. 6 .-For parties having good rubCommercially pure nickel tube, man
Standard welding Co., Cleveland, 0 .
Inquiry No. 6717.-Wanted, address of violin
makers
dools.
Sawmill machinery and outhts manu
Lane Mfg. Co.. Box 13, Montpelier, Vt.

The celebrated "Hornsby-Akroyd" Patent Safety Oin
Engine is built by the De La Vergne Machine Jnquiry No. 6719.-For
Gut strings for Lawn Tennis, Musical Instruments and other purposes made by P.
and Packers Avenue, Chicago, Ill.

In buying or selling patents mones may be saved
and time gained by writing Chas. A. Scott, 719 Mutual and time gained by writing Cha,
Life Building, Buffalo, New York.

We Manufacture on Contract anything in light Hardware. Write us for estimates. Edmonds-Metzel Mf
Inquiry No. 6yy2.-Wanted,
pounds to twenty-five tons. Crank shafts of all varie ties. Erie Forge Com
Inquiry No. 6723.- Wanted, osster baskets in
pints and quarts made of white paper with thin copper
wire handles. The Scientific american supplement is publishing a practical series of illustrated articles on ex
mental electro-chemistry by N. Monroe Hopkins.
Inquiry No. 67:24.-For manufacturers of bullet-
proof felt.
Sheet metal. any kind, cut, formed any shape. Die
Inquiry No. G79.5.- Wanted, manufacturers
good reliable air guns, also novelty manutacturers.
FOR SALE. Full rights Patented Steam Cooker.
Novel, useful, practical. Big demand certain. Writefor Novel, useful, practical. Big demand certain. Writef or
terms. W. L. LIGGrNs, 1413 Poplar St., St. Louis, Mo. Inquiry No. 67\%6.-Wanted, electric and combi-
nation rfture. ${ }^{\text {narts. }}$ ittings and electrican supplies
also electro-plating equipment and supples. Wanted.-Colonial silverware. Any one wishing to
sell any authentic silver made in this country during sell any authentic silver made in this country during
the eighteenth century, please communicate with \mathbf{C}. A Inquiry No. 6y97.-Fir manufacturers of any
kind of amusement device operated by droppmg a
coin in a slot. Manufacturers of patent articles, dies, metal stamps
ng, screw machine work, hard ware specialties, machin. Ing, screw machine work, hardware specialties, machin. South Canal Street. Chicago.
Inquiry No. 672S. For manufacturers of hand-
operating machines for planing wood fioors. You can renta well equipped private laboratory by
day, week or month from Electrical Testing Labor day, week or month from Electrical Testing Labor-
atories. 548 East 80 h Street, New York. Absolute
privacy. Ask for terms and facilities.
 Space with power. heat, light and machinery, if de-
sired, in a large New England manufacturingconcern, sired, in a large New England manufacturingconcern,
having more room than is necessary for their business.
Anquiry No. 6730.-For manufacturers of spoke-
turning machines.
WANTED.-Representative to sell our spinning. weav-
ing avd batting machinery, by oldest firm in France
and Germany. Graud prize awarded Paris Exposition. and Germany. Grand prize awarded Paris Exposition
Inq uiry No. 67:31. - For the best mixing vats, ai
compressors. washers, etc., for a dynamite plant.
Splendid opening for a high-grade mechanical engi
neer, who has had a broad experience in managing machine shops, the manufacture of machinery, engines
and metal specialties. Applicants mast bein prime of
life and now employed. Preference will be given to
applicants who have had modern scientific training in mechanical schools of high standing. Unqualifed references will be exacted. All communications received regarded as strictly confidential Ad
Mechanical Engineer, Box 773 , New York.

Names and Address must accoonpany all. 1etters oo
no attention will be paid thereto. This is for

 his turn.
Buyers wisking to purchase any article not adver-
tised our columns will be furnished with
addresses of houses manufacturing or carrying Speial tail sime itan Information on matters. of personal
 Min orice ses sent for examination should be distinctls
markee
or labeled.
(9605) C. J. J. Co. says: Can you do us the favor to answer in the columns of your
paper the following question? We desire to paper the following question? We desire to
know how much water will be lifted by a smple know how much water will be hifted by a simple
undershot wheel having straight paddles, 14 in
number symmetrically The wheel is 14 feet in diameter with paddle 6 feet long and 16 inches wide. The wheel re volves eight revolutions per minute and dips
into the canal carrying water 16 inches deep into the canal carrying water 16 inches deep,
the ends and edges of the paddles fitting the the ends and edges of the paddles fitting the
canal quite closely, not more than $1 / 4$-inch slack showing at any point. The canal is curved to compel the wheel to lift the water
$21 / 2$ feet so that the total duty is a lift of $21 / 2$ $21 / 2$ feet so that the total duty is a lift of $21 / 2$
feet for the width of the wheel. Can you give us an opinion as to the amount of water that
would be lifted by such an apparatus, and would be lifted by such an apparatus, and
the power required to operate it? A. If we understand your question aright, the wheel is
to be driven by external means, and used in to be driven by external means, and used in canal up a curved incline two and a half feet.
If this assumption is correct, and if there is no slip between the water and the paddle wheel and no leakage past the paddles, 2,500 feet of water will be lifted per minute, which would require, if the efficiency of the apparatus were
perfect, $121 / 2$ horse-power. As a matter of fact, however, there will be a certain amount of leakage past the paddles, amounting to 10
per cent, or possibly 20 per cent. This would decrease the quantity of water actually lifted from 2,500 to 2,250 cubic feet, and as the
efficiency of the apparatus is not perfect, it ill require more power by a considerable amount. The efficiency of this device would
probably not be far from 55 or 60 per cent. probably not be far from 55 or 60 per cent.
This would increase the power actually required to drive the wheel to from 16 to 20 horse-power. In order to have a reasonable
margin of safety, it would be well to allow 25 horse-power. If this device is to be used, place of flat paddles in the paddle wheel, or else to have paddles considerably wider than
16 inches, or else to have them made with a 16 inches, or else to have them made with a
piece at right angles at the top of the paddle to prevent the water from running back over
the top of the paddle after it has been lifted the top of the paddle after it has been lifted
a portion of the way up the incline.
(9606) E. S. asks: Will you kindly give me the scientific reason for the hour be-
fore dawn being the darkest and coldest, particularly the former? A. We do not know any scientific reason for the belief among people that the hour before dawn is the coldest and
darkest. The popular proverb is, "It is always darkest. The popular proverb is, "It is always
darkest just before dawn," which we always understood to refer to the mental attitude of a man who is hard pressed and finds help. The
coldest hour of the night is found to be from 3 to 4 A . M. The darkest hour is when the night. We do not see any other scientific conclusion. All daylight is gone from the at-
mosphere after the sun is 18 deg. vertically mosphere after the sun is 18 deg. vertically
below the horizon, the time which marks the end of twilight of evening and the beginning of the morning twilight. Between these two times it is deep night and there is no reason why
one of the hours should be darker than another.
$(96$
(9607) W. A. P. asks: I am building 12-inch spark coil according to Allsop direc-
tions. What test can I make to find if I tions. What test can I make to find if I
have a good or perfect condenser? If I put have a good or perfect condenser? If I put
250 volts 1 lamp in series across the foil ends I get no trace of leakage or short circuit, the lamp, but there is a big leakage-so much using the condenser only, as the coil has not yet been built. I have 20 sections secondary
built on the primary and receive only $3 / 6$-inch spark with or without condenser, the maximum number being 96 sections. Does this appear
right? A. The leakage of a condenser is found by charging it and discharging it immediately, then charging it and leaving it for say 15
minutes and discharging it again. The ratio of the discharge gives the leakage. There is no way of finding the leakage without proper
instruments to measure with. We do not see any proof of leakage in what you write, though what you say is not clear. If you mean that
a direct current of 220 volts shows no leakage,

While with an alternating current 110 volts
gives effects across the condenser, we reply that an alternating current does not charge a condenser at all. A condenser is not used on
a coil when the alternating current is used with it. Without instruments or means of measuring the condenser you should make sure
of each sheet of the paper, make the condenser as well as possible and rely upon the thoroughess of your work.
(9608) A. B. asks: Two weeks ago I purchased from you Hopkins's "Experimental
Science." In the description of the $1 ;$ Science." In the description of the 1 i-horse-
power motor in Volume I., I find a few dimensions missing: 1. Diameter of poles of fields.
2. Width of coils on poles and number of lay 2. Width of coils on poles and number of lay-
ers of wire on same. 3. When soldering wires to bars of armature, should both ends of twisted wires (when cut apart) be connected to same
bar? If not, how should they be connected? 4. What thickness of leather board should be used for the lining of armature grooves? 5 .
Must there be an insulation between armature disks and sleeve? 6. Total thickness of disk (not counting flange and nut of sleeve). 7 In Fig. 498 on page 514, should first coil go
from $18-1$ to $9-8$ as shown, or from $18-1$ to 10-9? 8. What size wire should be used for ing pulley. 10. Should field magnet be of wrought iron, or would cast iron answer of purpose? between each layer of wire in armature and also in field? 12. Would you prease give me data for the construction of the
rheostat-wire, etc.? A. The dimensions of the parts of the motor described in "Experi mental Science," Volume I., page 510, which are not given in the list of sizes, may be deter-
mined by measuring drawings in which the parts appear with others whose dimensions the pole pieces can be found from the diameter of the field-magnet drum. You will find them to be $21 / 2$ inches. From the same figure the
thickness of the field coils is determined to 1 inch. We do not know the number of layers
of wire in each field coil, but you must wind of wire in each field coil, but you must wind $1 / 8$ pounds in each coil. The number of layers
will be determined by your skill in winding the wire closely. In soldering the wires to the
bars of the armature, solder the end of one coil bars of the armature, solder the end of one coil
and the beginning of the next to the same bar. Any thickness of leather board may be used
which will not be cut by the wire in winding A piece of the thickness of heavy paper should sufficient. No insulation is required bewould have been specified had' it been required. We do not know the number of armature disks o them on thequired to fill the space allotted 0.0179 inch thick. Slight inequalities and roughnesses will probably prevent you from
bringing the disks into actual contact all over bringing the disks into actual contact all over
their surfaces and so you will not get the total their surfaces and so you will not get the total
number into the core which this thickness would indicate. The coils of the armature are to be put into the slots as given in the winding
plan. Follow the directions closely. For a spring upon the carbon brushes several sizes of wire would do equally well. No. 16 or 18
will answer. The driving pulley should be of a size to produce the proper speed in the machine to be driven by the motor, which is to give 1,600 turns per minute. From this you can calculate the diameter of the pulley re quired. The field-magnet frame is of cast iron.
The cut shows the mark where the two parts of the pattern came together in molding for he casting, in Fig. 497. The insulation be thick shellac, which is dried by baking the for the rheostat. Usually a rheostat givin three speeds is purchased.
mbedded is to be preferred.
(9609) G. C. T. asks: Will you kindly answer through the notes and queries column the following questions? . Whine trying to fin fields of a small dynamo I used a hand compass and after letting the compass touch the poles a few times I found that the north end of the needle had been influenced some way and would be at rest only when pointing due south. The plain reasons for this and a way to change needle back to original condition. Compass
is inclosed in brass case and with what I suppose is a sttel dial. A. The needle of you compass has its magnetism reversed by the
dynamo field in some way, so that the former ormer it he needle cannot turn and bring the end which ou wish to have north against the south or the needle will be charged in the proper di ection. 2. Is it necessary with a series-wound ynam to have the external circuit closed when starting, provided the field coils are
separately excited? A. It is necessary to have the external circuit of a series dynamo closed when it is started. It will not generate

E. M. F. on open circuit, since no current can low around the field until the external circuit is closed. It is not the same with a shunt | machine, which series or shunt wound field coils |
| :--- |
| closed. | best adapted for dynamos that are direct con

nected, or does the manner of winding affect the coupling of dynamos in any way? Haw-
kins's "Catechism of Electricity," page 157, states that dynamos of the under type are innot say used for direct connections but does or not. A. Series-wound dynamos are not used in parallel or coupled together, because i either generates too little current that fac reduces its power to generate still furthe
and finally reverses the machine circuits the system. These matters are fully circuits the system. These matters are fully
discussed in Crocker's "Electric Lighting," two volumes, which we can send for $\$ 6$.
(9610) A. L. R. asks: 1. In running levels for a waterway of considerable length
like the Panama Canal, is not the rotundity of the earth an important factor that must be ways of considerable length the line which is actually run is substantially a circle whose center is the center of the earth. The sites taken by the instrument between successive set tings are so short that the curvature of th each new setting of the instrument the lin of the level is parallel to the circumferenc of the earth at that point. 2. If it were pos-
sible to stretch a wire, perfectly taut, across sible to stretch a wire, perfectly taut, acros a lake ten miles in width, so that it is per-
fectly level and absolutely without sag, would fectly level and absolutely without sag, would
it not be necessary that the shore end of the wire be anchored at an elevation of not less than $162-3$ feet above the water to prevent the immersion of the wire at the center of the lake? A. If it were possible to pass a perfectly straight line across a lake ten miles in width $162-3$ feet aust be elevated not less water to prevent the line from going below the level of the wate at the center. 3. An extensive and perfectly level plain is traversed by a range of moun tains; to pierce which, for a railroad, requires a tunnel ten miles in length. If such a tunnel is excavated with a floor perfectly level, as indicated by the surveyors' level or by "tees"
placed at both ends and the center, assum ing the possibility of sighting that distance, would not the center of the tunne
be lower than either end or than the plain outside, and would not the water in the tunnel drain toward the center? Would the specific gravity of an object placed in the cen ter of the tunnel be affected by the superIf the tunnel which you mention were to pierce range of mountains ten miles long, it would but go in a straight hine with the mountain, center of the earth, or else, center was the good engineering practice, it would be enough higher in the center, than indicated in the above statement, to allow drainage in both directions. If such a tunnel were excavated where the range of mountains left the level plain on one side, it would come out on the other side of the mountain range 65 feet above the plain. If the tunnel were excavated in an oxact straight line from the plain on one side the the plain on the other, at the entrance of down grade of 65 feet in ten would be a feet to the mile. The tunnel would be level in the center, and would be at that point $162-3$
feet below the surface of the plain. The specific gravity of an object placed at the center o the tunnel would be slightly less than outside on the plain, because of the influence of the mountain.
(9611) H. M. says: Please give the ork. A.eceipt for making whitewash for outside follows: Take $1 / 2$ bushel of freshly burnt lime slake it with boiling water; cover it during the process, to keep in the steam. Strain the liquid through a fine sieve, and add to it 7
pounds of salt previously well dissolved in warm water; 3 pounds of ground rice boiled to a thin paste and stirred in boiling hot; $1 / 2$ pound powdered Spanish whiting; 1 pound
clean glue, which has been previously dissolved by soaking it well, and then hanging it over a low fire in a small kettle, within a large one o the mixture, stir it well, and let it stand a few days covered from dirt. It must be put on quite hot. For this purpose it can be kept
in a kettle on a portable furnace. About 1 pint of this mixture will cover a square yard.
(9612) C. F. writes: Some time ago read about a liquid or composition which nd thereby destroy them. Could you explain this or any other similar process of destroying
tree stumps? A. In the fall bore a hole in the center of the stump, about 18 inches deep and to $11 / 2$ inches in diameter. Put in about 2 onces saltpeter, and fill the hole with water, plug pour in 8 or 10 the spres petroleum, ignite and the stump will smolder, but not blaze, to the extremities of the roots, leaving only ashes.
Dynamite is also extensively used.
(9613) W. B. asks: 1. A chicken gains about twice in weight for the first twenty-
four hours after hatching. What do they live on, as they do not eat anything? A. It is true that chicks can go for several days with
out food, as there is sufficient of the egg left in the stomach to supply nutriment. They will eat on the first day, however, if food is
provided. Chicks almost double in size the first day, owing to the organs being relieved from

