AN INSTRUMENT FOR INDICATING MEAN ASTRONOMICAL NOON.

The time that separates two successive passages of the sun across the meridian is not always the same. Except for four days of the year there is always a

INSTRUMENT FOR INDICATING MEAN ASTRONOMICAL NOON.
difference between the time of an accurate clock (mean time) and the time indicated by a sun-dial (true time). This difference is called the time equation. On February 10, in France, the equation shows a retardation of. 14.5 minutes, and on November 3 an advance of 16.5 minutes, a total difference, therefore, of 31 minutes Since 1891, the time of Paris has been the legal time of France. It follows, therefore, that cities lying to the west or east of Paris would have to add to or subtract from the local time in order to legalize their timepieces. It is the purpose of the apparatus illustrated in the ac companying engraving to effect this correction in the equation of time automatically, and to indicate the exact moment when the sun reaches the meridian.
The apparatus consists of a sub stantial base plate upon which is carried a frame pivotally mounted on an axis parallcl with that of the earth. At right angles to this frame a lens holder is carried, hinged at its lower end and provided with a lens, the focal point of which lies exactly on the line joining the pivots of the first men tioned frame. A clock train is disposed on the trame to the west of the meridian, in such a manner that its weight will always tend to bring the frame to this side. It will be observed from the illustration that the lens holder is operated from this clock train by chains, the movement being so timed that the lens keeps pace with the sun on its journey through the heavens. The lens has two movements, the one from east to west, the other from side to side around the pivots of the frame, both movements being automatically controlled from the clock train, and both being so timed that the rays of the sun are con stantly received by the lens.
At Paris the true noon agrees with the mean noon on the 16 th of April, the 15th of June, the 1st of September, and 25th of December. On these days the frame inclines neither to the right nor to the left. and the focal axis of the lens lies exactly in the plane of the meridian. When the sun crosses the

general view of the new turbine.

N\&W TURBINE WITH CASING BROKEN AWAY TO SHOW DETAIL.
disks, B, interposed between them and keyed to the turbine shaft. The partition, A, is formed with a

NEW GERMAN TOWER ELECTRIC CRANE.
series of radial steam ports whose cross section is curved as shown at A^{\prime}, which is a section on the line, $F F$, of Fig. A. These ports, it will be observed, gradually widen inwardly or toward the left, so that the velocity of the steam jet will be increased by reason of its expansion therein. The curved ports direct the jets at an angle against the blades of the disk, B, causing it to rotate. The shape of the disk B is indicate at Fig. B and section B^{\prime}, which is taken on the line $E E$. The steam next encounters a partition, C, similar to disk B, but formed with curved radial vanes, at shown at C^{\prime}, which is a section on line $D D$. These blades direct the steam at an angle against the blades of the next rotating disk, B. It will be observed that the segments inclose by the radial vants of the disks B and C are subdivided near the circumference by shorter radial arms. After traversing one cylinder, the steam passes to the next, which is shorter, but of larger diameter to allow for expansion, and so on until the discharge pipe is reached. By constructing each partition and each rotating disk in a single piece, the inventor is enabled to make the vanes very light, without reducing their strength, and much more so than in constructions where separate vanes are employed, and by subdividing the disks as the diameter increases, he is enable to increase the surface area on which the steam can impinge.

A NEW GERMAT TOWER ELECTRIC

 CRANE.by frank c. perkins,
The accompanying illustrations show the details of construction, as well as a general view of a most interesting electrically operatcd tower crane constructe at Karlsruhe, by the Gesellschaft für Elek. trische Industrie. The extreme height of the crane is 24.75 meters. The total height to which the hook may be raised is 23.5 meters, and the length of the arm or jib is 6 meters. This crane is designed to carry a load of 15,000 kilogrammes and the speed of lifting with a load
of 10 tons is 5 meters per minute, and with 3 tons 17.5 meters per minute. The crane is shown in operation n the city of Belgium, where a large armory is being constructed. The crane operates upon a track severa hundred feet in length, the gage of the track being about 12 feet, or 3.25 meters. It is utilize for hand ling the large blocks of stone, carrying them from the cars on which they are transported to the building, and locate where desired at the place of construction The crane is operate by three electric motors one of which is utilized for moving the tower crane on he rails, the second for turning the crane, and the third for raising or lowering the load. This type of ower crane is most economical in its operation, and entirely does away with the expensive scaffolding re quire in the construction of buildings within the apacity of the crane. It is stated that a new crane of this type is being built which will be about 120 feet n height, and will be of great service in the construc tion of high buildings. The crane of the tower type it will be noted, not only takes the place of the scafolding usually required, but also takes the place of the hoisting apparatus, doing its work vastly quicke and cheaper than it can possibly be done by old methods. It is of great importance in use on docks, nd is designed to withstand great pressures and to resist the greatest wind velocities with ease. It may be operated on grades varying from 1 to 4 per cent, an is very stable in spite of the small gage of the track
It is well known that the employment of electricity as a motive power has caused quite a revolution in the arrangement and working of cranes, hoists, and ther apparatus used at various factories and works as well as at docks and harbors. The application o electricity as a motive power has been of great advan tage in connection with the operation of traveling cranes, as well as other forms of hoisting apparatus The starting of cranes has been greatly facilitated by he use of electric current, and the relatively smal weight and small space of the electric motors require for the different movements of the crane, has been of course of great advantage.
While it is true that hydraulic cranes are also driven from one central station, the power conductors consist of rigid inflexible piping. in many cases, which make the crane almost, if not quite, stationary. The hydrau lic crane has by no means the economical working of the electric crane, the consumption of water, and there fore of the power, being in proportion to the height to which the weight is raised, or to the length of way, and not in proportion to the work done. It will thus be seen that with the hydraulic crane, the expenditure of power remains at about the same high rate, whether heavy loads or light loads are handled. There is also the great danger with hydraulic cranes in case of ver cold weather, where the pipes and other apparatus are expose to hard frost. For traveling cranes, the hydraulic method is almost useless on account of th great difficulty met with in supplying the necessary power
When steam cranes are employed, it is necessary to supply not only a steam engine and a boiler, but a fire man as well, and although long intervals may inter vene between the operations of the crane, nevertheles ts steam must be kept up all the time, thus wasting considerable fuel, and reducing the economy of opera tion. It is also necessary to employ the same steam ngine for the several movements of the crane, as the use of three engines for the three principal movements of the crane would be excessively costly, to say nothing of the large amount of space which would be necessary Even with a single engine, the amount of space re quired is excessive on account of the mass of com plicated driving gear require in order to obtain the ifferent movements. It is these reasons that rende it more desirable under many conditions to operate cranes by electricity than by the compressed-air hy draulic, or steam methods.

PUMPING MACHINERY AT THE ST. LOUIS FAIR.

The wide variety and great total capacity of servic ndere by the Worthington pumps at the St. Louis Exposition call for special mention. Three large ro ary pumps, each designed for a capacity of 35,000 gal ons per hour against a head of 159 feet serve to sup ply the Cascades in front of Festival Hail with water; each of these is driven by a 2,000 -horse-power West inghouse motor. In the boiler room there is installe a double row of fourteen 1,000-gallon Underwriter fir pumps which serve the mains for the entire fire protec tion of the Exposition grounds. Then follow the three 24 -inch turbine pumps for circulating water in the power house. Here also are four boiler feed pumps, two of the vertical and two of the horizontal type which serve the whole of the boiler installation in this building. There are also four 24 -inch centrifuga pumps for handling the entire sewage of the Exposi tion grounds. Ranged along one side of the powe house are the three centrifugal pumps with their en gines direct-connected, which are shown in one of our
front-page illustrations. Two of these pumps are constantly in service, with the third in reserve. One of the two in service delivers water to the cooling towers outside the building, and the other is the circulating pump for the surface condensers of the four large Westinghouse engines in the Machinery Building. Each of these three units consists of a Westinghouse high speed compound engine, high-pressure cylinder 18 inches, low-pressure cylinder 30 inches in diameter and a common stroke of 16 inches; steam pressure 150 pounds, and revolutions per minute 240 , direct-connected to a centrifugal pump of 20,000 gallons capacity. The wheel of these pumps is 6 feet in diameter and both suction and delivery pipes are 2 feet in diameter. Another illustration shows two horizontal air pumps manufacture by the Laidlaw-Dunn-Gordon Company of Cincinnati. The larger pump shown to the left of the illustration has steam cylinders 13 inches and 24 inches diameter, air cylinders 22 inches and 14 inches diameter and a common stroke of 24 inches, both steam and air working compound. The capacity is 1,300 cubic feet of free air per minute against 100 pounds pressure. The smaller pump has steam cylinders 13 and 20 inches, and air cylinders 20 and 12 inches diameter and 12 -inch stroke. Its capacity is 520 cubic feet of air per minute against 100 pound pressure.

(Vaxiextratalemed

The Catalpa Tree again.

To the Editor of the Scientific American

I have read a few articles in your paper in regard to the catalpa tree. While some, no doubt exaggerate its merits, I am disposed to believe that Mr. S. E. Worrell has as much underestimated it as others have overestimated it.

I have on my place a lot fenced with catalpa posts in the spring of 1886 . In the spring of 1903 I rebuilt the fence, using the same posts but reversing the ends Only about 10 per cent of these posts had rotted off. Catalpa contains an oil which prevents it from rotting internally. Above ground it wears away from the wea rot.

As to the growth: In the fence spoken of there was a small, round post from which a small bud put out at the ground and grew. This is a tree now, measuring fifty-four inches around or eighteen inches through, in eighteen years. This tree is on medium upland. It has a large top, but no larger than an oak or other trees under the same circumstances. Catalpa grows best on rich, moist bottom land. It should be planted about 10×10, or 400 to the acre, so that they will be slender. West Tennessee contains thousands of acres of bottom land which overflows so badly that it cannot be relied on for cultivation and can be bought cheap.
While speaking of timber and its lasting qualities, I wish to mention red mulberry and black locust. In the year 1867 my father planted a red mulberry gate post. In 1897 the post was taken up and moved and was rotted about one inch on the surface in the ground.
In the year 1877 three black locust trees were cut in my grandfather's yard. Twenty-seven years have passed and the stumps are so sound that one cannot shake them with a sledge hammer. Black locust is of slow growth but sprouts profusely and grows very thick and slender and roots deep in the clay
In another article Mr. Dennis appears to be mystified as to the influence of power. In grinding corn it is generally admitted that the old-fashioned water mills make better meal than the modern steam mills. These water mills as a rule were of small power and used large rock (or burr) at a slow speed and"ground from three to ten bushels per hour. The modern steam mill uses a small burr at a high speed-often a cast burr at almost the speed of a buzz-saw-and putting through it about twenty bushels per hour, the burr, meal and all around gets hot and the meal is ruined.
W. R. Crawfors.

McKenzie, Tenn.
Effect of the Sun Upon the Black Race.
To the Editor of the Scientific American
It has always been a matter of much satisfaction to the scientist and the strongest corroboration of the truth of his conclusions, that his discoveries are immediately appropriated by co-workers in other fields and used in explanation of hypotheses or of demonstrated facts, independently discovered and frequently very remote in their general bearing. In this way, the chemist and the physicist have been the strongest supporters of the physiologist: the paleontologist and the biologist are mutually sustaining each other's theses; and the phychologist is both giving to, and accepting from, each of the other fields of organic science. All this is, of course, precisely what any believer in universal truths might expect and of itself is hardly worthy of comment. Yet such an expectation only serves to increase the rudeness of the shock which comes from what seems to be a direct contradiction
between an existing fact in nature and a natural law so fully demonstrated as to be beyond question as re gards its validity. This seeming contradiction ex presses itself in the fact of the existence of the darkskinned races in the tropics, and the physical law which asserts that black is a poor reflector, and con sequently a good absorber of heat. Of both the fact and the law in its general bearing there is little need here of demonstration; for no black race is, I be lieve, indigenous to regions outside the tropics, and none of the whitest races to regions within them; on the other hand experiments with blackene thermo meter bulbs and with different colore cloths upon the snow under the influence of direct sunlight as well as our experiences with black and with white clothing and shoes need only be alluded to in support of the law of absorption of heat. Why, then, is my query, are the black races placed in such relation to the sun's rays as to be most affected by them? And why did not nature compensate for the effects of color by placing them near the poles? It would, of course, be but begging the question to answer that the black races have in other ways been made more immune to the effects of heat by modifications in metabolic processes of life. It still remains to be shown why nature should have put herself to the trouble of accentuating an evil which must be corrected at some expense of energy. Seemingly the law of the survival of the fittest might have been just as potent in the racial elimination of pigment from the skin as in the elimination of any other unfortunate variation. Yet in accordance with what we know of the laws of the reflection of heat, the sensible effect of direct sunlight upon the negro should be more intense, by severa degrees, than upon the white man. Why is it?

EDWin Grant Dexter,
Professor University of Illinois.
Urbana, Ill., August 1.

The Current Supplement.

The current Supplement, No. 1494, opens with a very full description of the Westinghouse exhibits at the St. Louis fair. Excellent pictures, especially taken for the Scientific American, accompany the text Still other articles relating to the fair, which will loubtless be of interest, are those describing the State of Washington's building; the exhibit of war material Mines and Metallurgy Building. All these articles are fully illustrated. W. N. Best, in an article en titled "The Science of Burning Liquid Fuel," gives much instructive information. "A Home-Made Water Motor of One-quarter Horse-Power" is the title of an illustrate article that will surely appeal to amateur mechanics. Walter W. Curtis outlines the history of timber treatment. An interesting paper on steel axles read by J. L. Replogle before the Western Railway Club of Chicago, is abstracted. The English correspondent of the Scientific American describes a new process o manufacturing silicate-of-lime stone from sand. Lor Rayleigh recently delivered at the Royal Institution of Great Britain an admirable lecture on shadows This lecture, revise by the author, is published in the Supplement, together with all the illustrations of which Lord Rayleigh made use.

Dr. H. R. Mill, of London, in a paper read before the British Association, dealt with some difficulties experience in the preparation of the rainfall charts for the United Kingdom which he exhibited. Many observers were wanted. The organization installe by the late Mr. Symons had splendidly developed, and they had now over four thousand, mostly voluntary, observers, of whom three hundre might change every year. The records extended over thirty and more ears, but in some parts, especially in the north, they had very few gages. To arrive at average mean rain falls over large areas, they had to allow for the differ ent distribution of the stations, for the differen engths of the records, and the configuration of th country. It was very difficult to determine the average fall for any particular day; in that case the hours of readings and the methods of entering had to be con sidered, in addition to other points. When averages for the whole year were computed, some of those diffi culties became less serious; but the unequal length of the periods of observation, and the absence of rain gages in certain districts, made the results uncertain There were such gaps in Wales, and, though he under stood the prejudices against piling up data, we wanted more information. Collective continuity helped us ove inaccuracies. Dr. Mill suggested several methods, in ciuding composite photography, for compiling his new maps, and it was the methods which he hoped to have discussed. The discussion by Messrs. W. Marriott, As sistant Secretary of the Royal Meteorological Society W. G. Black, of Edinburgh, J. Hopkinson, of Watford Prof. Turner and others, turne more upon details and the relizbility of observers, however. In replying Dr. Mill remarke that he wished that all the stations were as splendidly equipped as the Southport station

