AN INSTRUMENT FOR INDICATING MEAN ASTRONOMICAL NOON.

The time that separates two successive passages of the sun across the meridian is not always the same. Except for four days of the year there is always a

INSTRUMENT FOR INDICATING MEAN ASTRONOMICAL NOON
difference between the time of an accurate clock (mean time) and the time indicated by a sun-dial (true time). This difference is called the time equation. On February 10, in France, the equation shows a retardation of. 14.5 minutes, and on November 3 an advance of 16.5 minutes, a total difference, therefore, of 31 minutes Since 1891, the time of Paris has been the legal time of France. It follows, therefore, that cities lying to the west or east of Paris would have to add to or subtract from the local time in order to legalize their timepieces. It is the purpose of the apparatus illustrated in the ac companying engraving to effect this correction in the equation of time automatically, and to indicate the exact moment when the sun reaches the meridian.
The apparatus consists of a sub stantial base plate upon which is carried a frame pivotally mounted on an axis parallcl with that of the earth. At right angles to this frame a lens holder is carried, hinged at its lower end and provided with a lens, the focal point of which lies exactly on the line joining the pivots of the first men tione frame. A clock train is disposed on the frame to the west of the meridian, in such a manner that its weight will always tend to bring the frame to this side. It will be observed from the illustration that the lens holder is operated from this clock train by chains, the movement being so timed that the lens keeps pace with the sun on its journey through the heavens. The lens has two movements, the one from east to west, the other from side to side around the pivots of the frame, both movements being automatically controlled from the clock train, and both being so timed that the rays of the sun are con stantly received by the lens.
At Paris the true noon agrees with the mean noon on the 16 th of April, the 15th of June, the 1st of September, and 25th of December. On these days the frame inclines neither to the right nor to the left. and the focal axis of the lens lies exactly in the plane of the meridian. When the sun crosses the

general view of the new turbine.

N\&W TURBINE WITH CASING BROKEN AWAY TO SHOW DETAIL.
disks, B, interposed between them and keyed to the turbine shaft. The partition, A, is formed with a

NEW GERMAN TOWER ELECTRIC CRANE.
series of radial steam ports whose cross section is curved as shown at A^{\prime}, which is a section on the line, $F F$, of Fig. A. These ports, it will be observed, gradually widen inwardly or toward the left, so that the velocity of the steam jet will be increased by reason of its expansion therein. The curved ports direct the jets at an angle against the blades of the disk, B, causing it to rotate. The shape of the disk B is indicated at Fig. B and section B^{\prime}, which is taken on the line $E E$. The steam next encounters a partition, C, similar to disk B, but formed with curved radial vanes, at shown at C^{\prime}, which is a section on line $D D$. These blades direct the steam at an angle against the blades of the next rotating disk, B. It will be observed that the segments inclosed by the radial vanus of the disks B and C are subdivided near the circumference by shorter radial arms. After traversing one cylinder, the steam passes to the next, which is shorter, but of larger diameter to allow for expansion, and so on until the discharge pipe is reached. By constructing each partition and each rotating disk in a single piece, the inventor is enabled to make the vanes very light, without reducing their strength, and much more so than in constructions where separate vanes are employed, and by subdividing the disks as the diameter increases, he is enabled to increase the surface area on which the steam can impinge.

A NEW GERMAY TOWER ELECTRIC

 CRANE.by frank c. perking
The accompanying illustrations show the details of construction, as well as a general view of a most interesting electrically operatcd tower crane constructed at Karlsruhe, by the Gesellschaft für Elek. trische Industrie. The extreme height of the crane is 24.75 meters. The total height to which the hook may be raised is 23.5 meters, and the length of the arm or jib is 6 meters. This crane is designed to carry a load of 15,000 kilogrammes and the speed of lifting with a load

