TILTING ATTACHMENT FOR VEHICLE TOPS

The accompanying engraving shows a novel attachment for the foldable tops of vehicles, which may be readily applied thereto, and which affords convenient and reliable means for instantly raising or lowering the foldable top, and for cushioning its descent when quickly lowered, so as to prevent jar or injury to the prop braces, bows, and other parts. Just back of the seat of the vehicle is a rock shaft, which carries a pair of tilting arms at each end. These arms are formed with clasping flanges at their outer ends, which are adapted to engage the prop braces of the

TILTING ATTACHMENT FOR VEHICLE TOPS.
vehicle top. The rock shaft is operated by a lever secured to it near the right-hand end. This lever lies almost horizontai when the buggy tol, is raised, as shown in the drawing. Λ pair of spring buffer arms are secured to the side rails of the vehicle seat, and at their upper ends engage the rear bow of the vehicle top. It will ix seen that when the operating lever is quickly rocked rearward, and the vehicle top is thrown rapidly into foldable condition, the rearward falling movement of the top will be cushioned by the resilient buffer arms, so that no injuries will result.

It will further be apparent that the clasped engagement of the tilting arms with the side members of the rear bow will stiffen the bow and prevent undue wear at the pivot connections. The buffer arms will also prevent side rattling movement of the bow, and thus co-act with the tilting arms to keep the top from swaying sidewise when in folded condition, which is injurious and quickly loosens the pivot joints of the bows. The operating lever is very convenieatly positioned so that the occupant of the vehicle can operate the lever while seated in the vehicle. The device will te found very valuable in case of an emergency, such as a runaway, when it is necessary that the vehicle top be lowered immediately to permit the easy exit of the occupants of the vehicle. Mr. Daniel W. Leonard, Centralia, Wash., is the inventor of this attachment for vehicle tops.

THE UNARMORED COMPOSITE

GUNBOAT "DUBUQUE."
On July 1, 1902, Congress authorized the building of two armored composite gunboats, which would be of about the same size and general type as the six similar vessels of the "Annapolis" class authorized in 1895, and completed about the lime of the Spanish war. The contract for the construclion of these two vessels was signed May and July, 1903, and the vessel herewith ill ustrated, the "Dubuque," was recently launched from the yard of the contractors, the Gas Engine and Power Company, Morris Heights, N. Y. The "Dubuque" is 174 feet long, 35 feet broad. and on her mean draft of 12 feet 3 inches she has a displacement of 1,085 tons. She will be driven by twin-screw vertical triple-expansion engines at an estimated speed of 12 linots an hour. Her boilers will be of the Babcock \& Wilcox type, and the engines are designe to indicate 1,000

Lengult, 174 feet. Beam, 35 fcet. Dratt, 12 fect, 3 inches. Displacement, 1,085 tons. Speed, 12 knots. Armament : Sis 4-inch guns ; four 6-pounders; two 1-pounders; two Colt's automatic.

PENDULUM POWER

An ingenious method of utilizing the roll of a ves sel at sea or the swaying motion of a vehicle on land for power purposes is shown in the accompanying illustration. The apparatus used consists of a pendulum so arranged as to operate a piston when oscillated by the motion of the vehicle or vessel on which it is stationed. By this means an air pump or like motor may be actuated. The pendulum swings within a

apparatus for utilizing the roll of a ship.
lome-shaper casing which carries a cylinder at its mper end. In the bottom of the cyinder a spider is secured in which the pendulum has ball-and-socket bearing. This permits the pentulum to swing in any desired direction, and in order to use its motion for actuating the piston in the cylimiter the pendulum is provided with an extension arm connected at its upper end by a ball bearing with a plate which, in turn, has ball-hearing connection with the inner face of the piston. When the pendulum swings from its normal vertical position, as shown ly dotte lines in the illustration, the piston is caused to move downward either ly its own weight or with the assistance of several coil springs, and thereby draws the air into the upper end of the cylinder through a pair of valved inlets. When the pendulum swings back to a central position, the piston is pushed upward, forcing the air out through the central valve outlet into a suitable reservoir or the like, from which the compressed air may be utilized for driving other machinery. In order to prevent the pendulum from swinging around in the casing, a number of projections are arrange in a circle on the inner face of the casing, in alinement with the ball of the pendulum. The projections are preferably pyramidal in shape, so as to insure a proper rebounding of the pendulum ball when it strikes them. Mr. Andrew T. Prather, of 452 16th Street, Douglas, Arizona Territory, has recently secure a patent on this apparatus.

Kadium and the
 Diamond.

In the course of some experiments concerning the effect of the emanations from radium upon diamonds, Sir William Crookes made a curious discovery. When a diamond was placed in the path of the radiations it was converted from the carbon crystal into the common form of graphite, while in addition its color was quite changed. As a result of this strange metamorphosis Sir William Crookes suggests that the radium rays may prove of great commercial value to the jeweler since by this means diamonds which are of an indifferent and defective color may be appreciably increase in their commercial value by treatment under the radium rays. He also observe that prolonge action of the prolonge action of the
radium also increased the intensity of the pale-colored gems.

