
amount of energy to empty the cylinder as it
would to lift the would to lift the 4 -square-inch column of
water one hundred feet? A. The arrangement water one hundred feet? A. The arrangement
as described in your inquiry is rather ambiguous as regards friction, which is a small item locity of the fluid pumped control the conditions of friction. The energy of the pump
piston to force a column of water 100 feet high is the same in a 1 -inch and a 4 -inch pipe,
save the friction, which is sreater in the 1 save the friction, which is greater in the 1
inch pipe for a given time. 2. If a bottle or vessel is tightly corked, and a weisht attached
so that the vessel is submersed, will it sit so that the vessel is submerged, will it sink
to the bottom of 400 feet of water, or will it require more weight to keep it at the bottom If so, how much, or what is the proportion?
A. The condition of a bottle tightly corked and weighted to sink beneath the water is the
same as any solid body of the same density, same as any solid body of the same density,
and if it sinks at all, it will go to the bottom at great depths. Although water pressure increases with the depth, its density is but little
changed, as water is but very slightly compressed under great pressures. At the depth about a half pound more than at the surface. The elasticity of any body sinking in the
ocean will have its density increased by the ocean will have its density increased by the
pressure as much or more than the increase in the density of the water.
(9310) G. N. L. asks: Can you furaish formulas for solution for oxidizing copper A. For oxidizing copper, dip the finished artiiron in one pint of water for a few minutes or until the desired color is obtained. The ormolu dip or satin finish on finished brass is made in
proportions as follows: to 1 sallon sulphuric acid add 6 pounds niter, $1 / 2$ pint nitric acid, $1 / 2$ pint muriatic acid. Add the nitric and muriatic acids a little at a time. The brass soda water; wash in hot water, and dip for a (9311) G. G. G. asks: Kindly tell me which is correct in his opinion: A says a live been heavily charsed by passing an electric current through it, will be thrown into space by the temporary nnihilation of sravitation; \mathbf{B} says that if any such result is obtained, it is due to the action of said body's muscles in
opposition to sravitation. A. Several thinss may be said in reference to "a live orsanic body dropped into a pool which has been highly charged with electricity." A pool cannot be charged with electricity. The earth would con-
duct the electricity away as fast as it reached the water. There would be no difference beween dropping a live organic body into the water of a charged pool and a dead organic body into the water of a charged pool, or drop-
ping a stone for that matter. There is no such thing known, as a possibility, as the "annihilabe ver gravitation." A live organic body would be very likely to jump when it struck water in
falling, and if the water was shallow it might jump from the bottom, and so jump out. This could not be called an annihilation of gravitawould be "the action of said body's muscles in opposition to gravitation." Why not say in
plain English, if an animal is dropped into the water, it will jump out of it if it can?
(9312) R. M. S. writes: Two large buildings erected by the State for the Northern
Normal and Industrial School at Aberdeen, Normal and Industrial School at Aberdeen, and the other December 31, 1903, under peculiar conditions, the theory being that both fires were due to spontaneous combustion, and 1 write In the case of the last fire, the building was practically completed, no stoves or fires of any kind were in or around the structure, which five o'clock in the morning, on the first floor usy the basement, where workmen had bee doors were all closed and locked, the rooms be ing kept warm all night by the steam heating
system. The temperature outside was 25 de grees below zero, and on the inside of the building about 70 degrees above zero F . An TIFIC AMERICAN as to the cause of this fire, uch as floors that have been oiled with linseed oil, generally boiled oil with a drier, is not known to take fire by spontaneous combis ubbing the rags or cloths used for oiling on pontaneous combustion, especially if thrown together in some out-of-the-way place. It will as to what they used in oiling the floors and where they deposited the articles used in rub hing the floors. A single rag bunched, not larger than 4 or 5 inches in diameter, left behind or close to a radiator, will take fire in a
few hours, and if several such bunches of oily ass are thrown together in a corner or close fire will surely follow in a room heated to 78 degrees \mathbf{F}. Very interesting articles on sponta in Scientific American Supplement ne 1, 132, 798, 029, 036, 10 cents each mailed.
(9313) W. G. S. writes: The feed water for a loiler is contained in an air-tight
tank, and is to be forced into the boiler by

