(9275) G. B. writes: In an encyclopedia I find the statement that red, green, and not be resolved into other colors nor produced by combining other colors. In discussing the
subject a little further on, you state green subject a little further on, you state green is
produced by combining yellow and blue, which produced by combining yellow and blue, which
is a contradiction of your first statement. I is a contradiction of your ifrst statement. I
therefore take it that green can be resolved into yellow and blue; hence why do you say the A. We are not able to see the contradiction in the two statements that "red, green, and blue
are primary colors" and that "green is produced by combining yellow and blue." Both are facts. Red, green, and blue are taken as
primary color sensations by most modern writprimary color sensations by most modern writ-
ers. in accordance with the theory of the
late Prof. Helmholtz, who was first in authorlate Prof. Helmholtz, who was first in autho
ity upon physiological optics. These colors sat isfy most tests of a good working theory in in
this subject. 'There seems to be no better the ory before the scientific world for acceptance. ory before the sclentinc
Until a better appears, it is not probable that this will be set aside. It is now found in almost every textbook of optics. An eass
experiment may be performed with lights which illustrates the theory. Take three colored glasses or gelatines, a vermilion blue, an em-
erald green, and an ultramarine blue. Project these side by side on a screen, each by a separ ate lens, so arranged as to be movable; a cir-
cular form is perhaps more convenient for the experiment, and the projection mar be so that the three circles are tangent to each other the dise the lenses have the disks themselves overlap, but the projections of the disks are to overlap. The
red and the green light combine to form some shade of yellow, the green and blue form some shade intermediate between these shades, and the red and blue form some shade of purple.
Where the three overlap you will have white, Where the three overlap you will have white,
if the original colors were what are required by the proper spectrum tints. There are many other tints in sets of threes
white, but this set has been taken as form white, but this set has been taken as on the present at least probably not be displaced. Now as to the statement that "green is pro-
duced by combining yellow and blue." Make one solution of potassium chromate, and another of copper sulphate, to which add ammonia till a rich deep blue color is obtained. Put these
in vertical tanks or flat-sided bottles, and in vertical tanks or flat-sided bottles, and
project as before. When the disks overlap, it is found that the combined disks give white.
But if the light is allowed to pass through both solutions to the screens, the color on the screen is green. There is evidently something here roscope or projecting prism. The yellow of the the potassium chromate is found to transmit
red, yellow, and green of the spectrum ; the red, yellow, and green of the spectrum; the
blue of the ammonio-sulphate of copper transmits green, blue and violet of the spectrum. Each absorbs what the other transmits with
the exception of green, which is transmitted by both liquids. Green is the only portion of white ight which can get througe colors always looks green. It is only in this sense that a combination of yellow and blue produces green, that is, by absorbing all other colors, green alone re
mains. If the yellow and blue lights are com maned by mixture, not by absorption, white is
produced Both statements are facts. Each produced. Both statements are
requires its proper interpretation.
(9276) S. H. asks: What is the rela tive increase of power as you near the focal
end of a lever? To illustrate Suppose the ever is 10 feet long and fulcrum is placed 24 2 inchrom focal end, then to 18 inches and to er of the several positions as you approach the focal point? A. The mechanical efficiency of a
lever is the ratio of the two arms, or distances from the fulcrum to the power and to the weight to be moved. If the lever is 10 feet long and the fulcrum is 2 feet from one arm is 8 feet. The weight is four times the power. If the weight arm is reduced to 1 foot,
he power arm becomes 9 feet, and the weight will be nine times the power. In the same
way the value of the lever in any case is deway the value of the lever in any case is de-
ermined. The ratio of the power to the weight s the same as that of the power arm to the weight arm.
(9277) S. S. W. asks: Will you in orm me whether it is possible to raise the temperature of water any number of degrees
,y agitating it in a cylinder revolving at a he cylinder to breare any impees? if so hin he cylinder to break the water: If so, how
ligh a temperature could be reached, and is it
,etter to revolve the cylinder or a rod through年tter to revolve the cylinder or a rod through
he center to which the breaks are attached he center to which the breaks are attached

1. It is not only possible to raise the temper ature of water by agitating it, but this always
ccurs. The water at the foot of a fall is scurs. The water at the foot of a fall is
warmer than at the top, as has been proved at Viagara Falls. When the agitation takes place n a cylinder properly prepared for measure-
nents, the amount of heat required to raise 1 pound one degree can be determined, and it s by this method that the work was done by
oule, upon which all steam engines are con itructed. The heat unit is the quantity of heat
equired to ralise one unit weight of water one equired to raise one unit weight of water one
legree, a unit in constant use in engineering. ne pound of coal will produce on the average 4,000 to 15,000 heat units.
(9278) L. F. H. says: What is the method of piping now employed in the two water? A. The action is somewhat similar to that which takes place in the steam en
ine. Exhausting a steam engine under wate ine. Exhausting a steam engine under wate balanced by any advantages. In striking wate the stcam is condensed and a vacuum
formed, the water immediately exhaust pipe, and if the pipe is short, the cylinder also, unless there is a check valve fowing back. Moreover thent the water from ure on the piston equal to the atmospheric ressure on the area of the exhaust pipe, which may or may not be 10 per cent of the power of the engine, according to the boiler press
ure used. The method of piping depends upon the conditions present.
(9279) E. A. A. asks: 1. Is the energy in form of light in an inclosed furnace r under a steam boiler wasted? If not, how by burningize itself? A. The light given out nergy. Light and heat are the same thing, so far as energy is concerned. Both are
classed as radiant energy in all the latest oooks of physics. The light is but an incilent ould not 1u No no eye the light would not appear. 2. How are the oil holes
in the Morse twist drill made? no knowledge of the special process used in making the oll tubes in the twist drill you mention. You can address the inquiry to the company making the drill and they will doubtless give you the information. 3. How is the hould it have to take and maintain the strong st magnetizing? A. Magnets are made ny high-grade steel. Jessup's and Stubbs' very goa., the enss of the magnet are
glass-hardened, the rest remains soft. 4. Why does the resistance in an incandescent lamp ilament increase with the age of it and why does the efficiency fall at the same time? ent increases with incandescent the filamen becomes smaller. The carbon is gradually riven off and fies against the bulb, making it black. As the resistance increases the cur-
ent decreases, and if the lamp gets less curent decreases, and if the lamp gets less cur-
ent it cannot give as much light, since it is
(9280) G. W. B. says
emperature will frost collect 1. At what moisture is in the air? A. Frost cannot colect on the windows when there is no moisture in the air at any temperature. Frost is the
moisture of the air changed to ice. 2. At hat tomperature will it collect when there quantity of moisture in the air, such as is
odinarily? A. Water freezes at 32 deg. Fahr. nd frost forms at the same temperature. 3 . If temperature of a room is above freezing will frost collect on the windows? If so, at e in order to keep glass warm enough to kee off frost and melt snow lighting on window?
The idea is to keep the window transparent The idea is to keep the window transparent
enough to clearly see through it. A. Frost enough to clearly see through it. A. Frost
may collect on windows when the air of the may collect on windows when the alr of the
room is above freezing, since the glass is in ontact the outer air he air in the room. The glass must be per
anently above freezing to keep frost off and melt snow striking the windows. 4. What is cuit of lamps in a trolley car? A. If a voltage of 500 is used on a trolley car the lamps are
usually of 100 volts each, and are placed in series or ive. 5. Is the current reduced by transformer for this light circuit or taken
drectly
from the main circuit? case above each lamp gets its requisite voltage and all are lighted directly from the trolley current without transformation. 6. Would the heat generated from an ordinary electric lamp as used in a trolley car be sufficient to melt a
wax candle, if it were placed against the lamp? A. The heat from an ordinary incan descent lamp bulb is sufficient to melt wax candles and to set fire to paper or cloth left
in contact with it for a long time. 7. Have in contact with it for a ong time. 7. Have
you addresses of companies manufacturing condensers, as used with spark coils from $1 / 4$ any dealer in electrical goods andensers from week we have advertisements of such in our columns. 8. Have you a Supperment giving
information on making condensers? information on making condensers? A. Sup.
pLement No. 1124, price 10 cents, gives the instructions necessary for making a condenser and a complete coil giving a spark of six
inches. 9. Where can I buy or at what kind nches. 9. Where can I buy or at what kind
of place can I obtain tin-foil? A. Tin-foil can be bought from any electrical store.
(9281) A. N. says: What size wire must I use to magnetize a wire core for an in-
duction coil, core being 7 inches by $7 /{ }^{\text {, No }}$ 20? Annealed iron wire using 2 amperes, 20 volts? Also at $11 / 2$ amperes, 27 volts? Also
at 1 ampere, 40 volts, or what would be the est current to use? I have a 40 -watt dynamo which I am going to wind for it. What curren What is the carrying capacity of copper wire in armatures, that is, sizes from No. 16 B. \& S. to No. 30 B. \& S.? Also carrying capacity of wire
in fields from No. 16 B. \& S. to No. 30 B. \& S. Have you any SUPplement giving the above
arrying capacities? If so, what number? Is hard granular carbon, such as used in telephone
raphy? Should it be a rather fine powder or
coarse?
What is the best coherer to make and use for experimental purposes? Is there any that don't need decoherers? If so, what? How
big a spark should $11 \%$-pound s. c. c. B. $\&$ s. No. big a spark should $11 / 2$-pound s. c. c. B. \& S. No.
35 copper wire give? How far will $11 / 2$-inch 35 copper wire give? How far will $11 / 2$-inch
coil work a coherer? What size spark is used o signal across the Atlantic? What current is used in primary? Can more than one induc coils are connected in series, would it give inches, or how should they be connected? Induction coils are made for certain length spark, not for certain voltage and amperes of current. Wind the coil for spark, and the
put on the current. The primary is alway wound in two layers of coarse wire from end oo end of the spool, which is mounted on the
core, leaving the wires of the core prajecting somewhat from the heads of the spool. You shoud got a boor instructions. You will then be
and follow its ind able to secure the sort of coil you desire. We One and a half pounds of No. 35 cotton-covered a spark wire may give as a secondary of a coil tions regarding wireless telegraphy, very little is known about the apparatus used for sending signals across the Atlantic Ocean. Coherers
are made with silver or nickel filings in fine are made with silver or nickel fillings in fine
powder. You will find in our paper several forms of coherers. We can send you six paper ter, which will give much assistance in the making of an apparatus. Two coils of a halnch spark cannot be connecte
spark of double the length.
(9282) H. Fl asks: We have an elec tric light plant in our little city, direct cur-
rent, 220 volts, quoting us a price of 10 cents rent, 220 volts, quoting us a price of 10 cents
per thousand watts. How much will this quo per thousand watts. How much will this quo-
tation cost us to run a 4 -horsepower motor er 24 hours, as the city has installed this figures in horse power? A. An electrical horse power is 746 watts. Four horse power woul vould be 71,616 watts. This at 10 cents pe 1,000 watts would cost $\$ 7.16$.
(9283) E. S. B. asks the following questions: If in any of the past issues the
following questions are explained, I would only foliowing questions are explained, I would only
be too glad to get those Screstrific AmeriCANs; but if the Editor cannot refer me to a the columns of Notes and Queries. Explanation of alternating current, two-phase and three em. What is meant by inertia, the momen of inertia, and the inertia of a flywheel? How is the flywheel for an ordinary steam engine calculated? How is the flywheel of an air comwheel calculated for an air compressor, the compressor being connected tandem fashion steam cylinder, the air compressor in on case being single-acting, and in another cas double-acting? How is the flywheel of an am. monia compressor calculated, having twin hori-
zontal steam cylinders and twin vertical ammonia cylinders, the cranks being set at 90 deg. to each other, and the cyllinders being dou-
be-acting and in another case single-acting? How is the balancing weight in the main driv Ing wheel of a locomotive calculated? A. Your the information you desire. Any work on elecricity will define an efine inertia. Any teacher of physics in the college can help you, and a technical college surely is provided with appa-
ratus for illustrating all these points. ratus for illustrating all these points. An
alternating current is one which changes the direction of flow, at regular intervals. A cur
rent of 60 alternations would change 60 times er second, and would have 30 cycles or com plete changes from positive to negative and the e. m. f. to the current. In a single-phase current the pressure rises from zero to a maxi equal to the maximum positive value, and rises to zero again in each cycle. This current serve irect current dynamo would give this current if the commutator were replaced by rings. A two
phase machine has connection made with the phase machine has connection made with the
armature coils, so that two single-phase cur ents are taken from it at the same time fo vo different currents, but the time of greates pressure in one is the time of zero pressure in hree-phase circuit has theoretically three circuits two wires each, and the pressure on any one will find the whole matter fully explained in Sheldon's "Alternating Current Machines," two-phase system four wires are required ior the use of both phases separately. Iner. $t$ rest, and of a body in motion to remain in nelled to change by some externat force. The moment of inertia is the force necessary to give a body a unit angular velocity in on
second. It is calculated for bodies of regular forms by formulas which you may find in
books of higher mechanics. A good simple oresentation of the subject may be found in Stewart. and Lee's "Practical Physics," Vol. I.,
which we can send you for $\$ 2.25$. The mo which we can send you for $\$ 2.25$. 'The mo-
ment of inertia of a flywheel is. that of
ing, very nearly, since the arms are usually ormula for this is $I \begin{aligned} R^{2} r\end{aligned}$ formula for this is $I \frac{R^{2} r^{2}}{2} \times M$, in which $M$ is the weight, $R$ the radius of the outside of the rim, and $r$ the radius of the inside of the
rim. See Scientific American Supplement No. 891 on centrifugal force as applied to revolving machinery, flywheels, etc., price 10 ents mailed. Thurston gives for automatic
ngines the formula $250,000 \frac{A S p}{R^{2}}=$ the wight of tywheel, in whic the piston in square inches, $S=$ stroke in feet, $=$ mean steam pressure
nch pounds per square
$R=$ revolutions per minute
$D$ diameter of wheel in feet. This formula is nd to the differential condition compressors, nd to the differential conditions of the steam In any form of coupressors for air or ammo hia, the compensating conditions of crank angle nd opposite pressures must be considered and balanced in the complicated problem of fly wheel weight and size. The balancing of the driving wheels of locomotives is somewhat complex, depending upon their reciprocating elights in the longitudinal and vertical direction. The subject of flywheel weights and izes and counterbalancing locomotives is fully Pocket
(9284) L. F. B. asks: Is there any reason why the
batteries, which are and also the
good, strong cells dry utomobile work, cannot be made more dur able? The cell as it is now made is soldered. The joint of course starts small independent action, and that starts leaking and vaporiza-
tion of the contents by the joint giving wav. Iton of the contents by the joint giving way. eems to me that a zinc cell could be made of r lap. Better still, the whole cell could very easily ' be stamped or pressed out in one piece, as the common cartridge cell is pressed out.
Is there any reason why this change in makgo would not be vastly superior, and also make the life of the battery considerably longer. The manufacturers would aliso save in cost of
manufacture. A. The strong competition bemanuacture. A. The strong competition be-
tween the makers of cells has reduced the prices, but also unfortunately reduced the ery much to be desired Your suggestions seem to be of value.
(9285) W. S. says: How can I chemcally treat Canton flannel and cotton drapertes to make them non-Inflammable? A. A com-
position, to be used for theatrical scenery (or he mounted but unpainted canvas to be used this purpose), and also for woodwork,
urniture, door and window frames, etc., is to be applied hot with a brush like ordinary
pint. it is composed of boracic acid, 5 pounds ; hydrochlorate of ammonia or sal-am-
moniac. 15 pounds; potash feldspar, 5 pounds ; moniac, 15 pounds ; potash feldspar, 5 pounds; 100 pounds; to which is added a sufficient quantity of a suitable calcareous substance to give the
tency.

NEW BOOKS, ETC.
The Tenement House Problem. Edited by Robert $W$. DeForest and Lawrence
Veiller. New York: The Macmillan Company. 1903. Two volumes. 8vo. Pp. 470, 516. Price $\$ 6$.
This book is published as a contribution to the cause of municipal reform. It embodies
the result of the investigations made in connection with the work of the New York State enement House Commission, appointed by bresident Roosevelt when he was Governor of
the State of New York in 1900. It also includes the Tenement House Law as amended, and an ntroduction bringing down the history of tenement reform in New York to 1903. The work is filled with illustrations showing typical conditions in American cities, and it must be said that the volumes are put down with a sense
of sadness that such awful conditions can obtain in a civilized city. There is, however, the brighter side to the subject, as the second ameliorate the very terrible conditions which exist in New York city.

Radiant Energy and its Analysis. Its
Relation to Modern Astrophysics. By Relation to Modern Astrophysics. By Lowe Observatory, California. Los Angeles: Baumgardt Publishing Company. 1903. 12mo. Pp. 334
The information presented in this book originally appeared in the form of a series of ar-
ticles on radiant energy and its analysis in the San Francisco Examiner. Starting with an introductory chapter on radiant energy and on
wave motion, Prof. Larkin passes to spectrum analysis and the spectroscope, showing just how important to the modern scientist the spectroscope has become. A chapter on Fraunhofer lines and their importance in the solar spectrum. Indeed, the most important chapters of this book are devoted to spectrum analysis, for very good
popusons, too, in a
pook of this kind.
have also their place. The moot question of
the terrestrial influences of sunspots is briefly reviewed, and likewise the relation between auroras and solar disturbances. The chapters on the sun discuss the amount of energy whic the center of the solar system constantly em life. In the as its general, Prof. Larkin shows what modern as tronomers have succeeded in doing with high power instruments.

How to Measure up Woodwork fo Buildings. By Owen B. Maginnis | New York. |  |
| :--- | :--- |
| Company. | $1903 . \quad 18 \mathrm{mo}$. | Price 50 cents.

This little work describes the simplest and most accurate methods to be followed when figuring all the woodwork required for either brick or frame houses. The author is a thorbuildings in the city of New York, and is well-known writer on building construction. The little volume is an excellent one, and on which we can commend to all architects, con tractors, and carpenters.
Locomotive Breakdowns, Emergencies and Their Remedies. By George L Fowler, M. E. New York: Norman 12 mo . Pp. 244. Price, $\$ 1.50$.
The author is well known from his work on air brakes. The subject is dealt with in that locomotives are heir to are dwelt upon in a thoroughly common-sense manner. The popular question and answer system is used this system serving to keep the writer to his
point. Engineers and firemen, and those who aspire to be, will find the book full of good material.
Upato-Date Air-Brake Catechism. By
Robert H. Blackall. New York: Nor man W. Henley \& Co. 1903. 12mo Pp. 305. Two large folding charts Price, $\$ 2$.
The eighteenth revised edition is before us and we must admit that it is a thoroughly adequate treatise on one of the most importan constantly changing, that a book on the subject tion and answer system is retained. The dia grams and folding diagrams are excellent, while the colored charts are the most elaborate we have seen, and show both passenger and freigh
equipment. We commend the book most cordial $y$ to all interested.
Wireless Telegraphy, Its Origins, De velopment, Inventions and Appar
atus. By Charles Henry Sewell. New
York: D. Van Nostrand Company
1903 . 12 mo . Pp. $229 . \quad$ Price $\$ 2$ net
he aim of this book is to present a compre hensive view of wireless telegraphy, its history, principles, systems, and possibilities in theor, and practice. It will prove of use both to the an imperfect state, and any literature which will tend to dissipate the general ignorance and misconception will be welcomed.
One Hertziane e Telegrafo Senza Fili By Dott Oreste Murani. Milan: U. Hoepli. 1903. 18mo. Pp. 341. Price 75 cents.
The excellent little compends called "Manuali an extraordinary monument to the ability of the publisher. All works on wireless telegraphy are popular at the present time, and it is to be hoped that this excellent book will soon be ranslated
Poor's Manual of the Railroads of the
United States. Thirty-sixth Annual Number. New Yosk. Poor's Rail road Manual Compa
This work is probably among the most use ul ever published for investors, and to the with the history mileage lines of road oper ated, track mileage, water lines, proprietary railroads, capitalization of systems, interests n other railroad systems, rolling stock, protit and loss account, and various other statistics. Poor's Manual has long been a recognized au thority upon the subjects which it treats. The length of rallroads completed on December 31, 1902, was 203,131 miles : the net increase of all railroads in the United States in the calndar year 1902 was 3,447 miles. The tota mileage of track is 27,835 mes. There are 9,726 baggage and mail cars, and $1,503,949$ eight cars.
Experimental Researches on Rein forced Concrete. By Armand Con-
sidère. Translated and arranged by
Leon $S$. Moisseiff C.E New York 1903. 8vo. Pp. 188. Price $\$ 2.00$. We have atready had the privilege of reviewng the French edition of the author s work ngineer is being felt more and more. The older books on concrete did not deal with reinforcing, which was largely brought into use by French and German engineers. The importance of the new material has become such that no civil engineer can well afford to be and this knowledge can be gained from this nd this knowledge can be gained from this

Roof Framing Made East. By Owen B Maginnis. New York: The Indus 12mo. Pp. 164. Price $\$ 1.00$.
The carpenter or builder who will study the methods described in this book will realize the constructive value of every piece of timber which enters into a framed roof and will un-
derstand how to lay out every piece of timber sed without wasting valuable time and ma terial on cutting and tryig.
The language used is that of the practical terms have been avoided where possible ; and everything has been made so plain that any ne who will faithfully study the book will understand it from beginning to end. In fact, every problem in the book was "tried" on a boy who had no experience in building work, and e understood every problem with a little study. This will show that the book is valuable to the Handy Lumber Tables. Containing Board Measure, Plank Measure, Scantlings, Reduced to Board Measure, With Other Useful Data and dustrial Publication Company. 1903 18 mo . Pp. 24. Price 10 cents.

INDEX OF INVENTIONS For which Letters Patent of the United States were Issued for the Week Ending

January 5, 1904.

LSee


Air
Alr
Alr
Ar

##  <br> 










 Bottle, J. Auld....
Bottle,
B. Wagner.

$\qquad$




centrifuga machine, electricalls driven, H.






 \% 748,753
749,049
749,098
7 748,959
749,014
748,642

## 748,586

## 749,062 748,703 749,070

## 748,889 749,132

## 749,018 74,018 748,682 7




