expansion-Joint.-R. e. Vail, mount Vernon, ohio. Mr. Vail's invention refers to
pipe-lines ; and his object is the provision of an improved expansion-joint arranged to allow free expansion and contraction of the pipe-line witb out danger of leakage and to allow of readily couphing
together.
GARDEN IMPLEMENT.-R. Twohig, Salina, Kan. In this patent the invention has partcheular application to means for securing their handles. The particular object is to provide means for securing the tools to the handle in such manner that there will be no possibility of the parts separating accidentally thereby obviating the o injury
POCKET-BALL-BEARING DOOR AND
HANGER THEREFOR.-J. K. THOMA, Coop HANGER THEREFOR.-J. K. Thoma, Coop
erstown, $\mathbf{N} . \mathbf{Y}$. The purpose here is particu erstown, N. Y. The purpose here is particu
larly to provide a top and bottom ball-bearing for sliding cased doors and a ball-bearlng for the upper portion of hanging doors, such as barn or car doors, and to so confine the balls that their travel on the door will be limited, while their traveling engagement with either the overhead or the lower track will be unob

ORGAN-PEDAL-E. M. Hughes, Ashland, Ky. Definitely stated, this invention relates to pedal-keys for pipe-organs. The object is to provide a pedal or key which will work perma nently and absolutely without noise. The pedal free from friction and obviate noise and lost motion common with similar pedals.
whisk-broom.--H. L. Harris, New York, N. Y. The invention is an improvement in
brooms, being in the nature of a rubbing attachment for use in removing spots and the like rom garments. On the handle of the broon pad of absorbent material is secured. The pad includes a core and wrapper, both made of felt, cloth, canvas, or like suitable fabric. In use the pad may be saturated with benzine or other cleaning materials. By combining the pad with the broom a conve
broom is provided.
umbrella.- O. L. Fogle, Columbus, Ohio. The object in this case is to furnish details of construction for the frame and stick, conof the umbrella, adapt the frame or expansion cheap manufacture, and enable the close folding of parts of the frame, so as to reduce the same, forming a short, compact package, which will be readily packed in a trunk, valise, or other receptacle.
AWNING-HOOK.-D. W. CARr, New York, N. Y. The invention relates to hooks especially to hang the awning and permit it to be taken own in a more convenient and expeditious man ner than ordinarily and at the same time when attached to a support to insure its remaining so under ordinary conditions of weather until
purposely released, the hooks, however, being purposely released, the hooks, however, being on fixed hooks, eyes, rods, or bars.
Parcel-fastener.-B. Cohn, New York, N. Y. In this instance the object is to provide new and improved parcel-fastener aranged to ceptacle in position without the use of strings and the like and to give the parcel a fine and neat appearance. The device can be easily applied and cheaply manufactured
HOLDER FOR MINERS' LAMP.-J. A. Brown, Pocahontas, Va. In this patent the in-
vention has for its object the provision of novel, vention has for its object the provision of novel,
simple, and reliable means for detachably secursimple, and reliable means for detachably secur-
ing a miner's lamp upon the cap worn by the miner, so that the lamp will remain in place until designedly removed, in spite of any accidental displacement therefrom.
COMBINED BODY-BRACE AND TRUSS. S. R. Shepard, Louisville, Ky. One of the prinmeans adapted to be readily applied to the body for strengthening and supporting the back and sine and also the chest and shoulders, as well as to provide means whereby the abdominal region may be held in position with comfort and ease. The device is simple, and not likely to
get out of order. It will not interfere with the free action of joints, muscles, or any other part of the body, and overcomes all tendencies to
PROCESS OF HARVESTING AND CURING NOBACCO.-J. B. Underwood, Fayetteville,
N. C. This invention has for its object a quick method of curing and preparing tobacco for manufacturing and of improving the color and stem of the leaf. It is put in operation by the use of a V-shaped knife attached to a pistolgrip handle. The blade severs the leaf portion from the stem, leaving it attached to the stalk while the leaf is cured or dried out and
freed from the stem at a much lower temperafreed from the stem at a much lower tempera-
ture and in shorter time, with more perfect ture and in shorter time, with more perfect
color and without danger of sap coloring after color and without danger of sap coloring after
curing. Expensive stemming is done away with curing. Expensive stemming is done away with
and the taste and value of the product im. and the
foldable paper box.-M. Hirsch, Newark, N. T. The present invention relates to improvements in paper boxes; and the object the blank of which is cut from a single piece the blank of which is cut from a single piece into a complete article without the use of mucilaginous material.

COMBINED BUTTON AND TIE-HOLDER.
-E. STEMPEL, Buffalo, N. Y. The object of this invention, relating to garment fasteners, and tie-holder arranged to securely hold scarf, necktie, or other similar neckwear in place to prevent sidewise movement or creep-
ing of the neckwear and to give a dressy appearance to the wearer.

Besigns.

DESIGN FOR A GLOVE.-F. Schmidt, New York, N. Y. The ornamental design in this triple stitching on the band of herring-bone of quite parallel and coming together to quite parallel and coming together to a
shaped point at the bottom. Between the tw outer bands, equidistant a middle band is stitched. It makes no connection with the Ner bands. The design is open at the top. Note.-Copies of any of these patents will be Please state the name of the pateniten, title of the invention, and date of this paper.

Business and Personal דrants.

Marine Iron Works. Chicago. Catalogue free

U. S." Metal Polish. Indianapolis. Samples free. Inouiry No. 49\%\%. F'or makers of cold storag

Autos.-Duryes Power CO Reading, Pa

Inquiry No. 4972.-For a self-winding machine. Handle \& Spoke
Inquiry
manuf. 49.7s.-For a com

Sawmill machinery and outflts ma Lane Mfg. Co., Bor 13, Montpelier,

 lnquiry No. 4974. \mathbf{N}-For marers of paint, such asused on steamboats, smokestacks, etc. American inventions negotiated in Europe, Fel
Hamburger, Equitable Building, Berlin, Germany. Inquiry No. 4975. - For makers of springs, suc
as used on smail weighing scales. We act as introductory agents and Cincinnati, 0. , re
presentatives. W. C. Lineban \& Co., Cincinnati, 0 . Inquiry No. 497. 4 . For manufacturers of ma
chine for punching teeth in hack saws. Edmonds-Metzel Mff. Co.. Chicago. Contract manu-
facturers of hardware specialties, dies, Juquilry No. 497y.-Fior. a machine for extracting
tiber trum sisal or hennequen plants. Machinery 'designed and constructed. Gear cutting.
The Garvin Machine Co., 149 Varick, cor. Spring Sts.. N.Y. Inquiry No. 4978.-For makers of castings for a
4-cycle engine. Small parts of machinery made acurately and
promptly. Send sketch or sample. Albert Carlton promptly. Sen
Camden, Mich.
 Patent for Sale.-Recently patented antivibra-
tion bicycle handle bar. Novel, simple, cheap. J. H. Dunsford, Winnipeg, Man.
Inquiry No. 4980.-For machinery for extracting
fiber from maguey plants.
ars Send fornew and complete catalogue of Soientific
and other Books for sale by Munn \& Co, New York. Free on application
Inquiry No. 4981.-For machinery for making oil We manufacture anything in metal. Patented arti-
cles, metal stamping, dies, screw mach. work, etc. cles, metal stamping, dies, screw mach. wor
mietal Novelty Works, 43 Canal Street, Chicago.
Inquiry No. 4982.-For a successful stump pulter The largest manufacturer in the world of merry-zo. and terms write to C. W. Parker, A bilene, Ean.
Inquiry No. 4983.-For the makers of the "Star" Empirè Brass Works, 108 E. 18sth Street, New York. N. Y., have exceptionai facilities for manufacuring an
article requiring machine shop and plating room.

The celebrated "Hornsby-Akroyd" Patent Safety Oll hine Company. Foct of That 138th Street, New York. Inquiry No. 4985.-For makers of pyrometers
indcating by colors. Manufacturers of patent articles, dies, metal stamp ing, screw machine work, hardware specialties, machin
ery and tools. Quadriga Manufacturing Company, 18 ery and tools. Quadriga Ma
South Canal Street, Chicaßo.
Inquiury No. 4986. - For makers of machines for
making pressed, blown and plate glass. Wanted-Revolutionary Documents, Autograph Let-
ters, Journals, Prints, Washington Portraits, Early American Illustrated Magazines, Early Patents signod by Presidents of the United States. Valentine'
Manuals of the early 40 's. Correspondence solicited. Address C. A. M., Box 775, New York.
Inquiry No. 498\%.-For a machine for grinding
pea flour and a soap mold or presser. Inguiry No. 4988. - For makers
4feet wide and from 8 to 14 feet long.
Inquiry No. 4989.-For frms handling the button
and shell mountings.
Inquiry No. 4990 .-For machinery for making
celluloid or horn combis.
Inquiry No. 4991. - For a pneumatic saw lately
invented inthe NortBwest, wanted, address of patence
or manufacturer.

hints to correspondents.
Names and Address must accompany all letters o
no attention will be pacid thereto. This is fo
our information and not for publication.

repeated correspondents will bear in mind that
oome answers require not a little researh, and,
though we endeavor to reply to all either by
letter or in this department, each must take

cial Written Information on matters of personal
rather than general interest cannot be expected
without remuneration without remuneration.
Soientific Americen Supplements referred to may be
had at the ontece. Price 10 eents each.
Books referred to promptly supplied on receipt of
price.
Minerale fent for examination should be dtstinctls
marked or labeled.
(9271) W. C. R. asks : Will you please ell me in your query column whether the follow ing problem can be solved by playe geometry, and of a chord draw two chords AD and BC. Connect may be solved as follows:
In Fig. 1, A D and BCany two chords cutting in O MN any secant cutting AC in R, BC in P, A D in Q, and BD in S. $<C=<D . \quad \triangle C R G$ similar \triangle
$S H D, \triangle R G P$ similar $\triangle O P L \triangle Q H S$ simila SHD, \triangle.
$\triangle O L Q$.
$\begin{array}{lll}\frac{C R}{Z}=\frac{S D}{X} & \frac{R P}{Z}=\frac{O P}{Y} \quad \frac{Q S}{X}=\frac{Q O}{Y}\end{array}$ Eliminate $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ from these equations:
CR.QS.OP=SD.QO.RP. Similarly, RQ.SB.OP=AR.PS.OQ.
$\frac{\text { CR.AR }}{\overline{S D \cdot S B}}=\frac{R Q \cdot R P}{P S \cdot S Q}$

Fig. 1.

Fig. 2.
CR.AR
SD. MR R Substitute
a) $\quad \frac{\text { MR.RN }}{\text { MS.SN }}=\frac{\text { RP.RQ }}{\text { PS.S }}$

Fig. 2 is a special case of Fig. 1.
$M N$ is bisected by O. P and Q vanish in O. $\mathbf{R P}=\mathrm{RQ}=\mathrm{RO}, \mathrm{SP}=\mathbf{S Q}=\mathrm{SO}, \mathrm{MO}=\mathrm{NO} \mathrm{O}$, oprover $0=0 \mathrm{~S}$.

 $\frac{\frac{\mathrm{MO}}{} \mathrm{MO}^{2}-\overline{\mathrm{RO} \mathrm{O}^{2}}}{\mathrm{~K} \overline{\mathrm{O}^{2}}} \frac{\mathrm{MO} \mathrm{O}^{2}-\mathrm{SO} \mathrm{O}^{2}}{\overline{\mathrm{SO} 0^{2}}}$
By composition $\frac{\overline{\mathrm{MO} \mathrm{O}^{2}}}{\overline{\overline{O_{O^{2}}^{2}}}}=\frac{\overline{\mathrm{MO} 0^{2}}}{\overline{\mathrm{BO}^{2}}}$

$$
\begin{aligned}
\overline{\mathrm{RO} 0^{2}} & =\overline{\mathrm{SO} \mathrm{O}^{2}} \\
\text { RO } & =\text { S O } \\
& \text { Q.E.D. }
\end{aligned}
$$

Similarly EM M $=$ FN.
Solution by
Solution by L. Leland Locke, Instructor in Mathematics, Adelphi College, Brooklyn, N. Y. notice a number of other solutions, different from the one given above, in Amer. Math. Monthly, the one given
January, 1301 .
(9272) E. E. B. asks: I wish to purchase the cheapest and most efficient opaque attachment for the lantern. Refer to some
dealer. Is it possible to use the film of the sodak for projection in the lantern without transferring it to glass? In other words to
use the negative film in the lantern. Is use the negative film in the lantern. Is
there any preparation with which wood-cuts,
half-tones, etc., may be treated and projected on the screen? That is, make a paper sufficiently transparent for projection purposes. soap-bubble films, etc., on the screen? Io throw to project the vibrations of the human wish A traveling lecturer partly told me of an experiment to show what he called the formation of the clouds and cyclones, etc. As near as he could remember they used sulphuric acu. and potasium bichromate, iron filings, an', two other things that he could not remember.
From this indefinite statement can you suy. gest the nature of this experiment or refer as to some work where I can find it described: it was to be projected with a tereopticon a The best and cheapest way to get a microcon is to have the people who made the stereopticon furnish you with it. Makers usually have a complete outfit for their instruments. a in a misfit, to a certainty. Failing in getting ne from the makers you can have the attachments made by a machinist in your neighorhood, and fitted to the instrument. Yon can obtain good cuts of these instruments
from the books on projection: Wright's rom the books on projection: Wright's
LLight," price $\$ 2.00$; Wright's "Optical Projection,", price $\$ 2.25$; Dolbear's "Art of Projection,", price $\$ 2.00 ;$ Mayer's "Light," price
$\$ 1.50$. All these are excellent and you can $\$ 1.50$ All these are excellent and you can profitably get them all. They contain nearly
all that one requires to learn to do good work all that one requires to learn to do good work
with the lantern and descriptions of all the with the lantern and descriptions of all the
best experiments. These, with G. M. Hopkins's best experiments. These, with G. M. Hopkins's
work, will equip you for service. Many optical wors, will equip you for service. Many optical illusions are described in "Experimental Sci-
ence," which you have. "Magic," by A. A. Hopkins, contains many tricks which are of the nature of optical illusions; price $\$ 2.50$. No opaque attachment for the lantern is on
the market so far as we know. Any mechanic the market so far as we know. Any mechanic "Art of Projection," or from Hopkins's "Experimental Science," Vol. II, page 249 ; it presents no difficulty. Kodak films are not
adapted for optical projection. A positive on adapsed for optical projection. A positive on
glass made. For this, full directions are given in Hopkins's "Experimental Science," Vol. I., page 319. Special lantern slide plates can be bought for making them. Pictures from books cannot be made transparent enough to project in a lantern. They should be copied by photography, first making any other subject. The method glass as with any other subject. The method of projecting soap flims is shown by a cut in Wright's "Optirequired is a page 326 . The only apparatus required is a ring of wire 2 to 4 inches in
diameter and a soap-bubble mixture which is described in all the books we have mentioned. The method of projecting clouds on the screen by chemical action is given in Dolbear's "art of Projection." It is done by unequal chemical action forming absorbent layers in the cell.
(9273) J. P. R. says: In order to the following question in your "Notes and Queries" column: Is it safe to burn coke under a boiler, particularly an upright? A.
Where the grates are properly arranged, coke Where the grates are properly arranged, coke makes the most admirable boiler fuel.
(9274) E. S. P. says: Please reply in "Notes and Queries": 1. Is the Texas boll
weevil a fiying beetle at any stage of its developweevil a fiying beetle at any stage of its development? A. The cotton-boll weevil exists in
four stages, namely, egg, larva, pupa, and adult. four stages, namely, egg, larva, pupa, and aduit.
In the adult stage the insect has wings and is In the adult stage the insect has wings and not,
capable of fiying to some extent. 2 . If not, why cannot it be reduced by substituting upon infected flelds other crops than cotton, thus detting the ground lie fallow? A. In view of the fact noted above that the weevil can fiy, it
is impossible to eradicate it by allowing land is impossible to eradicate it by allowing land
to lie fallow. Nevertheless, the powers of fight of the insect are so limited that many Texas cotton planters find it of great advantage to ro-
tate their cotton with other crops. 3 . If it is tate their cotton with other crops. 3. If it is
winged, why has it not been spread by winds, winged, why has it not been spread by winds,
etc., more rapidly? Does it go from field to field? A. As a matter of fact, the weevil is Leld? A. As a matter of fact, the weevind.
spread to a considerable extent by the wind. The new territory invaded each year, under nor-
mal conditions, is about sixty miles. There is no doubt, however, that exceptional conditions, like the storms preceding the Galveston cyclone of September 8, 1900, have caused a great deal more than this normal spread. 4 . If it simply crawls, does it gain access to the boll from the ground by climbing the stalk, and can it
pass from one plant to another on their pass from one plant to another on their
branches? A. The insect reaches the branches? A. The insect reaches the fruit
of the plant, either boll or square, almost altogether by fiying from one plant to another. Will it attack in preference plants at some certain stage of growth, thus avoiding adjacent plants, either older or younger in growth? A. As during the growing season the cotton plant
has all stages of the fruit upon it, it cannot be said that the weevil has any preference as far as the stages of the growth of the plant are concerned. 6. At what stage of growth is the
plant most attractive? A. This question is plant most attractive? A. This question is partially answered under No. 5. There is no of the plant, but there is a preference for the stage of development of the fruit. They prefer the forms or squares (immature bolls), and will always work upon them to the exclusion of the
bolls as long as the supply is sufficient.-F. H. Chittenden, Acting Entomologist, U. S. Depart-
ment of Agriculture, Washington, D. C. ment of Agriculture, Washington, D. C.
(9275) G. B. writes: In an encyclopedia I find the statement that red, green, and not be resolved into other colors nor produced by combining other colors. In discussing the
subject a little further on, you state green is produced by combining yellow and blue, which is a contradiction of your first statement. I
therefore take it that green can be resolved into yellow and blue ; hence why do you say the A. We are not able to see the contradiction in the two statements that "red, green, and blue are primary colors and that "green is pro-
duced by combining yellow and blue." Both are facts. Red, green, and blue are taken as
primary color sensations by most modern writprimary color sensations by most modern writ-
ers, in accordance with the theory of the late Prof. Helmholtz, who was first in author its upon physiological optics. These colors sat-
isfy most tests of a good working theory in this subject. 'There seems to be no better the ory before the scientific world for acceptance.
Until a better appears, it is not probable that this will be set aside. It is now found in almost every textbook of optics. An easy
experiment may be performed with lights which illustrates the theory. Take three colored glasses or gelatines, a vermilion blue, an em-
erald green, and an ultramarine blue. Project these side by side on a screen, each by a separ ate lens, so arranged as to be movable ; a cir-
cular form is perhaps more convenient for the experiment, and the projection may be so that Now move the lenses nearer together, so tha the disks of colored light overlap. Do not are the disks themselves overlap, laut the
projections of the disks are to overlap. The red and the green light combine to form some shade of yellow, the green and blue form some
shade intermediate between these shades, and shade intermediate between these shades, and
the red and blue form some shade of purple Where the three overlap you will have white if the original colors were what are required
by the proper spectrum tints. There are many other tints in sets of threes which will formu white, but this set has been taken as on the present at least probably not we displaced Now as to the statement that "green is pro-
duced by combining yellow and blue." Make one solution of potassium chromate, and another of copper sulphate, to which add ammonia till a rich deep blue color is obtained. Put these
in vertical tanks or flat-sided bottles, and in vertical tanks or flat-sided bottles, and
project as before. When the disks overlap, it is found that the combined disks give white.
But if the light is allowed to pass through both solutions to the screens, the color on the screen is green. There is evidently something here Tost the two lights with a spec
troscope or projecting prism. The yellow of the potassium chromate is found to transmit red, yellow, and green of the spectrum; the
blue of the ammonio-sulphate of copper transmits green, blue and violet of the spectrum. Each absorbs what the other transmits with
the exception of green, which is transmitted by both liquids. Green is the only portion of white ight which can get through cons always, looks green. It is only in this sense that a combination of yellow and blue produces green, that is, bains. If the yellow and blue lights are combined by mixture, not by absorption, white is
produced. Both statements are facts. Each produced. Both statements are
requires its proper interpretation.
(9276) S. H. asks: What is the relative increase of power as you near the focal
end of a lever? To illustrate. Suppose the ever is a lover? fong and fulcrum is placed 24 inches from focal end, then to 18 inches and to 12 inches, what is the relative increase of powfocal point? A. The mechanical efficiency of a tances from the fulcrum to the power and to the weight to be moved. If the lever is 10
feet long and the fulcrum is 2 feet from one nd, the weight arm is 2 feet and the power arm is 8 feet. The weight is four times the he power arm becomes 9 feet, and the weight way the value of the lever in any case is de
termined. The ratio of the power to the weight s the same as that of the power arm to the weight arm.
(9277) S. S. W. asks: Will you in orm me whether it is possible to raise the temperature of water any number of degrees he cylinder to break the imped? if so how nigh a temperature could be reached, and is it etter to revolve the cylinder or a rod through he center to which the breaks are attached ?
4. It is not only possible to raise the tempertture of water by agitating it, but this always
ccurs. The water at the foot of a fall is jecurs. The water at the foot of a fall is
warmer than at the top, as has been proved at Niagara Falls. When the agitation takes place n a cylinder properly prepared for measure
nents, the amount of heat required to raise 1 pound one degree can be determined, and it oule, upon which all steam engines are con roule, upon which all steam engines are con-
;tructed. The heat unit is the quantity of heat
equired to raise one unit weight of water one equired to raise one unit weight of water one
legree, a unit in constant use in engineering. ne pound of coal will produce on the average 4,000 to $\mathbf{1 5 , 0 0 0}$ heat units.
(9278) L. F. H. says: What is the nethod of piping now employed in the two water? A. The action is somewhat similar
to that which takes place in the steam to that which takes place in the steam en
ine. Exhausting a steam engine under wate Is a very bad plan to follow, not counte balanced by any advantages. In striking wate tormed, the water immediately fills the exhaust pipe, and if the pipe is short, the in the exhaust pipe to there is a check valve fowing back. Moreover, there is a back press ure on the piston equal to the atmospheric may or n a of the engine, according to the boiler press ure used. The method of piping depends upon
(92) A.
(9279) E. A. A. asks: 1. Is the energy in form of light in an inclosed furnace r under a steam boiler wasted? If not, how y burn utilize itself? A. The light given out nergy. Light is the same thing as its heat so far as energy is concerned. Both are
classed as radiant energy in all the latest classed as radiant energy in all the latest
books of physics. The light is but an incident ooks of physics. The light is but an incident
of an eye. If there were no eye the light would not appear. 2. How are the oll holes no making the oll tubes in the twist drill you mention. You can address the inquiry to the company making the drill and they will doubtless give you the information. 3. How is the
est magnet steel prepared and what hardnes best magnet steel prepared and what hardness should it have to take and maintain the strong
est magnetizing? A. Magnets are made matnetizing? A. Magnets are made
any high-grade steel. Jessup's and Stubbs' ery good. The ends of the magnet lass-hardened, the rest remains soft. 4. Why lament increase with the age of it and why does the efficiency fall at the same time? A The resistance of an incandescent lamp filament increases with use because the filament riven off and fies against the bulb, making black. As the resistance increases the cur ent decreases, and if the lamp gets less cur-
ent it cannot give as much light, since it is beated so hot as at first.
(9280) G. W. B. says: 1. At what temperature will frost collect on glass if no
oisture is in the air? A. Frost cannot col ct on the windows when there is no moisture In the air at any temperature. Frost is the
noisture of the air changed to ice. 2. At hat temperature will it collect when quantity of moisture in the air, such as is
odinarily? A. Water freezes at 32 deg nd frost forms at the same temperature. 3 . If temperature of a room is above freezing will frost coilect on the windows? If so, at
what temperature must the surrounding air what temperature must the surrounding air
e in order to keep glass warm enough to kee fif frost and melt snow lighting on window The idea is to keep the window transparen enough to clearly see through it. A. Frost
may collect on windows when the air of the nay collect on windows when the alr of the
room is above freezing, since the glass is in dis colder than he air in the room. The glass must be per
manently above freezing to keep frost off and melt snow striking the windows. 4. What is the voltage and amperage of the ordinary cir-
cuit of lamps in a trolley car? A. If a voltage of 500 is used on a trolley car the lamps ar usually of 100 volts each, and are placed in
a series of five. 5 . Is the current reduced by a series of ifve. 5 . Is the current reduced by
a transformer for this light circuit or taken directly from the main circuit? A. In the ase above each lamp gets its requisite voltage nd all are lighted directly from the trolley
current without transformation. 6. Would the heat generated from an ordinary electric lamp as used in a trolley car be sumficlent to melt a
wax candle, if it were placed against the wax candle, if it were placed against the
lamp? A. The heat from an ordinary incandescent lamp bulb is sufficient to melt wax candles and to set fire to paper or cloth left
in contact with it for a long time. 7. Have in contact with it for a long time. 7. Have
you addresses of companies manufacturing condensers, as used with spark coils from $1 / 4$ nch up? A. You can obtain condensers from week we have advertisements of such in our columns. 8. Have you a Supperment giving
information on making condensers? A. Sup. information on making condensers? A. Sup-
PLEMENT No. 1124, price 10 cents, gives the instructions necessary for making a condenser and a complete coil giving a spark of six inches. 9. Where can I buy or at what kind
of place can I obtain tin-foil? A. Tin-foil can be bought from any electrical store.
(9281) A. N. says: What size wire must I use to magnetize a wire core for an in-
duction coil, core being 7 inches by $7 / 8$, No 20? Annealed iron wire using 2 amperes, 20 volts? Also at $11 / 2$ amperes, 27 volts? Also
1 ampere, 40 volts, or what would be the est current to use? I have a 40 -watt dynam which I am going to wind for it. What current What is the carrying capacity of copper wire in armatures, that is, sizes from No. 16 B. \& S . to o. 30 B \& S.? Also carrying capacity of wire
fields from No. 16 B. \& S. to No. 30 B. \& S . Tave you any Supplembnt giving the above
arrying capacities? If so, what number? Is ard granular carbon, such as used in telephone
raphy? Should it be a rather fine powder or
coarse? What is the best coberer to make and use for experimental purposes? Is there any that don't need decoherers? If so, what? How
big a spark should $11 / 2$-pound s. c. c. B. \& S. No. big a spark should $11 / 2$-pound s. c. c. B. \& S. No.
35 copper wire give? How far will $11 / 2$-inch 35 copper wire give? How far will $11 / 2$-inch
coil work a coherer? What size spark is used o signal across the Atlantic? What current is used in primary? Can more than one induc coils are connected in series, would it give inches, or how should they be connected? Induction coils are made for certain length spark, not for certain voltage and amperes of current. Wind the coil for spark, and the
put on the current. wound in two layers of coarse wire from end ond of the spool, which is mounted on the
core, leaving the wires of the core projecting somewhat from the heads of the spool. You should get a boo of arections for coil making and follow its instructions. You will then be recommend Norrie's Induction Coils, price $\$ 1$. me and a half pounds of No. 35 cotton-covered a spark of $9 / 4$ to 1 inch long. As to your ques tions regarding wireless telegraphy, very little is known about the apparatus used for sending signals across the Atlantic Ocean. Coherers
are made with silver or nickel filings in fine年解der. You will find in our paper severa forms of conerers. We can send you six papers
on wireless telegraphy, or a dozen for that matmaking of an apparatus. Two colls of a hat nch spark cannot be connected so as to give spark of double the length.
(9282) H. Fl asks: We have an elec tric light plant in our little city, direct cur-
rent, 220 volts, quoting us a price of 10 cent per thousand watts. How much will this quotation cost us to run a 4 -horsepower moto
 figures in horse power? A. An electrical horse wer is 746 watts. Four horse power woul vould be 71,616 watts. This at 10 cents pe 1,000 watts would cost $\$ 7.16$.
(9283) E. S. B. asks the following questions: If in any of the past issues the foliowing questions are explained, I would only
be too glad to get those Screstrific AmeriCANS; but if the Editor cannot refer me to a the columns of Notes and Queries. Explanation of alternating current, two-phase and three
phase current, and two-phase three-wire sys tem. What is meant by inertia, the momen of inertia, and the inertia of a flywheel? How is the flywheel for an ordinary steam engine calculated? How is the flywheel of an air com wheel calculated for an air compréssor, the air compressor being connected tandem fashion a steam cylinder, the air compressor in on double-acting? How is the flywheel of an am monia compressor calculated, having twin hori-
zontal steam cylinders and twin vertical ammonia cylinders, the cranks being sertical deg. to each other, and the cylinders being douHow is and in another case single-acting ing wheel of a locomotive calculated? A. Your college library must surely contain books giving ricity will define an alternating current ; any book on physics will define inertia. Any teacher of physics in the college can help you, and a technical college surely is provided with apparatus for illustrating all these points. An
alternating current is one which changes the direction of flow, at regular intervals. A cur-
rent of 60 alternations would change 60 times per second, and would have 30 cycles or complete changes "from positive to negative and the e. m. f. to the current. In a single-phase current the pressure rises from zero to a maxiequal to the maximum positive value, and rises to zero again in each cycle. This current serve
two-wire circuit with a single pressure direct current dynamo would give this current in the commutator were replaced by rings. A two
phase machine has connection made with the phase machine has connection made with the
armature coils, so that two single-phase cur ents are taken from it at the same time fo ressure in one is the time the time of greates vessure in one is the time of zero pressure in
he other. The phases are 180 deg apart three-phase circuit has theoretically three circuits is 120 deg from those on either side of it. You will find the whole matter fully explained in Sheldon's "Alternating Current Machines," which we can send you for $\$ 2.50$ by maill. In for the use of both phases separately. Iner tia is the tendency of a body at rest to remain
at rest, and of a body in motion to remain in unform motion in a straight line, unless commoment of inertia is the force necessary to give a body a unit angular velocity in on
second. It is calculated for bodies of regular forms by formulas which you may find in ootes of higher mechanics. A good simple
presentation of the subject may be found in Stewart and Lee's "Practical Physics;" Vol. I. which we can send you for $\$ 2.25$. The mo-
ment of inertia of a flywheel is. that of \mathbf{a}
ring, very nearly, since the arms are usually
very light as compared with the rim. The ormula for this is $I \quad R^{2} r$ formula for this is $I \frac{R^{2} r^{2}}{2} \times M$, in which M is the weight, R the radius of the outside of the rim, and r the radius of the inside of the
rim. See Scientific American Suplemment See SCientific American Supplement
No. 891 on centrifugal force as applied to reolving machinery, flywheels, etc., price 10 ents mailed. Thurston give
 he piston in square inches $=$ stroke in feet $p=$ mean steam pressure in pounds per square diameter of wheel in feet. This formula is so applicable to belt-driven air compressors, nd to the differential conditions of the steam In any form of compressors for atr ormo nia, the compensating conditions of crank angle nd opposite pressures must be considered and balanced in the complicated problem of aly wheel weight and size. The balancing of the driving wheels of locomotives is somewhat complex, depending upon their reciprocating eights in the longitudinal and vertical direction. The subject of flywheel weights and zes and counterbalancing locomotives is fully iscussed in Kent's "Mechanical Engineer's
(9284) L. F. B. asks: Is there any reason why the
batteries, which are and also the cood, strong cells $\begin{aligned} & \text { dry } \\ & \text { for }\end{aligned}$ utomobile work, cannot be made more dur able? The cell as it is now made is soldered. The joint of course starts small independent action, and that starts leaking and vaporiza-
tion of the contents by the joint giving wav. Iton of the contents by the joint giving way. eems to me that a zinc cell could be made of or lap. Better still, the whole cell could very easily ' be stamped or pressed out in one piece, as the common cartridge cell is pressed out.
Is there any reason why this change in mak. log would not be vastly superior, and also make the life of the battery considerably longer. The manufacturers would aliso save in cost of
manufacture. A. The strong competition bemanufacture. A. The strong competition be-
tween the makers of cells has reduced the prices, but also unfortunately reduced the
uality also. A good and durable dry cell is ery much to be desired. Your suggestions very much to be
seem to be of value.
(9285) W. S. says: How can I chemcally treat Canton flannel and cotton drapertes to make them non-inflammable? A. A com-
position, to be used for theatrical scenery (or the mounted but unpainted canvas to be used for this purpose), and also for woodwork, urniture, door and window frames, etc., is to paint. It is composed of boracic acid, 5 pounds; hydrochlorate of ammonia or sal-ammoniac, 15 pounds; potash feldspar, 5 pounds; gelatine, 1.5 pounds: size, 50 pounds; water,
100 pounds; to which is added a sufficient 100 pounds; to which is added a sufficient quantity of a suitable calcareous substance to give
tency.

NEW BOOKS, ETC.
The Tenement House Problem. Edited by Robert W. DeForest and Lawrence
Veiller. New York: The Macmillan Company. 1903. Two volumes. 8vo. Pp. 470, 516. Price $\$ 6$.
This book is published as a contribution to the cause of municipal reform. It embodies
the result of the investigations made in connection with the work of the New York State Tenement House Commission, appointed by President Roosevelt when he was Governor of
the State of New York in 1900 . It also includes the Tenement House Law as amended, and an introduction bringing down the history of tenement reform in New York to 1903. The work is filled with illustrations showing typical conditions in American cities, and it must be said that the volumes are put down with a sense tain in a civilized city. There is, however, the righter side to the subject, as the second olume in particular shows what is being done xist in New York city

Radiant Energy and its Analysis. Its Relation to Modern Astrophysics. By Edgar L. Larkin, Director of the
Lowe Observatory, California. Los. Angeles: Baumgardt Publishing Company. 1903. 12 mo . Pp. 334
The information presented in this book origticles on radiant energy and its analysis in the San Francisco Examiner. Starting with an
introductory chapter on radiant energy and on introductory chapter on radiant energy and on
wave motion, Prof. Larkin passes to spectrum analysis and the spectroscope, showing just how important to the modern scientist the spectroscope has become. A chapter on Fraunhofer lines explains the discovery of Fraunsolar spectrum. Indeed, the most important chapters of this book are devoted to spectrum analysis, for very good reasons, too, in a $\begin{array}{ll}\text { popular book of this kind. } & \begin{array}{l}\text { Solar spots are dls- } \\ \text { cussed in a short chapter. }\end{array} \\ \text { Solar protuberances }\end{array}$

