TRANSPORTER BRIDGE ACROSS THE MANCHESTER ship canal.
(amponifnt of the scirntific amerta
The latest transporter bridge is now nearing com pletion across the Manchester ship canal in Fngland, connecting Widnes and Runcorn on opposite banks of the river Mersey.
The structure when finished will be the largest of its type, as it will have a clear span of 1,000 feet. In design it is exactly the same as an ordinary stiff oned suspension bridge, except that the approaches to the bridge are at a low level, and both vehicular and pedestrian tralfic will be carried across the rive in a car suspended fromt the bridge. The utilization of low-level approaches dispenses with the erection of costly high-level approaches, which arc necessary to give admittance to the suspension bridges of the gencral type
The idea of a transporter ferry bridge originated from Mr. Charics Smith, of Hartlepool (England) who suggested the construcion of such a structure across the River Tees at Middlesborough over thirty ycars ago, bit his suggestion never saw fruition
The Runcorn and Widnes bridge, although similar in the main principles to that at Ri\%erta, is widely dissimilar in its general construction. The $1,000-$ foot span gives adequate clearance over both the river and the Manchester ship canal. The bridge is approached from both banks by an almost Hat roadway at a suitable level, built between stone and concrete retaining walls right up to the water's erige. From this point over the foreshore to the base of the towers, the approach is carried upon steel clliptical girders resting upon castifon col umos, supporting a corrusated stecl flooring upon which is laid wood paving on a concrete bed. This section of the roadway is 35 feet wide between marapets with sidewalks foret wide on either side.
The towers which carry the cafles and the siliffenins sirfors aro con structed throushout of stecl, and rise to, a height of 180 feet above hish - water mark. There are four tow irs in all, two at. either cnd, and math tower is firmly bolt ed to four cast iron cylinders rach of 9 feet diameter These caisson :14e firmly boit col to a solid rorli founda isem.

Wach tower -onsists of foum legs, 4 feet 10 inche wide at hase, taperins to a width of 2 fret 3 inches at. the top at the top, firmyy an strongly brac edtogethct with strong horizontal and diatyonal brac ing. At the base of each tower the less are 30 feet apart. narcowing to fo feet 9 inches at the
1.op landin』, which is 10 feet 6 inches wide. Kach pair of towers is 70 feet apart, and braced together with sttong horj\%onlal antl diagonal frames. The saddes, on stecl rollers, for carrying steel cables, are tixed al the top of each tower. The rollers are alapted for taling up the variations in the length of the calie tue to the loads and climatic conditions.
There are two main steel calles. Fach consists of nineteen steel ropes bound together. a rope being composed of 127 wires of 0.16 inch diameter, so that Hach rable is luilt of 2.413 wires. The total diameter of the cable is about 12 inchess. The two cables repre vent a weight of 243 tonss, and the wire is calable of withatuming a tensile strain of 95 tons per spuare inch. The interstices that are lefl between the wires of the ropes arc filled during the process of manufact
ure with a bituminous compound. The ropes are laid in parallel, and when made up into the cable, the whole mass is covered with a layer of the same com pound, and the whole is then incased in two layers of strong sail cloth saturated with bitumen.
The anchorases of the cable backstays are in the solid rock about 30 feeet deep, with screw adjustments fixed between the anchorages and the backstays.
There are two longitudinal stiffening girders sus pended from the main cables, 18 feet deep, and placed 35 feet apart horizontally. The underside of the girders will be 82 feet above the high wat.cr of the river below, thus leaving plenty of clearance for the passage of the largest vessels underneath. In the center they will be hinged so as to minimize the stress arising from the deflection from temperature, the girders rising and falling as much as 2 feet 3 inches for a range of tempera ture of 60 des. F. on cach side of an average temperature of 60 deg. F . In order to allow for the longitudinal expansion and contraction, a unique arrange

The Towers in Course of Construction. The Top of a Tower. General View of Transporter Bridge Towers on Both Banks. traveling at full speed, within its own length. have cost.
completely under his control. Reverse and forward gearing are to be provided, so that the car can be driven in either direction as desired at a moment's notice, or if the exigencles so demand it, the engineer can stop the car very quickly by means of the brakes. The time occupied in crossing from one side of the river to the other will be about $21 / 4$ minutes, which is equiva. lent to a traveling speed of about $444 \frac{1 / 2}{}$ feet. por minute. Including time for unloading and loading, it is anticipated that nine or ten trifs per hour will be made
The car is to be propelled by electric traction. Tho rails upon which the trolley is to run are fixed upon the lower flange of the stiftening girders. The trolley is 77 feet in length, and is carried upon 32 wheels, 16 on each side. It is to be propelled by two electric motors cach developing 35 brake horse-power. This is more power than will be necessary for actually driving the car; bul the high power has been adopted to enable any sudden emergency, such as a strong head wind against a heavy load, to be coned with, and fur thermore to effect economy in working. The motors are attached to a kind of bogie arrangement in the trolley, so that in event of large cnrvature of the bottom boom of the stiffening girders, arising either from temperature or load, the driving wheels will still be ahie to secure a firm grip upon the track metals. Auto matic and hand brakes are provided, and it will be possible to bring the car to a slandstill, even when

The engineers for the work are Messrs. John J. Web ster, M. I. C. F., of London, and John T. Wood, M. I. C. E., of Liverpool, to whom we are indelted for the accompanying illustrations. The total cost of the structure will approximate $\$ 6.0 .000$, which is about onc-third of what a high-level suspension bridge would

A series of experiments have been comblucted at St. Petersharg beforc a number of the courl officials with a new cuirass in vented by all Italian namerd Giorgiano, which it is claimed is im penetralile to revolver bu: lets, and re sists steel on slaughts, such as arc inflicted by a swort or hayonct. The hreastplate is made of soft clastic materi al, is about a cenlimeter in 1.hickncss and wcighs four pounds. The experiment. incladed the lischarge of shots at eight planks, cach an inch thic:k, and placed one on top of the other. The shots mene trated cuery plank fhen a sheet. of steel. two inclies ift thickness. was piercen? by the shots. Bul lets ware lireta from a lons. range heavy Russian caval THE BUILDING OF AN ENGLISH TRANSPORTER BRIDGE.
ment has been adopted. The girders are fixed to verf. cal rockers, which furthermore carry the overhang of the girders when the car is in the dock at the towers. The transporter car or ferry comprises a platform 55 feet in length by 24 feet beam, suspended by steel wire ropes from the trolley above. The ropes are so humg that they prevent either side or end oscillation of the car. The latter will he of sufficient dimensions 1.0 accommodate at one time four large two-horse wagons and 300 passengers. For the convenience of the latter, and to afford protection from the weather there is a glaysal shelter, with folding doors ut either tend and sides. On the top of the car will be placed the ensineer's cabin. containing controlling levers and switchboard, so that he will have a complete uninter. rupted view of the course, and the car at all times
ry revolver of the Nirwan type and a heavy American patlern revolver, respectively, but in cach case the shots that were fired at the breastplate failed to penctrate or even dent the inner surface of the cuirass, remaining embeddeal. Even explosive bullets dial not damage the breastilate. Lixperiments were also made with a stee bayonet.a Circassian fagger, and a sword of Damascus steel. The bayonet and the dagger broke without cutting the breastplate, while the saber simply made a dent on the outside of the fabric.

South Africa condrimates about 95 per cent of the world's supply of diamonds, the trade being this controlled by the De Besers Consolillaterl mines. which. in the year ending .lune 30, 1903, recovered 2,475, 002 carats, valued at $£ 5,241,173$ ($\$ 25,507,042$).

