recently patented inventions.

 Heating.SMOKE-CONSUMING FURNACE.-J. B. Harris; Nashville, Tenn. The invention relates to smoke-consuming furnaces such as shown and described in the prior Letters Patent
granted to Mr. Harris. The object of this ingranted to Mr. Harris. The object of this in-
vention is to provide a furnace arranged to insure a complete combustion of the fuel in the
fire-box and combustion-chamber by the intro fire-box and combustion-chamber of heated air into the front top portion of the fire-box and into the combustion-chamber
at the bridge-wall. at the bridge-wall.

Machines and Mechanical Devices.

 CENTRIfugal machine.-J. H. OstranDer, Ticonderoga, N. Y. This machine is de-signed for use in sulfite, pulp, paper, and chemical fiber mills. The invention relates to improvements in centrifugals particularly
adapted for use in pulp or chemical nber mills adapted for use in pulp or chemical nber mints being to provide a centrifugal of simple con-
struction and by means of which the work may struction and by means of which
be quickly and thoroughly done.
BENDING-maCHine.-W. Vanderlinden, Lansing, IIl. The intention in this case is,
to provide a hand-machine for bending iro rods or bars to form eyes or angles of any degree in a very simple and effective manner,
the machine being durable in construction, the machine being durable in construction,
easily adjusted for different work, and adapted for hand use on an anvil or other support. MACHINE FOR STAMPING SOAP, ETC.-
L. L. CONWAY, Louisville, Ky. In this patent L. L. Cenway, Louisville, Ky. In this patent
the improvement relates to an apparatus for the improvement relates to an apparatus for
stamping a name or device on soap simulstamping a name or device on soap simul-
taneously or practically simultaneously with taneously or practically simultaneously with
the operation of cutting the soap into cakes the operation of cutting the soap into cakes
or bars. The soap may be stamped at any desired interval on the same table and by practically the same apparatus that cuts the soap into bars.
hat-shaping machine.-m. A. Cuming, New York, N. Y. In the present instance the
invention relates to improvements in machines for shaping or forming hats of felt, straw, or other fabric, the object claimed by the in ventor being the provision of a machine by
means of which bell-crown hats may be rapid means of which bell-crown
GUIDE FOR SEWING-MACHINE HEM-MERS.-H. Blaskopf, New York, N. Y. Mr.
Blaskopf's invention relates to an improved Blaskopf's invention relates to an improved
means for guiding and simultaneously curling means for guiding and simultaneously curling mer or feller so that after the fabric is once inserted into the machine the services of an
attendant are not required, the device being to this extent automatic.
MACHINE FOR REPAIRING DRILLS. J. J. Bresseit, Granite, Mont. Briefly stated, this invention comprises means for cutting and shaping the bit of the drill so as to repair any
break therein and to sharpen the dulled cutbreak therein and to sharpen the dulled cut
ting edges. By means of the apparatus inting edges. By means of the apparatus in-
volved these operations may be performed on the drill accurately and quickly by machinepower, and thus a decided advantage over hand-work is attained.

of Interest to Farmers.

CORN-CUTTER-T. J. Leve, Lincoln, Ill. Mr. Love's aim is to provide a construction adapted to operate between two standing rows the corn, for holding it as cut, and constructed to admit the adjustment of the cutting devices out of position for use when it is desired to
pass by the shock of corn without cutting the gallas-hill, by which is meant the four hills not cut, but are tied together to set the shock against.
COTTRON - ChOPPER. - C. H. Walters, Springfield, Mo. In this case the object is to provide a machine that can be driven along a
field having rows of cotton-plants or the like and which will have one or more rotary chop-
pers that are rotated from the wheels of the pers that are rotated from the wheels of the
machine and which will effectually sever the plants along the row or rows at or below the surface of the ground either at regular in
tervals in the rows, leaving the desired number of plants standing, or remo
entirely along the row or rows.

> Railways and Their Accessories. RAIL-L. Steinberger, New York, N. Y. ments in rails, and more particularly to third rails employed for the purpose of distributing electric currents to moving vehicles of varicus kinds. It relates to several distinct means,
and more particularly to certain features and more particularly to certain features
whereby the rail is made free to move relatively whereby the rail
to its supports.
> track structure. - L. Sthinberger New York, N. Y. This structure is particu-
larly adapted for use for distributing electric arly adaptcd for use for distributing electric rail." The more special object is to prodird a rocker to be applied upon a rail-section, so direction and to reduce to a minimum the bearing surface upen the rail rests, lessening the friction of the rail on its supports, and
in consequence providing a means for the easy In consequence providing a means for the easy versely during expansion and contraction o the rails.

Steam Engineering.

STRAINER.-F. G. Brown, Sheffield, Ala ide a strainer, more especially designed for ase on vertical water-feed pipes for locomotives and other machines and devices and ar ranged to properly strain the water or other liquid flowing through the feed-pipe and to allow of readily cleaning the strainer of ac-
cumulated trash or other impurities. The incumulated trash or other impurities. The in-
vention relates to strainers such as shown and described in a former application for Letters

Of General Interest.

FOLDABLE CONVEYER.-J. H. Torney, Buffalo, N. Y. This conveyer is designed to expedite the handling of freight and reduce the manual labor of handling; to enable the
cargo of a vessel to be loaded or unloaded hrough the upper-deck hatches, thus saving in transporting freight through gangways; to particularly frail packages; to compensate for the draft of the vessel during loading and un-
loading, and to provide for folding the ap. paratus in compact relation to a warehouse when not in service.
DRILL-CHUCK.-E. R. Smith, Oneida, N. Y. This invention relates to chucks in which or from each other on the operator turning a screw-rod having a right and left hand thread in mesh with the jaws. The object is to provide a chuck having a supplementary device or engaging the gripping-jaws to insure an on the drill or other tool to be held in the chuck.
gas-engine cooler.-C. e. Shambaugh, Lafayette, Indiana. Mr. Shambaugh's invention relates to gas-engine coolers, more definitely stated, improved means whereby increased radiation of heat is effected. The construction comprises radially-disposed plates seated in ongitudinally-arranged grooves in
the cylinder, the said plates being grooved lengthwise thereof on opposite sides, the ribs between the grooves having series of transvers
projections formed by struck-up portions.
BOTTLE-SEAL-A. R. Rebertsen, Pass Christian, Miss. To prevent tampering with the contents of a bottle, the device embodies to receive a cork and formed with two annuto receive a cork and formed with two annu-
lar beads on its outer surface, of a frangible lar beads on its outer surface, of a frangible
cap, and a corrugated locking-spring adapted to lie between the beads on the neck and within the cap, so as to contact, thus holding the cap in place. Once seated, the cap can
only be removed by breaking it away, and it is purposed forming the cap with an annular weakened portion to facilitate its fracture.
manufacturing ore bricks.-J. Koeniger, 25 Aachenerstrasse, Cologne, Ger many. The process in this invention comprises ing purposes from sandy ores or ore smelting purposes from sandy ores or ore-dust, ore pyrite residues and from similar material, which consists in mixing materials which are to be submitted to the process in a dry condition with lime, magnesia, and borax and intimately mixing the resultant mass with dilute rude sulfuric acid, then pressing and molding the mixture and drying the resultant bricks. A smelting-brick consisting of ore material, ime, magnesia, borax, and diluted sulfur MAN a new article of manufacture
MANUFACTURE OF DEXTRIN.-G. ReyNaud, 5 Rue Salneuve, Paris, France. Mr.
Reynaud's process consists, essentially, in Reynaud's process consists, essentially, in di-
luting the material to be treated in twice its weight of water and in heating the resultant mass under pressure in a digester at a tem perature of 160 deg. to 220 deg . centigrade for an hour and a half. In this heat the
cellulose and the amylaceous matters of the peat treated become converted into dextrin or achroodextrin, which is capable of advan-
tageously replacing ordinary dextrin in its tageously replacing ordinary dextrin in its
industrial applications by reason of its lowe industria
density.
Binder.-J. Mentgemery, Fort Worth, Texas. One of the principal objects of the will securely bind and retain a number of loose leaves, the structure of such a binder
enabling it to be readily attached to and enabling it to be readily attached to and removed from the packet of leaves. in apper
tains particularly to a temporary binder for
order-books, cash-books, diaries, etc., capable or being rolled or folded and carried in the
flevator.-D. E. Cenden, San Francisco,
Cal. The invention relates to spiral elevators as shown and described in the former Letters Patent granted to Mr. Condon. The object is to provide an elevator for use in all classes crowds of people (and freight, etc.) have to be carried to, from, and between floors in the safest and most expeditious manner, the elevator being arranged for continuous travel of the cars from one floor to another, and enabling the passengers
enter cars at any floor.
bearing for elevator-carriage roll ers.-J. Barrett, New York, N. Y. The object in view in this instance is to provide a construction which minimizes friction on
the engaging surfaces, thus preventing bend-
to so construct the parts as to produce a
strong and light structure, owing to the fact that it is not necessary to cut away the stiles ent in order to mount the rollers thereon. Note.-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each.
Please state the name of the patentee, title of Please state the name of the patente
the invention, and date of this paper.

Business and Personal Wuants.
 will ind inquiries for certain classes of aruchu.
numbered in consecutive order. If you manu.
facture these goods write us at once and we wil
send you the nameand address of the party desir.
ing theinformation. Tu every case it is neces. send you thenameand address of the party desir-
ing theinformation. Iu every case it is necess
sary to give the number of the inquiry.

Marine Iron Works. Chicago. Catalogue free
Inquiry No. 5346.-For firms having for sale
crankshat laihes for machining small crantshafts
from 2 feet 8 inches throw Autos.-Duryea Power Co., Reading, Pa.

ᄃ. S." Metal Polish. Indianapolis. Samples free. Inquiry No. 5348.-For primary closed circuit
batteries.
Sawmill machinery and outfts manufactured by the
Lane Mfg. Co.. Box 13, Montpelier, Vt.
Inquiry No. 5349 . For a heavy spring motor
with movernor to run a iight machine. American inventions negotiated in Europe. Wenzel
t Hamburger. Equitable Building, Berlin, Germany.
 The owner of a valuable invention desires to dispose a part interest to a practical man. Adaress Sanford
Weeks. Patchogue, L. I. Inquiry No. 5351 . - For
novelties in large quantities. Send for new and complete catalogue of Scientific
and other Books for sale by Munn \& Co., 361 Broad way New York. Free on application
Inquiry No. 5352.-For an electric plant of about Fine machine work of all kinds. Electrical instru.
ments a specialty. Models built to order. Page Ma chine Co., 812 Greenwich Street, New York
 The largest manufacturer in the world of merry-go-
rounds, shooting galleries and hand organs. For price and terms write to C. W. Parker, Abilene, Ka
Inquiry No. 5354.-For makers of mo We manufacture anything in metal. Patented artiWe manufacture anything in metal. Patene
cles, metal stamping, dies, screw mach. work,
Metal Novelty Works, 43 Canal Street, Chicago.

Inquiry No. 5355 milk sterilizing plant.

The celebrated "Hornsby.Akroyd" Patent Safety on chine Comper Fo
Inquiry No. 53.56.-For
with 6 keys, also with 12 keys.
Manufacturers of patent articles, dies, metal stamp-
ing, screw machine work, hardware specialties, machinery and tools. Quadriga Manufacturing Company,
Inquiry No. 5357 .-F.-For makers of cutlery or par-
ties doing such job work.

worth investigating.

An wearinor who can improve on a small metal article

. A. C., 1009 New York Life Building, Chicago.

Inquiry No. 535 B.-For makers of furniture, such
as iron bedsteads, chairs, rockers, tables, etc.
" The Household Sewing Machine Co., Providence, ture of high: grade mechanical apparatus. requiring accurate workmanship, in either machine shop, cabinet work. or foundry lines. Expert mechanics. designers and tool makers. Faciliti
Inquiry No. $\mathbf{5 3 5 9}$.- For makers of composition
billiard and pool balls.
Jnquiry No. 5360.-For parties engaged in raising
Inquiry No. 5361.-For makers of small papier
mache articles.
Inquiry No. 536.-.-For a new or second-harid
small gas balloon, capabie of lifting itbout ten pounds.
Inquiry No. 5363.-For makers of fans, buzz fans
operated by waier power.
Inquiry No. 5364 . - For
ches (gasoline) 170 or 20 feet.
Inquiry No. 536 5.-For makers of tin toys.
Inquiry No. 5366 .-For makers of advertising
novelties of every description, of celluloid, enamelled
iron, stampedtin, founded brass name plates, etc.
Inquiry No. 5367.-For makers of or dealers in
siphon pumps.
Inquiry No. 5368 .-For a small family ice ma.
chine which makes 100 pounds of ice.
Inquiry No. $\mathbf{5 3 6 9 .}$.-For small castings for boat
engines and motors, of 2 to 5 h . p .
Inquiry No. 5370.-For makers of metaland cloth
button machinery.
Inquiry No. 5371.-For makers of carrousels or
riding galleries.
Inquiry No. 537.2.-For an outat of archery
court.
Inquiry
No. $\mathbf{5 3 7}$ 3. 3.--For makers of small articles
Inquiry No. 53 . 4,-For manufact
embossing and card beveling machines.
Inquiry No. 5375.-For manufacturers of pneu-
matic poods.
Inquiry No. 5376.-For makers of gas engine cast
ing.
Inquiry No. 5377.-For makers of headless steel
Inquiry No. 5378
very description.
Inquiry No. 5879.- For the maker of a machne
or producing quartered fgures on plain oak lumber.
Inquiry No. 5380 .-For makers of gasoline or hot
air engines of about $\% \mathrm{~h}$. p.

 Bookspreferred to promptly supplied on reeeipt of

(9353) A. т. J. says: 1. We say:

 is outwardy, in a tree"? "The bos, is ine inaraly, s "up" and "down," only as we use the
serms to express away from the and toward it. Am I correct? If "up" and
and "down" are correct, then to one on the equator at noon the sun would be directly "up"
("above;" and there is no such thing, likewise, as "above") and then at midnight the sun would be "down" ("below ", and there is no would thing, likewise, as "below"); and this and around the sun each 24 hours, or thereabouts. A. The words "up", and "down" refer strictly to the horizon about us, and to nothing else. Up is along a line drawn through the face of the earth to which the matter refers. Up and down as you use the words referring to a tree and a well are used correctly. The
sun at noon, to a person on the equator, is directly up from the surface of the equathor, is the head of a man standing at that point. and t midnight the sun is directly down beneath the man's feet. We see nothing wrong in this use of words, nor is the use of them necessary,
since other words can be used to express the act. 2. Is there any proof that the earth travIs around the sun as a man would walk around tree, or that it passes around the sun as a ider "loops-the-loop"? Is not the sun simply,
"away" from the earth, or the two "separated" away" from the earth, or the two "separated,"
without respect to "up" or "down"? A. The earth revolves around the sun in a year ; that is, it occupies every point on the plane of its is, it occupies every point on the plane of its
orbit in that time. 3. Can this and similar problems be worked out by any rule? Given
a section of a circle, say 13 feet from point to section of a circle, say 13 feet from point to
point along the curved line, and the curvature point along the curved line, and the curvature
such that a straight line from point to point such that a straight line from point to point
would measure 10 feet $93 / 4$ inches: required, he diameter of the circle if completed. A. We concerning the chord and arc of a circle which ou request. It can no doubt be solved, but it is not the policy of this paper to devote space to mathematical problems, unless they present some unusual features or are novel. 4. What alty is the emptying of streams into the oceans nd seas from inland and no outlet, and not hat there are vast salt mines whose uppermost (or outermost) surfaces as washed by
the seas' and oceans' bottoms supply the saltiness? A. The proof that the salt of the ocean ame from the land is briefly that the land water which have no outlet are salt. There may be beds of salt under the ocean as you suggest, but it is not necessary to suppose them can be accounted for without this supposition, and if not necessary why make it a part of hould be made than are necessary in any argu should
ment.
(9354) P. S. asks: Will you kindly form me whether a fish when put into a tub of water will increase the weight of the water
as much as the fish weighs or not, and if not what fraction of the weight of the fish will it increase the weight of the water? A. If a fish water runs over, the weight of the whole is increased as much as the weight of the fish.
The water takes the weight of the fish and arries it. The water rests on the bottom of解 ferred to the bottom of the tub, and the scales,
on which the tub may rest. If the tub is brimfull of water, and water overflows as the fish is put in, the weight is not changed by putting same as the water it displaces, as may be seen by the fish lying at rest in the water at any
(9355) E. S. L. asks: Why does ice occupy more space than the same amount of
water? What is the explanation of globular lightning? Why is the internal resistance of several cells diminished by joining them in parallel? Why is not the E.M.F. increased?
A. It is not known why water expands in
freezing. There are very few substances which do so. Cast iron and type metal are two others
which have the same peculiarity, and which which have the same peculiarity, and which
are very important to man. The cause o globular lightning is not understood. The re sistance of batteries is diminished by connect ing them in parallel, because by this mode of cell of size equal to all the cells combined The current generated by each set of plates
is sent out directiy into the line, and joins the current of the other plates without passing from cell to cell. The E.M.F. is that of one cell, because there is but one cell. The re
sistance is that of one cell with plates as large as all the plates combined. The larg
plates, the less the resistance of a cell.
(9356) W. L. G. writes: 1. Will you kindly answer the following question through
the columns of your valuable paper? Does the the columns of your valuable paper? Does the
weight of the atmosphere make any difference weight of the atmosphere make any difference
in the advantage to be derived from a con denser applied to a steam engine? In othe at the sea level, where the a ir pressure is about 15 pounds, than it is on a mountain, where the pressure is only 10 pounds? The question does not involve the efficiency of the engine in the different locations, but simply the advantage to be derived from a condenser. A. The ef ficiency of a condenser is independent of at
mospheric conditions, and depends only on the quantity and temperature of the condensing water. 2. Will a non-condensing engine give the same efficiency in a 10 -pound atmosphere at 15-pound atmosphere at 80 pounds boiler pres sure? A. The terminal pressure in a steam engine cylinder is not influenced by differences in atmospheric pressure. Hence the efficiency of the engine depends upon the form of the in dicator card alone, save the matter of engine friction, for the actual horse-power. The boiler efficiency may vary slightly with the atmos-
pleric pressure, as water boils under 10 pounds pheric pressure, as water boils under 10 pounds
alsolute gage pressure, at 193 deg. Fahr. Hence alsolute gage pressure, at 193 deg . Fahr. Hence
the actual pressure will be greater than indicated by the ordinary gage and may thus contribute to the apparent engine efficiency.
(9357) F. A. E. asks: 1. Will common wrought-iron pipe $21 / 2$ inches in diameter be suitable for a gas or kerosene engine cylinder
if machined to suit? I mean, will it stand the if machined to suit? I mean, will it stand the
pressure at the moment of combustion for a small power engine, and if not would stee small power engine, and if not would steel
tubing (drawn) be suitable? A. The iron pipe tubing (drawn) be suitable? A. The iron pipe
if extra strong grade will make a fair motor cylinder, but is not as good as steel tubing. It should be extra strong to allow for boring out, and amply strong for the explosive pressure. 2. Could you give me a formula for making five pounds of good bookbinder's paste that will keep for an indefinite time, say about one month? A. A good paste to keep may be made by mixing with rye four paste 10 per
cent good thin glue, hot, and then add 15 drops of carbolic acid. 3. Would a steam drops or car be practical if built compact enough to be portable on two wheels? I think by using a flash boiler and a four-cylinder engine of about 2 inches or $21 / 2$ inches, single
acting, with about 2 inches or $21 / 2$ inches acting, with about 2 inches or $2 \frac{1}{2}$ inches
stroke. A. We do not think a steam motor bicycle practicable. There are too many things to look after and keep your balance;
yet there are possibilities in that line. A yet there are possibilities in that line. A
steam motor bicycle somewhat similar to your idea for one has already been made and is in use in France. A description of
(9358) H. S. P. asks: Will you kindly give a satisfactory explanation of the wellnown act for amounts of water aid ing green timber steam injected into fire box to increase combustion, or the pouring of water on a great conflagration such as the Baltimore fire? In all of these cases we know ent increases the intensity of the fire. It has been explained that water containing the elements of combustion is decomposed oy the heat and the oxygen and hydrogen re This would be trying to burn the products of combustion and there would be no increase of heat. Others say that the oxygen carbon monoxide and hydrogen, both very combustible with air or oxygen. But in this case the products of combustion are carbon di-
oxide and water and there is just as much oxide and water and there is just as much
water in the end as in the beginning, per water in.
$\mathrm{C}+\mathrm{H}_{2} \mathrm{O}=\mathrm{CO}+\mathrm{H}_{2}$
-it taking $+\mathrm{H}_{2}+2 \mathrm{O}($ air $)=\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ ize and decompose the water than is given off when its elements combine.
As steam will not begin to decompose under a temperature of 1,000 deg. C., is it not a question whether any amount of water will actually decompose under such heat as in an ordinary
fire-box, or a conflagration? If stch was the fire-box, or a conflagration? If stich was the case, the aid to combustion, by water, would ical. What mechanical aid could it possibly give? It seems that small amounts of the flame by subtracting the heat necessary that there is a popular impression that water sprayed into a fire increases the combustion; but we have our doubts as to the correctness
of the belief. The doubt you express whether

Good Roads Problem Solved

ESSENTIAL TO THE INDUSTRIAL

WELFARE OF EVERY COMMUNITY

85\%.
It is said, by excellent authority, that fully $\mathbf{8 5} \%$ of the wear and tear on a stone or macadam road is caused by the feet of heavy steel-shod horses.

This illustration is taken from the report of Hon. Henry I Budd, Commissioner of Public Roads, Stat New Jersey, 1902, and shows that there is six times more resistance or traction on a stone or macadan road than on a steel track. Reduce this resistance by adopting the steel track method of road constructio and the horses can then go smooth-shod or even barefoot without injury to the roadbed or themselves, I.ess wear and tear on team, wagon and harness. Greater sped and dration capacry. Needs practically icycle, made the essence of pleasure

THE STEEL TRACK HIGHWAY

NO WOOD, NO BOLTS, NO BURRS, 5 metal pIECES, interlocking and indestructible

UNITED STATES DEPARTMENT OF AGRICULTURE Office of Public road inquiries.

Mr. THOMAS h. GIBBON,
Chief Engineer, Steel Highway Track Construction Co.,
a long absence in the Northwest, and have looked through your thesis on steel my return to t'le office, after with much interest. For cheapness, simplicity and durability, I have never seen its equal, and have no

The Steel Track Highway can be placed upon any road at a less cost per mile, upon a twenty-year guarantee, than the best macadam roadbed.

A number of companies are forming to lay Steel. Track Highways in each State, and an unusual opportunity is thereby open for progressive parties to secure State rights.

FULL DETAILS AND ESTIMATES ON APPLICATION.

Steel Highway Track Construction Company OFAMERICA

NEW YORK OFFICE
114-118 Liberty Street
 the water of an in irritation ditch A. Filtering 4.inch brick wall is not reliable for arresting typhoid bacilib. If such are suspected, the
water should be boiled after filtering. 2 . Two
 soldiers, using rifles with elevated sights,
shoot at a target across a river, say 500 yards distant. A stands at the water's edge, while B stands on a bluff 200 feet higher, but the same distance from target. Should both adjust their gun sights for the same range? A. The rifle fired from the higher elevation should
have a slightly lower rear sight than the rifle have a slightly lower rear sight than the rifle
firing horizontally. The force of gravity is less on an angular trajectory than on a horizontal one; varying as the cosine of the angle rom the horizontal range.
(9360) W. J. writes: Will you kindly advise through the columns of the Scientific American what are the reasons given to prove hat perpetual motion or any mechanism to Are mechanics and scientists impossibility? Are mechanics and scientists satisfied that most potent of the practical reasons. The why perpetual motion in a mechanical sense cannot be obtained, is derived from the fact that during the past three hundred years the genius of the mechanical world has been directed more or less to the solution of this problem, with many hundred failures and not a single success. Theoretically there is no reason that motion of a body can be sustained without the total elimination of friction and any condition, beyond the power originally contributed to start it in motion. The origin of the perpetual motion idea dates back to the awn of mechanical invention, when in the gnorance and misconception of true mechancal principles, mechanical experimenters, like the alchemists, imbibed the idea of getting something from nothing. Out of these feeble beginnings, a world of truthful facts have of mechanical and chemical science, yet perpetual motion and the transmutation of metals are just where they started, three centuries since. Theories are floating conceptions that are only realized by facts, which are truthful and stubborn things.
(9361) H. V. L. writes: Will you indly answer the following questions through columns of your paper? 1. In internal olume of motors, what is the ratio of the mbustion? gasoline mixture before and after sive mixture of gasoline vapor and air is somewhat less after explosion than the original The union of the hydrogen in the vapor and the oxygen in the air forms a water vapor, which with the great heat of explosion is largely contributive to the pressure in explosive motors. When the exploded gases cool to normal temperature, the water vapor condenses and so lessens the initial rolume. 2. About what is the temperature of the burnt gases at atmospheric pressure? A. The temperature of the exhaust gases at atmospheric the condition of the primary charge and the explosive temperature; probably 300 deg F is an average temperature. 3. What compression is necessary for jump-spark ignition? A Jump-spark ignition takes place at all compressive pressures, but is more positive with the higher compressions. 4. Will the gases ignite at a lower compression from a hot tubbe or wire? A. Hot-tube ignition requires compression sufficient to force the charge to the
hot part of the tube, genrally from 30 bot part of the tube, charge at any pressure 5. Can you give a formula for computing the safe bearing load of hardened steel balls as used in the caps of ball bearing jacks? A. An approximate
safe load for hard steel balls is 20,000 pounds divided by the area of rolling contact in parts of a square inch
(9362) G. G. G. asks: Please tell us in "Query", column of Scientific American whether the primary purpose of a lightning rod is to prevent a building's being struck
by allowing the induced charge to escape from its point, or to quickly ground the current after it has reached the house. While sevtion in the manner above stated, would the be at all adequate to conduct a weuld the to the ground? A. The primary purpose of a lightning rod is to act as a conductor for electricity, if the building is struck by light ning. The authorities are not disposed a present to consider that the action of a rod in discharging induced electricity into the air and thus preventing a stroke in the build ing is important. Too many rods would be
required to produce much effect in this way (9363) E. M. F. writes: I would be in your "Notes and Queries" column of the in your "Notes and Queries" column of the

sharpest blades are very quickly dulled in
cutting cork? A. The elastic nature of cork
makes it necessary to draw cut in cutting
cork, which is not usual in cutting wood. The
draw cut tends to dull the edge of sharp
cutting tools very quickly when cutting any
kind of material.

$\$ 1.50$. The author of this handbook has previously
published two similar books for steam engine what counts for more, he has bad fifteen years experience with gas engines. The handbook gives a good many practical points regarding the care and operation of stationary gas and oil engines, and it also contains useful tables ording the calorily employed
L'Industria Frigorifera. By Pasquale Ulivi. Milan: Ulrico Hoepli. 1904.
18 mo . Pp. 168. Illustrated. Price
This small volume describes in detail the various methods used in producing cold and
artificial ice for refrigerating purposes. The liquefaction of air and various gases is also reated quite thoroughly, and the different
processes are described. The book also con tains sixteen tables of value bearing on the subject treated.
Easy Lessons in Architecture. By
Industrial Publication Company. 1904. 12mo. Pp. 92. Numerous illustrations. Price 50 cents.
This little volume is intended to give rudimentary instruction in architecture to all in-
terested in studying that most fascinating art. terested in studying that most fascinating art. Each chapter consists of a number of ques-
tions and answers on some particular style or branch of architecture from the earliest mes down to the present. The and answers puts it in very concise form, and makes the contents of the book easy to grasp and to re member. The present, or second, edition has it will be found arranged for American readers. know something of the main principles architecture.
Mary of Magpala. An Historical and
Romantic Drama in Five Acts. The
Original in German Prose by Paul
Heyse. The Translation freely adapt-
ed and written in English Verse by William Winter. New York: The Macmillan Company. 1903.
We shall not quarrel with Mr. Winter for
having done Heyse's religious drama into English blank verse. His rendering undoubtedly gains in dignity thereby. But we do seriously object to his having presented us with an expurgated version, when no expurgation was
necessary. Winter's Mary is not Heyse's Mary. The German dramatist painted a strong picture of a woman exultantly sinful at first,
bitterly penitent at the last. The American translator robs her of every trait of wickedness, and allows her to weep through four acts with nothing to weep for. Confessedly ignorant of any knowledge of German, Mr.
Winter presumptuously proclaims Heyse's text devoid of poetical or spiritual merit. Those who are blessed with a more intimate acquaintance
with Heyse's splendid prose than is Mr. Winwith Heyse's splendid prose than is Mr. Winter, and who have not based their views on a
"rough, literal translation," will find the original a more virile play, with stronger draiginal a more virile play, with stronger dra-
matic contrasts, than Mr. Winter would have

us believe.

Publications of the Mississippi Histori-
Cal Societr. Edited by Franklin L.
Riley, Secretary. Vol. Vil. Oxford,
Miss.: The Mississippi Historical So-
ciety. 1903. 8vo. Pp. 531.
ber of papers dealing with different phases of
State history, and will certainly prove of in-
terest to the historian and to residents of the
State of Mississippi. There is an excellent
chapter on the Mississippi fioods by Dr. John
W. Monette, and another chapter is on "The
Progress of Navigation and Commerce on the

Progress of Navigation and Commerce on the
Waters of the Mississippi River and the Great Lakes from 1700 to 1846 ."
Luftverunreinigung und Ventilation.
Mit besonderer Rucksicht auf Indus-
trie und Gewerbe. Von Dr. Josef
Rambousek. With 48 illustrations
and a table. Vienna and Leipzig: A.
Hartleben. 1904. 8vo. Pp. 260.
The author starts out with an elementary discussion of ventilation principles, presenting
a theory of ventilation and something of the technology of ventilation. In this particular part of the work the chief sources of impurity
discussed are the exhalations of the human body. For this reason the earlier divisions of ventilation of dwellings, schools, churches, theatres, and thee like. The second division, on the other hand, is devoted to a treatment of the ventilatior. of industrial buildings, such as factories impregnated with gases and dust. It
is here that the author has given striking evidence of original investigation, for which reaable portion of this treatise.

Foot and Power and Turret lathes, Plan-
SHEPARD
Heavy Overloads are Carried Safely
 SCHIEREN BELTING

 WALLACE SUPPLY COMPANY

 $\$ 3,000$.
Packard motor car cu., Dept. 5 , Detroit. Mich.
 CHUGKS

Die Praxis und Betriebskontrolle de Schwefel saeure-Fabrikation. Fuer
den Chemiker, Meister, Kammerfuehrer, etc. Von Dr. S. Meirzinski. With 19 illustrations. Vienna and Leipzig: A. Hartleben

This work may
ext-book on the manufacture of sulphuric actical Under the heading "Chemical Control of Manufacture" only such processes are discussed which are actually in use in laboratories.
These processes are so thoreughly and clearly described that even the unpracticed chemist Evaporating, Condensing, ant Cooling Apparatus. By E. Hausbrand. Translated by A. C. Wright, M.A., B.Sc London: Scott, Greenwood \& Co pany. 1903. 8vo. Pp. 400. Price $\$ 5$ net.
It would be difficult to find a subject wher ing to evaporating and condensing apparatus, and the author has done a signal service to mechanical engineering in the production of the present book, which is an excellent one. fact that the first German edition was exhausted in a very short time. The whole
treatment of the subject is most scholarly. treatment of the subject is most scholarly.
We regret that lack of space prevents our pubWe regret that lack of space prevents ou
lishing at least an abstract of contents.

INDEX OF INVENTIONS

 For which Letters Patent of the United States were Issued for the Week Ending March 29, 1904.AND EACH BEARINGTHAT LATE
ISee note atend of list about codies of these patents.]
Absorption
Schanche

Agents
Wanted
 CANDLE-POWER

LAMP.
(For $\begin{gathered}\text { Natural, Artificial or } \\ \text { Gasoline Gas.) }\end{gathered}$
300 CANDLE-POWER.
Lindsay \& Company Dept. S, 170 Lake St., Chicago

Instructive Scientific Papers

ON TIMELY TOPICS
Price 10 Cents each by mail HOME MADE DYNAMOS SCIENTIFII AMERICAN SUPPLEMENTS 161 and 600 co
tain excellent articles with full drawings. PLATING DYNAMOS RTING DYNAMOS ${ }^{\text {RICAN }}$ SUPPEMENTIENTIFIC AME-
scribe their construction so clearly that any

DYNAMO AND MOTOR COMBINED. AMbrIcAN SUPPLEMENTS 844 and 865 . ELECTRICAL MOTORS. struction at Home SClENTIFIC AMERICAN
SUPPEEMENTS 759, 761,767, 441 . THE MAKING OF A DRY BATTERY. 1387, 1383. Invaluable for experiment ELECTRICAL FURNACES are iully de Scribed in SCIENTIFIC AMERICAN SUPPLEP
MENTS $1182,1107,1374,1375,1419$,
MISCELLANEOUS PAPERS ON SCIENTIFIC AMERICAN SUPPLEMENTS 1082,
1083, 1084, 1085, 1086, 1015, 1016,

Price IO Cents each, by mail Order through your newsdealer or from MUNN \& COMPANY
301 Broadway Now Yort

