parts of the collar in positions to receive the strains of pulling the load without imposing WELL ROD EXTPACTOR
Well-rod extractor.-W. W. French, Vanderbilt, Mich. In this patent the invention ment of a clutch device, and the object of the inventor is the provision of a simple and practical apparatus for extracting from wellcasings the working rod whenever it becomes roken or uncoupled broken or
the well.
Note-Copies of any of these patents will be furnished by Munn \& Co. for ten cents each. the invention. and date of this paper

Business and Personal Wlants.
WEAD THIS COLUMN CAREFFULLY.-Yuu numbered in consecutive order. If you manu-
facture these gonds write us at once and we will
send you the nameand address of the party desir-
ing thennformation. In every case if neces
sary to give the number or the inquiry.
NIUNN \& CO.

Marine Iron Works. Chicago. Catalogue free.
Inquiry No. 481 3.- For makers of stesm pipe
couplings having two cup.ghaped balls, throukh which

attos.-Duryea Power Co., Reading, Pa.
Inquiry No. 4814 .-For manufacturers of fine
gear wheels and pinions similir to those found in
French clocks.

dial.
Inquiry No. 4816.-For tools, appliances and ap-
$\begin{gathered}\text { mpriatuk for } \\ \text { gnives, etc. }\end{gathered}$ sharpening small toois, punches, scissors,
Handle \& Spoke Mchy. Ober Mfg. Co., 10 Bell St.,
Inquiry Noi. 4812
large omice buidings.
,
ck, Mechanicsburg. Pa

Sawmill machinery and outfts manu.
Lane Mfg. Co.. Box 13, Montpelier, Vt.
Inquiry No. $4-19$. . For the manufacturers of
tools using theietter
American inventions negotiated in Europe, Felix
Hamburger, Equitable Building, Berlin, Germany.
Inquiry
new patert labor-saving devices.
Let me sell your patent. I have buyers waiting.
Charles A. Scott, Granite Building, Rochester, N . Y.
Inquiry No. 4St21. -For makers of bicycle sun-
dries, typewriters, novelties. etc.
Machinery designed and constructed. Gear cutting.

Evaporation, Box T73. New York. Party who adverthis office for a reply to advertisement.

(T) Send for new and complete catalogue of Scientific
and other Books for sale by Munn \& Co., 361 Broad way ew York. Free on application
Inquiry
machines.
The largest manufacturer in the world of merry-gorounds, shooting galleries and hand organs. For prices
Inquiry No. 4825.- For manufacturers of bug-
gies. pottery, novelties, etc., for the mail order busi-
ness.
Empire Brass Works, 106 E. 129th Street, New York. N. Y., have exceptional facilities formanufacuring any ,
Inquiry No. 4826.-For the manufacturers of the
Saxon rolling mill.
The celebrated "Horasby-Akroyd" Patent Safety Oit
Engine is built by the De La Vergne Refrigerating Ms. Engine is built by the De Fast ergne Refnigerating Ms
Inquiry No. 48:7.-For makers of inventions or
devices for outdoor advertising purposes,
Contract manufacturers of hardware specialties, machinery, stampings, dies, toools, etc. Excellent market-
ing connections. Edmonds-Metzel Mfg. Co., Chicago.
Inquiry
machines.
Manufacturers of patent articles, dies, metal stampIng, screw machine work, hardware specialties, machin-
ery and toois. Quadriga Manufacturing Company, 18 anal Street, Chicago.
Inquiry No. 4829.-For manufacturers of adver-
tising novelties.
important to inventors of meritorious
MACHINES OR OWNERS OF PATENTS REQUiring manufacturing facilities.
manufacturing establishment is prepared to make immediate arrangements for the manufacture on a large scale and on a fair and liberal business basis of novel sider only machines of new design baving prospects of large sale. In replying give character of machine and us to decidedesirability of interview. All communications will be answered. Address

##  Notes and Queries. and

## HINTS TO CORRESPONDENTS

mes and Address must accompany all letters or
no attention will be paid thereto This is for
our information and not for publication. eferences to former articles or answers should give
date of paper and page or number of question.

## 

some answers require not a little research, and,
though we endeavor to reply too all either by
letter or in this department, each must take
his turn.
Buyers wishing to purchase any article not adver-
tised in our columne will be furnished writh
addresses of houses manufacturing or carrying
the
cial Written Information on matters of personal
rathter than general interest cannot be expected
without remunaration ntific Americen Supple
Scientific Americen Supplements referred to may
had at the oftice. Price 10 cents each.
Books referred to promptly supplied on receipt
price.
Minerals sent for examination should be distinctly
marked or labeled.
(9228) R. E. W. says: In the Scientific american of June 13, 1903, page 444,
is an article regarding the Parsons turbine as an air compressor. Can you give me formcompressed by this method? pressure of air compressed by this method? 1 wish to build
an experimental machine, but can find no data an experimental machine, but can find no data
on the subject, such as inclination and num on the subject, such as inclination and num-
ber of vanes and variation of pressure with variation of speed. A. The principle on which the Parsons turbine, when used as an air compressor, acts is similar to that of the
ordinary revolving disk fans, such as are commonly used to keep the air circulating in offices and restaurants. These fans act exactly as the screw-propeller of a boat does;
the velocity and volume of the air current produced depending upon the size and the
angle of the vanes, and the number of revolutions per minute which the fan makes. you will imagine such a fan placed inside pipe approximately equal to its own diameter, you can readily. see that if there were no
slippage between the air and the fan, the quan slippage between the air and the fan, the quan-
tity of air moved per minute would equal the area of the fan times the pitch of the blades times the number of revolutions made per
minute. From this you can easily determine the veiocity of the air current. The pressure
against which such a fan may work is proagainst which such a fan may work is pro
portional to the square of this maximum velgcity. There is, however, always a certain percentage of slippage, so that the volume of air and its velocity, as determined above,
must be multiplied by a certain coefficient. The value of this coefficient depends entirely upon the size and number of the vanes, their pitch or angle, and the speed at which they are run. Unfortunately there are no experimen
tal data to cover the case of the Parsons tur tal data to cover the case of the Parsons tur
bine, and the speed, size, and angle of the vanes here will be so different from the conditions of the ordinary ventilating practice that it is almost impossible to predict what
coefficients should be used. The effect of the several rows of blades on the Parsons turbine, if the different rows of blades are all set
at the same angle, would be simply to reduce the slippage, and to thus make possible the use of a very much higher pitch-producing
a correspondingly greater velocity or pres a correspondingly greater velocity or pres-
sure of the air current-than would be otherwise admissible. We trust that this explanation will be of service to you in directing the experiments which you are about to make,
and we regret that there are no more definite and we regret that there are no more
data that we can send you as a guide.
(.9229) W. R. writes: Your answer to W. E. H. (9107), July 25, states that only the force of gravity by falling weights, or I might
add, a wound-up spring or springs when uncoiling, would give him the motor or power he is in search of. He objects to the aid of steam,
water, electricity, etc., but only wants a mechanical power, such as wedges, inclined planes, or levers. Surely, he must know that no power could be given out from these agents his information, $I$ would state that instead of springs or weights for driving clocks, or shot waterwheel (although he objects to water) to drive a clock perpetually, not by per
petual motion, which I see he bas the sense to petual motion, which I see he bas the sense to
know is humbug, but by keeping the buckets know is humbug, but by keeping the bucket
full, with the rain or water from the mains. erected one a year ago, and it has been going ever since and keeping splendid time, and will
go on forever till it falls to pieces or rain stops falling.
(9230) M. L. says: How would I determine the foci of an ellipse, the diameters as 9 inches by $71 / 2$ inches being given? Would
like a definite rule by which $I$ could describe like a definite rule the ellipse which could describe the ellipse. A. To determine the foci of an
ellipse, when the axes are known, draw lines ellipse, when right angles to each other and lay off the semi-axes from
tion. From one extremity of the shorter axis as a center, with a radius equal to half the longer axis, describe an arc cutting the longer axis in two points. These points are the two
foci. An ellipse is most easily and accurg foci. An ellipse is most easily and accurately described by drawing the two axes as above, and setting a pin at the two foci and at the
extremity of the minor or shorter axis. Then
tie a fine cord, which does not easily stretch, around the three pins, forming a triangle
Now remove the pin at the extremity of the Now remove the pin at the extremity of the
minor axis, and with a pencil having a sharp point, take the thread on the point of the draw the curve, keeping the thread at a uniform tension. The loop of thread slips around
the pins which are at the two foci, and each the pins which are at the two foci, and each
point of the curve obeys the definition of an ellipse, which is: "A curve each point of which has the sum of its distances, from two fixed points a constant quantity." This constan
quantity is the major axis. (9231) H. F. says: I have had a curlous experience with watches that I am
at a loss to explain, and should be glad to know whether there is any reason why a
watch might keep good time when carried by watch might keep good time when carried by
one person and be wholly unreliable when carone person and be wholly unreliable when car-
ried by another, under apparently the same conditions. My first watch had been in use good many years when it came into my pos
session. After some time, about half of which the watch was in the repair shop, I concluded that it was worn out, and bought a new one
with as good works as I could get. This watch kept accurate time for two or three days, or even a week at a time, then it be-
came very irregular. It was as likely to be came very irregular. It was as likely to be ral times, and then took it back for regula months, the jeweler meanwhile declaring tha the watch kept good time so long as it re
mained with him, and I fancy, suspecting tha did not keep it wound. At last, however, $h$ took the watch and gave me another, which behaved precisely the same way. It may sometimes have run two weeks accurately, but
very seldom more than two or three very seldom more than two or three days.
As an investigating experiment, I exchanged atches with a friend who had a perfect time keeper. My watch was carried six weeks by period. In the meantime, the watch I bor rowed lost time regularly, at the rate of half
an hour in three or four days. This watch an hour in three or four days. This watch
during the six weeks never behaved quite as erratically as mine, but it never kept good time
whille I carried it. I now have my own while 1 carried it. I now have my own going more than a few days without finding it one, two, or three hours behind time. It must stop and start again, for it could no always going when I examine it. I think it starts with the movement of looking at it
Since this experience my first watch ha Sroved this experience my frst watch has
patisfactory timekeeper in other hands. I inquired of a watchmaker, who people in their capacity to carry watches and people in their capacity to carry watches and to the difference in the movements of the different people. This does not seem a plausible explanation, and if true, would not be satisfactory in this case, for my movements are less my watch I have met two people who claim that they have never been able to carry a watch, and have given it up. I am curious to know if there is any reason why I or any one
should not be able to carry a watch, the watch being in good condition and kept wound, and If there be any cause, what it is. Can you A. We have referred your statement regard ing the change in the rate of a watch when different people carry it, to a wholesale dealer in watches in this city, and his reply is to the effect that it is not proved that the car-
riage of the person can affect the running riage of the person can affect the running
of a watch. The difference in the stepping of one person and another is not sufficient to change the running of a watch appreciably The irregularity you ascribe to the watches is, to the treatment of the watch in service
This is, in his opinion, irregularity in the ime of winding as the most important; lay ing it down at night in different positions, face, and sometimes hanging it up in the pocket. These things make any watch irregu-
lar, no matter how good the watch may be.

## NEW BOORS, ETC.

The Practical Physics of the Modern Steam Boiler. By F. J. Rowan
A.M.I.C.E., M.I.E.S. Preface by R Hostrand Company. 1903. 8vo. Pp. Nostrand Compan
638 . Price $\$ 7.50$.
The work is admirably illustrated by 314 tice. The literature on the mechanics of the steam boiler, such as the strength of materials, tc., is voluminous, so the present author has
ndeavored to take another path, as guided y the indications of physical research, toward the goal of a fuller understanding of the action involved in steam raising and of the
requirements of efficient boilers. Acetylene: The Principles of its Generation and Use. By F. H. Leeds, F.I.C., F.C.S., and W. J. Atkinson Charles Griffin \& Co., Ltd. Philadel 1903. 12mo. Pp. 276. Price $\$ 2$.
literature concerning acetylene is lim

The author deals with the cost and advantages of acetylene lighting, the physics and chemistry of the reaction between carbide and
water, the general principle of acetylene genwater, the general principle of acetylene gensequent treatment of the gas, subsidiary sequent treatment of the gas, subsidiary
apparatus, mains and service pipes, combustion a acetylene, incandescent burners, compressed and dissolved acetylene, the valuation and nalysis of carbide.
Spraying Crops: Why, When, and Hew. $\begin{array}{ll}\text { By Clarence M. Weed, D.Sc. New } \\ \text { York: Orange Judd Company. } & 1903 .\end{array}$ 16 mo . Pp. 136. Price 50 cents.
This little manual has been prepared for the urpose of aiding owners of spraying maciines tical results of the most recent investigations and experiments have been embodied in it.
The development of the practice of spraying The development of the practice of spraying
crops furnishes a striking inlustration of the crops furnishes a striking illustration of the
practical results ngriculture may derive from practical results agriculture may derive from
scientific investigation and accurate experimenscientific investigation and accurate experimen-
tation. The present is the fourth revised, rewritten, and enlarged edition.
Etat Actuel du Labourage Electrique. Par Emile Guarini. Paris: Publications du Journal Le Genie Civil.
1903. Pp. 16 . 1903. Pp. 16.

In this paper, which is a reprint from Le Genie Civil, Emile Guarini, well known to the readers of this journal as a contributor, very
thoroughly examines the use of electricity in thoroughly examines the use of electricity in
agriculture and shows just what the commercial possibilities of a system of electrical plowing are, basing his conclusions upon experiments actually carried out.
Die Eisenkonstruktionen der Ingen-IeUr-Hochbauten. Ein Lehrbuch
zum Gebrauche an Technischen Hochzum Gebrauche an in der Praxis. Von Max Foerster. Ergänzungsband zum Handbuche der Ingenieurwissen: schaften. Leipzig: Verlag von Wil-
helm Engelmann. 1903. helm Engelmann. $1903 . \quad$ Pp. 544.
Price $\$ 12.50$. This is the second edition of a book which was our pleasure to comment upon about
year ago. In that brief space of time the year ago. In that brief space of time the
work has met with such marked success that a second edition has already become necesNaturally, the changes which have
been made in civil engineering have not been so marked that a revision was at all necessary. The author has, therefore, ing of certain of the sections, notably
those treating of the behavior of iron structures when subjected to heat, forged iron columns, anchorages, and particularly those sections which treat of strains. The Hennebique process is now fully described, and also
Mohrsch's calculation methods. The bibliogMohrsch's calculation methods. The bibliogreferences to articles in books which have appeared since the publication of the first dition. Additional figures are also to be found in the book. On the whole, the improvements which have been made have added to
the excellence of a book, which should be of the excellence of a book, which should be of
great value to the practitioner as well as to great value to the practitioner as well as to the student
he Art of Pattern Making. By I. Mc-
Kim Chase, M.E. New York: John
Wiley \& Sons. 1903. 12 mo . Pp. 254, 215 figures. Price $\$ 2.50$.
A good book on pattern making is always pecially valua volume before us will prove o make patterns for such objects as ${ }^{\text {sencrew }}$. propellers, cylinders for marine engines, etc. In technical and manual training schools. It in technical and manual training schools. It
is a book which we can heartily commend.

INDEX OF INVENTIONS

## For which Letters Patent of the

 United States were Issued for the Week Ending November 17, 1903,AND EACH BEARINGTHATDATE


